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Abstract: 

Fluid permeability of solid foams is a crucial parameter to control transport phenomena in numerous 

engineering applications, such as heat exchangers or filters for example. Open-cell foams with 

monodisperse pore diameter ranging from 200 to 1000 µm and solid volume fraction ranging from 

0.1 to 0.38 are produced and Darcy permeability is measured. The permeability divided by the square 

of the pore size shows an exponential decay as a function of solid volume fraction. Surprisingly, 

existing models do not capture this exponential decay and actually they predict permeability values 

significantly larger than the measured values. The observed exponential decay is then successfully 

described by using models based on the viscous dissipation occurring through the apertures that 

connect the foam pores and by accounting for both the mean size of the apertures and the mean 

number of apertures per pore. 

 

Highlights 

 Monodisperse solid foams have been produced with both controlled pore size and void 

fraction 

 The dimensionless permeability is shown to decrease exponentially over the full range of 

void fractions 

 The exponential behavior is successfully modelled from both the viscous dissipation 

occurring through pore connections and the mean number of apertures per pore 

 

 

1. Introduction 

 

Open cell solid foams are attractive materials used in various industries, especially as heat 

exchangers [1] or as thermal insulation materials [2], as crash energy [3] or acoustical absorbers [4], 

as filters for fluids, ... For many of those applications, permeability is a crucial parameter: as 

examples, it sets the pressure required to filter a given volume flow rate of fluid, and it is used to 

model sound absorption through foams [5]. 
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In spite of the significant amount of work devoted to study foam permeability (see [6,7] for 

recent reviews), strong discrepancies appears within the literature results. The main reasons for such 

discrepancies seem to be related to measurement and data treatment issues, to the use of different 

morphological definitions (number of pores per inch, strut width, strut length, aperture diameter, 

pore diameter, …), to the large spectrum of different materials called foams (replication or capillary 

foams, fully open or partially open cells, …), to the limited range of void fraction available for each 

studied foam, … 

Actually, there is no general consensus to define the link between permeability and foam 

microstructure, and this limits the development of general models [6]. In order to increase our 

understanding about foam permeability, we perform experiments with monodisperse foams which 

were produced on purpose with several pore sizes and within a large range of void fraction. As 

shown in the following, monodispersity is very helpful for careful comparisons to be made with 

existing models, which will allow highlighting the ability of the so-called aperture model to describe 

our set of permeability values.  

 

2. Production and characterization of the solid foam samples 

 

Studied solid foams are geopolymer foams produced from metakaolin (MK) particles by using a 

dedicated process presented in the following.  

 

2.1. Materials 

 

We used an activating solution prepared by mixing NaOH solution (mass concentration Cw = 

0.35) with a solution containing Na2O (Cw = 0.08) and SiO2 (Cw = 0.27) provided by MERCK KGaA, and 

water. The density is 𝜌ℓ = 1400 kg/m3 and the chemical composition is given by molar ratios 

H2O/Na2O = 14.68 and SiO2/Na2O = 1.01. 

 

Metakaolin (MK) particles were provided by AGS Minéraux (France): Argical M 1200s. Chemical 

compositions: SiO2 55.0%, Al2O3 39.0%, Fe2O3 1.8%, TiO2 1.5%, K2O+Na2O 1.0%, CaO+MgO 0.6%. As 

provided by the supplier: BET specific surface area is equal to 19 m2/g and median diameter of the 

volume weighted size distribution is approximately 𝑑𝑝 ≈ 2 µm. Their density is 𝜌𝑀𝐾 = 2200 kg/m3. 

 

The activated MK suspensions were prepared by mixing a mass 𝑚ℓ of the activating solution 

with a mass 𝑚𝑀𝐾 of metakaolin particles.  The suspension is characterized by the ratio 𝐿 𝑆⁄ =
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𝑚ℓ 𝑚𝑀𝐾⁄ . For the present study 𝐿 𝑆⁄  was within the range 1.75-2. The chemical composition of those 

samples is given by Si/Al and Na2O/Al2O3 ratios, respectively within the ranges 1.8-2.5 and 1.2-2.7. 

The typical setting time is about two hours. 

  

Glucopon® 225 DK (alkyl polyglycoside provided by BASF) was used as surfactant for foaming 

purpose. Such a nonionic surfactant of molar mass equal to 420 g/mol was shown to be suitable to 

stabilize the foam morphology during the two hours preceding the geopolymerization stage. Surface 

tension of Glucopon water solutions was measured to be 𝜎 = 30 mN/m for concentrations above the 

critical micellar concentration. Dynamic viscosity of such water solutions is very close to that of pure 

water, i.e. 10-3 Pa.s.  

 

2.2. Production 

 

The method used for the production of controlled MK foams has been presented in a previous 

paper [8]. Here we recall the main steps but the reader can refer to [8] for more details. 

In broad outline, metakaolin foams are produced by mixing precursor aqueous foam with the 

metakaolin (MK) suspension described previously. The production process consists of two steps: (1) 

production of the precursor aqueous foam, (2) mixing of the precursor aqueous foam with the MK 

suspension and in-line filling of the resulting MK fresh foam in a vessel.  

Step 1: Aqueous foam is generated by pushing both gas (nitrogen) and foaming liquid 

(glucopon water solution) through a T-junction. Tuning the gas/liquid flow rates ratio allows 

producing monodisperse bubbles with chosen diameters ranging between 200 µm and few 

millimeters. Generated bubbles are continuously collected into a vertical glass column. The average 

bubble diameter 𝐷𝑏 is measured using a camera focused at the wall of the column in order to control 

this parameter. For foam made with bubble size 𝐷𝑏 ≳ 500 µm, ripening turns out to be insignificant 

over the duration of the production step, so highly monodisperse precursor aqueous foams were 

obtained. In contrast, smaller bubble sizes were observed to evolve during the production step 

because of the ripening process. This can be explained by both the increase of the ripening rate for 

smaller bubbles (see page 104 of [9]) and the decrease of the production rate (larger time required 

to produce the same volume of foam) for smaller bubbles. Such an evolution was efficiently 

counteracted by using perfluorohexane as a saturating vapor in the bubbling gas [10]. 

 

Step 2: After production of the required precursor foam volume, the latter is pushed with the 

MK suspension through a static mixer (flow focusing device and classical helical geometries). The gas 
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volume fraction within the resulting MK foam can be adjusted by tuning the ratio of flow rates for 

the precursor foam and the MK suspension. The resulting fresh foam is continuously pushed in a 

sample vessel of diameter 26 mm and height 𝐻0 = 50 mm. Typical volume flow rates for the 

production of the studied samples are of the order of 10 mL/min. The vessel is filled to the top and 

closed. Note that the values for the solid volume fraction 𝜙𝑠 was also determined a posteriori by 

comparing the measured density of the fresh MK foam with the density of the MK suspension. After 

2 days in the closed vessels, samples are let for drying at room temperature for 2 days before 

unmolding.  

 

2.3. Foam microstructure 

 

Optical microscopy was used to characterize the foam structure. Pore sizes were measured 

directly on pictures like Fig. 1b. According to our production method, the pore size in the solid foam 

is set by the initial bubble size in the liquid precursor foam. In other words, all the solid foams (a 

series) produced with the same precursor foam have the same pore size. It is to say that when 

measuring the pore size of such a series, it is preferable to turn to samples with higher 𝜙𝑠 because 

pores are more spherical and their diameter can be measured more conveniently. For each of those 

samples, twenty circular pore diameters were measured and the average value 𝐷𝑝 was calculated. 

The expected error bar is Δ𝐷𝑝 𝐷𝑝⁄ ≈ 5%. Apertures were measured as follows: twenty diameters of 

apertures that could be fitted with a circle (i.e. located within a plane perpendicular to the 

observation axis) were measured and the average value 𝑑0 was calculated. The expected error bar is 

Δ𝑑0 𝑑0⁄ ≈ 5%. 

In addition, X-ray tomography (EasyTom RX Solutions) were performed on few samples to 

obtain size distributions. Images of small samples (i.e. 5x5x10 mm) were obtained with a Ultratom 

scanner from RX solutions. Measurement involved a Hamamatsu L10801 X-ray source (160 kV) and a 

Paxscan Varian 2520 V at-panel imager. All scans were performed at 60 kV and 85 µA. Frame rate 

was 3 images per second and 12 images were averaged to produce one projection (the resulting 

effective exposure time is therefore 4s). 3D tomographic reconstruction was performed with the X-

Act commercial software developed by RX-Solutions. Voxel size for the obtained images is 5 µm. 

Pores appear black on the reconstructed images and interstitial geopolymer solid is light grey. This 

allowed us to analyze the images with the freeware ImageJ program [11] to compute the pore size 

distribution: First, a closing filter from MorphoLibJ plugin [12] with a 2 voxel-radius ball element was 

applied to reduce noise from the images. Then, image threshold was calculated using the Otsu 

method [13]. 3D Watershed from MorphoLibJ was applied, then 1-voxel dilatation filter. Finally, 3D 
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Object Counter plugin returned the volume (𝑉𝑝,𝑖) of each pore, from which the equivalent pore 

diameter 𝐷𝑝,𝑖 = (6𝑉𝑝,𝑖 𝜋⁄ )
1/3

 was calculated, as well as the number average value. The averaged 

values determined following this method were found to be consistent with diameters measured by 

optical microscopy, i.e. the observed deviation is smaller than 5%. Apertures were identified as 

follows: the described-above binarized image was subtracted to the image resulting from the 

Watershed plugin, which materializes the apertures as thin planar objects on which the 3D Object 

Counter was used to get their sizes and positions. It appeared that the resulting mean aperture 

diameter was systematically smaller (by 25 µm) than the mean size measured by optical microscopy. 

In the following, aperture sizes 𝑑𝑜 correspond to optical microscopy measurements, except for Fig. 

1d that shows size distributions where the value obtained by X-ray tomography is corrected 

by -25 µm. The number of apertures per pore 𝑁𝑜 was deduced by matching both pores and apertures 

positions. This was performed for each neighbor pore couple, for example a pore of diameter 𝐷𝑝,𝐴 

with center at position A and another of diameter 𝐷𝑝,𝐵 at B, by seeking for an aperture object near 

its expected position P, defined by the average position along the axis passing through both pore 

centers and weighted by the pore sizes, i.e. 𝐴𝑃⃗⃗⃗⃗  ⃗ =
𝐷𝑝,𝐴

𝐷𝑝,𝐴+𝐷𝑝,𝐵
𝐴𝐵⃗⃗⃗⃗  ⃗.  

 

 

2.4. Permeability measurement 

 

Gas-flow permeability was measured with a home-made setup. A gas flow controller was used 

to push dry nitrogen at mass flow rate 𝜂 within the range 0-10-5 kg/s (or equivalently a volume flow 

rate 𝑄 within the range 0-8 mL/s at 𝑃0 = 105 Pa) through the foam sample (length 𝐿, typically within 

the range 3-5 cm, and circular cross-section 𝑆 = 5.3 cm2) embedded with PTFE ribbon and fitting a 

cylindrical tube. The pressure difference ∆𝑃 across the sample was measured thanks to a manometer 

with precision equal to 0.1 Pa and pressure range 0-250 Pa. 

The flow of gas through solid foams can be described by the following equation [14]: 

𝜌 𝑑𝑃 𝑑𝐿⁄ = −𝜂(𝜇 𝑘𝐷⁄ + 𝛽𝜂), where 𝜌 is the gas density, 𝜇 = 1.758 10-5 Pa.s is the dynamic viscosity 

of the gas, 𝑘𝐷 is the intrinsic foam permeability and 𝛽 is the inertia factor. By assuming a perfect gas 

behavior we have Δ𝜌 𝜌0⁄ = Δ𝑃 𝑃0⁄ , with 𝑃0 = 105 Pa and 𝜌0 = 1.25 kg/m3. Here we consider the 

maximum pressure drop value in our experiments, i.e. Δ𝑃𝑚𝑎𝑥 ≈ 250 Pa, which means that 

(Δ𝜌 𝜌0⁄ )𝑚𝑎𝑥 ≈ 0.25%. This shows that gas compressibility can be reasonably neglected in our 

experiment. Moreover, by using values we obtained for 𝑘𝐷 (see Table 1), the ratio 𝛽𝜂𝑘𝐷 𝜇⁄  is 

calculated to be of the order of 0.1% (we used [14]: 𝛽 = 0.84 𝐷𝑝⁄ ), which means that the above 

equation boils down to the Darcy law: 𝑑𝑃 𝑑𝐿⁄ = −(𝑄 𝑆⁄ )𝜇 𝑘𝐷⁄ . When considering inertia effects, it 
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is usual to refer to the Reynolds number, 𝑅𝑒 = 𝜌(𝑄 𝑆⁄ )𝐷𝑝 𝜇⁄ . Here we calculate the average value 

𝑅𝑒̅̅̅̅  for each sample within our experimental conditions. It is shown in Table 1 that 0.1 ≤ 𝑅𝑒̅̅̅̅ ≤ 0.6, 

which suggests low inertia effects. Reported values for 𝑘𝐷 were obtained by assuming the Darcy law 

and were determined as follows: ∆𝑃 𝐿⁄  values were plotted as a function of 𝑄 𝑆⁄  and the slope 𝑘𝐷 𝜇⁄  

was determined by linear regression (see Fig. 3a). Note that all the measurements exhibit a linear 

behavior  (see coefficients of determination 𝑅2 ≈ 1 in Table 1), which is consistent with the analysis 

presented above for inertia effects.  

 

 

3. Results and discussion 

 

First of all we describe the microstructure of our samples (see Fig. 1). Highly monodisperse 

open cell foams are obtained with several pores sizes. The effect of solid volume fraction is shown in 

Fig. 1b: foam can be described as interconnected struts at small 𝜙𝑠 values, but spherical pores with 

small circular apertures are seen for larger 𝜙𝑠 values.  Sizes of the apertures appear to be more 

dispersed than pore sizes (see Fig. 1c & d), and their mean value decreases as a function of solid 

volume fraction. The number of apertures per pore 𝑁𝑜 is shown in Fig. 1e for several samples. 𝑁𝑜 

decreases as a function of solid volume fraction: 𝑁𝑜 ≅ 10 for 𝜙𝑠 ≅ 0.2 and 𝑁𝑜 ≅ 7 for 𝜙𝑠 ≅ 0.3.  

 

All our results for the mean aperture diameter 𝑑𝑜 are presented in Fig. 2, showing the 

dimensionless parameter 𝑑𝑜 𝐷𝑝⁄  as a function of 𝜙𝑠. Aperture size decreases from 𝑑𝑜 𝐷𝑝⁄ ≈ 0.4 for 

𝜙𝑠 ≈ 0.05 down to 𝑑𝑜 𝐷𝑝⁄ < 0.2 for 𝜙𝑠 > 0.3. Note that we don’t report 𝑑𝑜 values for 

𝜙𝑠 >  𝜙𝑠
∗ ≅ 0.38 because apertures are scarce for such samples and the sample’s homogeneity was 

not ensured. Actually the decrease of apertures size is very strong between 0.35 and 𝜙𝑠
∗, where it is 

expected to vanish. This behavior can be inferred from the known packing volume fraction of 

monodisperse spheres, for which the corresponding critical value is equal to 0.36. Besides, note that 

the aperture size measured at 𝜙𝑠 ≈ 0.02 for monodisperse open-cell polymer foams [4] shows good 

agreement with our data. Theoretical curves corresponding to ideal crystalline foam structures were 

obtained by numerical simulations (fine convergence was obtained by using the Surface Evolver – 

Fluid Interface Tool) and are plotted in Fig. 2. It appears that crystalline structures can be used to 

describe aperture values only within a small range of 𝜙𝑠 values, i.e. 𝜙𝑠 ≲ 0.1 for FCC (Face-Centered 

Cubic) and 0.1 ≲ 𝜙𝑠 ≲ 0.2 for BCC (Body-Centered Cubic). Actually, deviations are significant as 𝜙𝑠 

gets close to the corresponding critical value, i.e. 𝜙𝑠
∗ = 0.26 for FCC and 𝜙𝑠

∗ = 0.32 for BCC. In capillary 
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foams the apertures diameter decreases abruptly as 𝜙𝑠 gets close to 𝜙𝑠
∗ and it vanishes at 𝜙𝑠

∗. This 

evolution is expected to be described by a power law behavior [15], such as: 

𝑑𝑜

𝐷𝑝
≅ 𝑎(𝜙𝑠

∗ − 𝜙𝑠)
𝑏       (eq. 1) 

Fig. 2 shows that, close to 𝜙𝑠 ≈  𝜙𝑠
∗, each one of the three foam structures can be described by eq. 1 

using the same values for 𝑎 = 0.66 and 𝑏 = 0.5. 

 

 

Figure 1: Microstructure of the solid MK foams. (a) Picture of a sample seen from above 

(𝐷𝑝 ≈ 600 µm, 𝜙𝑠 = 0.2). (b1) Close-up of foam samples revealing the open-cell microstructure and 

showing pores (continuous lines) and pore apertures (dotted lines). Left: 𝐷𝑝 ≈ 800 µm, 𝜙𝑠 = 0.08; 

right: 𝐷𝑝 ≈ 800 µm, 𝜙𝑠 = 0.3. (b2) Scheme of the foam structure showing the Plateau border network 

and the apertures, which are the passages between the pores: 𝐿 is the node-to-node distance, 𝑟 is the 

thickness of the Plateau borders and 𝑥𝑟 corresponds to the covering length of the Plateau borders 

over apertures.  (c) Number pore diameter (𝐷𝑝) distribution (probability density function) for three 

samples. The three Gaussian curves are plotted with mean and standard deviation equal to: (C1) 

188 µm and 7 µm, (C2) 640 µm and 50 µm, 1060 µm and 28 µm. (d) Number aperture diameter (𝑑𝑜) 

distribution (probability density function) for two samples with same pore size 𝐷𝑝 ≈ 300 µm. The 
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Gaussian curves are plotted with mean and standard deviation equal to: (D1) 89 µm and 16 µm 

(sample 𝜙𝑠 = 0.31), 110 µm and 24 µm (sample 𝜙𝑠 = 0.17). (e) Mean number of apertures per pore as 

a function of solid volume fraction. Filled symbols: experimental data (five samples with size 

𝐷𝑝 ≈ 200, 300 and 600 µm). Empty symbols: theoretical values. The solid line corresponds to 

equation 11.  

 

 

Figure 2: Diameter of apertures 𝑑𝑜 divided by the pore diameter 𝐷𝑝 as a function of solid volume 

fraction 𝜙𝑠. Continuous curves show the theoretical values for several structures: red – Kelvin/BCC, 

blue – FCC, green – Simple Cubic. Note that both square and hexagonal faces are found in the Kelvin 

structure, so an area-weighted average value is presented. Dotted curves correspond to power law 

functions: 𝑑𝑜 𝐷𝑝⁄ = 0.66(𝜙𝑠
∗ −𝜙𝑠)

0.5 with 𝜙𝑠
∗ equal to 0.32 for BCC (red), 0.26 for FCC (blue), 0.476 

for CC (green) and 0.38 for the black dots. The dashed line corresponds to eq. 2 [16]. Continuous, 

dashed and dotted black lines correspond to eq. 3. Empty symbols: experimental data for MK foam 

samples with different pore sizes and different solid volume fractions. Filled symbol: data published by 

Trinh et al.[4] for monodisperse open-cell polymer foams. 

 

 

The description of aperture size over the full range of solid volume fractions has been 

proposed by Despois & Mortensen [16] for metal foams. Such solid foams are obtained by the so-

called replication method and it was proposed to draw a parallel between the shape of pores in 

these foams and that of sintered (initially) spherical solid particles (more precisely, the geometrically-

inversed structure of such system is considered). According to such an assumption, the 

dimensionless aperture size was modeled to be [16]: 

𝑑𝑜

𝐷𝑝
≅ (

𝜙𝑠
∗−𝜙𝑠

3𝜙𝑠
∗ )

1 2⁄

       (eq. 2) 
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Eq. 2 is plotted in Fig. 2 against experimental data (using 𝜙𝑠
∗ = 0.38) and shows significant 

overestimation of aperture sizes. Actually, reasonable agreement is observed only for 𝜙𝑠 ≈ 𝜙𝑠
∗, 

which is consistent with the power law behavior expected for this regime (i.e. eq. 1). This suggests 

that the microstructure of (replication) metal foams differs noticeably from capillary solid foams (i.e. 

solidified capillary foams). The quantitative description of 𝑑𝑜 𝐷𝑝⁄  over the full range of solid volume 

fraction is a difficult task. Here we consider that the complete curve 𝑑𝑜 𝐷𝑝⁄  can be constructed by 

joining curves corresponding to both regimes 𝜙𝑠 ≪ 𝜙𝑠
∗ and 𝜙𝑠 ≈ 𝜙𝑠

∗. The latter regime is described 

by eq. 1. In order to obtain an expression for the first regime we assume that the length 𝑑𝑜 is given 

by the difference between the typical face width 𝐿 on a polyhedral bubble and the length 2𝑥𝑟 

covered by the peripheral Plateau borders (struts) around the face (see Fig. 1(b2)): 𝑑𝑜 𝐷𝑝⁄ ≅ 𝐿 𝐷𝑝⁄ −

2𝑥𝑟 𝐷𝑝⁄ , where 𝑥 ≈ 2/3 [17] and 𝐿 𝐷𝑝⁄ ≈ 0.55 [18] are geometrical coefficients. For small solid 

contents, Plateau border width is known to vary as [9,18,19] 𝑟 𝐷𝑝⁄ ≃ 𝑐𝜙𝑠
1 2⁄ , which gives information 

about 𝑑𝑜 𝐷𝑝⁄  in this regime. Actually, good agreement is found for the latter equation (with 𝑐 ≃ 0.5) 

with our data within the range 0.02 ≲ 𝜙𝑠 ≲ 0.28. Therefore, a piecewise function can be built from 

this behavior combined with Eq. 1, as well as a third-order polynomial function as a joining function: 

 

{
 
 

 
 𝜙𝑠 ≤ 0.28:  

𝑑𝑜

𝐷𝑝
= 0.55 − 0.685𝜙𝑠

1 2⁄

0.28 ≤ 𝜙𝑠 ≤ 0.35: 
𝑑𝑜

𝐷𝑝
= −94.000𝜙𝑠

3

𝜙𝑠 ≥ 0.35:   
𝑑𝑜

𝐷𝑝
= 0.66(𝜙𝑠

∗ − 𝜙𝑠)
1 2⁄

+ 79.847𝜙𝑠
2 − 23.252𝜙𝑠 + 2.501        (eq. 3) 

 

Alternatively, we propose the following expression to describe the measured aperture size over the 

full range of solid volume fraction: 𝑑0 𝐷𝑝⁄ ≈ [(𝜙𝑠
∗ − 𝜙𝑠)(1 − 𝜙𝑠

∗ +𝜙𝑠)]
1 2⁄ + 𝜙𝑠(3.8𝜙𝑠 − 1.48). 

 

Our data for 𝑁𝑜(𝜙𝑠) are partial but they can be combined with expected bounds, i.e. 𝑁𝑜 ≈ 14 

for 𝜙𝑠 ≪ 1 (Kelvin cells [19]) and 𝑁𝑜 ≈ 6 for 𝜙𝑠 ≈ 𝜙𝑠
∗ [20]. Fig. 1e shows that 𝑁𝑜(𝜙𝑠) can be 

described by the following relation: 

𝑁𝑜(𝜙𝑠) ≈ 2 (7 − 4
𝜙𝑠

𝜙𝑠
∗)      (eq. 4) 

 

Results for the foam permeability are presented in Table 1 and Fig. 3b. It is shown that all the 

permeability values are gathered on a single curve when plotting 𝑘𝐷 𝑉𝑝
2 3⁄⁄  as a function of 𝜙𝑠, where 

𝑉𝑝 = 𝜋𝐷𝑝
3 6⁄  is the pore volume. Data are well described by an exponential function over the full 
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range of solid volume fraction. However this behavior is expected to evolve strongly for 𝜙𝑠 ≈ 𝜙𝑠
∗ due 

to the particular behavior observed for parameter 𝑑𝑜 𝐷𝑝⁄  in this range of solid volume fractions (see 

Fig. 2). In the following, theoretical models are compared to the measured foam permeability. 

 

 

 

Figure 3: (a) Measured pressure gradient ∆𝑃 𝐿⁄  as a function of the superficial velocity 𝑄 𝑆⁄ . The 

permeability 𝑘𝐷 is deduced from the slope of the straight line by assuming that the viscosity of the 

fluid is 𝜇 ≅ 1.758 10-5 Pa s. Results are presented for two pore diameters, (a1) 𝐷𝑝 = 200 µm and (a2) 

𝐷𝑝 = 1000 µm, and several solid volume fractions 𝜙𝑠 as indicated. (b) Darcy permeability 𝑘𝐷 of the 

studied foam samples divided by 𝑉𝑝
2 3⁄ = (𝜋𝐷𝑝

3 6⁄ )
2 3⁄

. Empty symbols: experimental data for MK 

foam samples with different pore sizes and different solid volume fractions. Note that permeability of 

samples characterized by solid volume fractions 𝜙𝑠 >  𝜙𝑠
∗ (grey area) is too small to be measured 

with our system. Full symbol: data published by Trinh et al.[4] for monodisperse polymer foams. The 

dashed line corresponds to an exponential decay: 𝑘𝐷 𝑉𝑝
2 3⁄⁄ = 0.03 × 𝑒𝑥𝑝(−13.5𝜙𝑠). The dotted 

curve corresponds to eq. 11. Continuous curves show the theoretical values for several structures: red 

– BCC, blue – FCC, green – SC.   

 

Table 1 

𝐷𝑝 (mm) 𝜙𝑠 𝑘𝐷 (m2) Coef. R
2
 𝑅𝑒̅̅̅̅  

0.20 0.18 5.99 10
-11

 0.9999 0.1 

0.20 0.23 7.35 10
-11

 1.0000 0.1 

0.20 0.28 1.69 10
-11

 0.9992 0.1 

0.25 0.30 2.33 10
-11

 0.9996 0.1 

0.31 0.09 4.60 10
-10

 1.0000 0.2 

0.31 0.17 1.89 10
-10

 0.9999 0.2 

0.31 0.21 1.23 10
-10

 1.0000 0.2 

0.31 0.25 7.53 10
-11

 0.9999 0.2 

0.31 0.31 2.10 10
-11

 0.9990 0.2 
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0.67 0.09 2.92 10
-09

 0.9982 0.3 

0.67 0.13 1.55 10
-09

 1.0000 0.3 

0.67 0.19 7.66 10
-10

 0.9997 0.3 

0.67 0.21 4.37 10
-10

 0.9994 0.3 

0.65 0.28 1.75 10
-10

 0.9999 0.3 

0.65 0.33 6.75 10
-11

 0.9981 0.3 

0.86 0.10 2.94 10
-09

 0.9991 0.4 

0.86 0.14 1.65 10
-09

 0.9996 0.4 

0.86 0.19 1.01 10
-09

 0.9999 0.4 

0.86 0.23 5.18 10
-10

 1.0000 0.4 

0.86 0.27 3.64 10
-10

 0.9999 0.4 

0.87 0.30 3.69 10
-10

 0.9997 0.5 

0.85 0.32 2.54 10
-10

 0.9999 0.4 

0.85 0.33 1.37 10
-10

 0.9998 0.4 

0.85 0.35 1.60 10
-10

 0.9999 0.4 

0.85 0.35 9.60 10
-11

 0.9992 0.4 

0.86 0.36 1.44 10
-10

 0.9997 0.4 

1.06 0.10 6.99 10
-09

 1.0000 0.6 

1.06 0.14 3.56 10
-09

 1.0000 0.6 

1.06 0.19 2.15 10
-09

 0.9998 0.6 

1.06 0.23 1.20 10
-09

 0.9998 0.6 

1.06 0.27 6.48 10
-10

 0.9998 0.6 

1.06 0.33 4.87 10
-10

 0.9995 0.6 

 

 

The Carman-Kozeny model for permeability of porous media is based on the specific surface 

area 𝐴𝑠 which is defined as the ratio of pore surface area in contact with the flowing fluid over the 

total volume of the porous material [21,22]. Then the permeability writes: 

𝑘𝐷 =
(1−𝜙𝑠)

3

𝐶𝐾𝐴𝑠
2       (eq. 5) 

𝐶𝐾 is the Kozeny constant and it is expected to be obtained by comparison with experimental data. 

For example, 𝐶𝐾 ≈ 5 for packings of solid spheres [23]. 𝐴𝑠 can be estimated for 𝜙𝑆 ≪ 1, where most 

of the surface area is due to the slender struts, of thickness 𝑟~𝐷𝑝𝜙𝑠
1 2⁄  (see Fig. 1(b2)), forming the 

solid foam skeleton: 𝐴𝑠~𝑟𝐷𝑝 𝐷𝑝
3⁄ , or equivalently 𝐷𝑝𝐴𝑠~𝜙𝑠

1 2⁄ . In this regime, the fluid permeability 

is therefore expected to vary as 𝑘~𝐷𝑝
2 𝜙𝑠⁄ . In order to go further, the parameter 𝐴𝑠 is now 

determined from numerical simulations. Such an approach has been shown to be useful to describe 

the drainage liquid flow through bubbles in liquid foams [9,24,25]. 𝐴𝑠 values have been determined 

by using the Surface Evolver software and the values are shown in Fig. 4a as a function of 𝜙𝑠, as well 

as the corresponding permeability values against experimental data. Note that the constant 𝐶𝐾 can 

be fitted in order to describe the data within the range  𝜙𝑆 ≲ 0.1, but significant deviations are 

observed for 𝜙𝑠 > 0.1. Actually, the predicted slope |𝑑𝑘 𝑑𝜙𝑠⁄ | is too low as compared to 

experimental data, which can be understood by the small amount (small surface area) of solid 
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involved in the progressive closing of the apertures compared to the strong viscous dissipation 

occurring in those areas. 

More specific analytical models have been proposed to estimate the permeability of open-cell 

foams. Those models are based on various pore-scale geometric assumptions (representative unit 

cell) depending on the considered range of pore volume fraction. Two basic pore-scale geometries 

can be found in literature: struts network (see [26,27] for example) or pores connected by apertures 

(see for example [16,28–30]). The former are expected to be relevant for high porosity values, where 

foam structure can be described, indeed, as a network of slender struts. Here we compare our data 

with the models proposed by Yang et al. [26] and Woudberg & Du Plessis [27] which were found to 

compare satisfactorily with available experimental data. As shown in Fig. 4b, such models fail to 

predict the measured foam permeability by almost one order of magnitude, except at very high pore 

volume fraction. This suggests that the assumed pore-scale geometry does not describe correctly the 

microstructure of solid foams over the full range of solid volume fraction. More precisely, the 

expected strong effect of narrow apertures is not accounted for. 

 

 

 

Figure 4: Foam permeability (divided by 𝑉𝑝
2 3⁄ ) as a function of solid volume fraction. Empty symbols 

correspond to data already shown in Fig. 3b. Full symbol: data published by Trinh et al.[4] for 

monodisperse polymer foams. (a) Values predicted by the Kozeny-Carman model (eq. 5) for three 

foam crystals: red – BCC, blue – FCC, green – SC. Permeability values are calculated from the specific 

surface area 𝐴𝑠 determined for the three structures (see the inset). Values for the Kozeny constant 𝐶𝐾 

used in eq. 6 are the following: 10 for BCC, 11 for FCC et 20 for SC. (b) Comparison of experimental 

data with different models: Woudberg & Du Plessis [27], Yang et al. [26], Despois & Mortensen [16], 

and eqs 10,3,4. 
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The opposite approach is to consider solely the effect of apertures. This was proposed initially 

by Despois & Mortensen [16] and it was successfully used recently to predict the permeability in 

model Kelvin foam [30]. It is based on the assumption that the pressure-flow rate relation for fluid 

flowing through one circular aperture of diameter 𝑑𝑜 is 𝑞 = 𝑑𝑜
3∆𝑝 24𝜇⁄ , where ∆𝑝 is the pressure 

difference across the aperture [31]. By averaging the local flow rates passing through the pores and 

by using eq. 2 to estimate the aperture size, the authors have proposed the following expression for 

the foam permeability: 

 

𝑘𝐷

𝑉𝑝
2 3⁄ =

(1−𝜙𝑠)

𝜋(4𝜋 3⁄ )2 3⁄ (
𝜙𝑠
∗−𝜙𝑠

3𝜙𝑠
∗ )

3 2⁄

      (eq. 6) 

 

Eq. 6 is plotted in Fig. 4b by assuming 𝜙𝑠
∗ = 0.38, showing poor agreement except for 𝜙𝑠 ≈ 0.02 and 

for 𝜙𝑠 ≳ 0.3. We stress that eq. 6 assumes apertures size given by eq. 2 and that the latter was found 

to overestimate the measured aperture sizes. In order to fully decouple the effect of aperture size 

from the intrinsic ability of the model to predict foam permeability, now we consider the case of 

ideal foam structures for which aperture size is known (see FCC, BCC and SC curves in Fig. 2). A 

representative periodic foam structure is considered as enclosed in a box of cross-section area 𝑎2 

(perpendicular to the direction of the macroscopic pressure gradient) and thickness ℎ (see Fig. 5). 

The Darcy permeability writes: 

 

𝑘𝐷 = 𝜇
𝑄ℎ

𝑎2∆𝑃
      (eq. 7) 

 

where the macroscopic volume flow rate 𝑄 passing through the cross-section is related to the 

volume flow rates 𝑞𝑖 exchanged with neighbor pores through apertures 𝑖: 𝑄 = ∑ 𝑞𝑖𝑖 , and ∆𝑃 is the 

pressure difference across the thickness ℎ. By assuming that the flow of the fluid through each 

aperture of size 𝑑𝑜,𝑖 within the foam structure is given by 𝑞𝑖 = 𝑑𝑜,𝑖
3 ∆𝑃𝑖 24𝜇⁄  [31], the theoretical 

permeability writes [28]: 

𝑘𝐷 = 𝜇
ℎ

𝑎2∆𝑃
∑ 𝑞𝑖
𝑁
𝑖=1 =

1

24

ℎ

𝑎2
∑ 𝑑𝑜,𝑖

3 ∆𝑃𝑖

∆𝑃
𝑁
𝑖=1      (eq. 8) 

 

Note that the ratio ∆𝑃𝑖 ∆𝑃⁄  also writes ∆𝑧𝑖 ℎ⁄ , where ∆𝑧𝑖 is the distance between centers of the two 

pores connected by the aperture 𝑖, measured along the direction of the macroscopic pressure 

gradient. As an example, the Kelvin structure presented in Fig. 5 shows 2 square faces (1 full and 4 
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quarters) with ∆𝑃𝑖 ∆𝑃⁄  = 1 and 4 full hexagonal faces with ∆𝑃𝑖 ∆𝑃⁄  = ½. Fig. 2 shows 𝑑𝑜 𝐷𝑝⁄  as a 

function of 𝜙𝑠 for three foam structures: FCC (Face-Centered Cubic), BCC (Body-Centered Cubic) and 

SC (Simple Cubic). Foam permeability is therefore calculated by eq. 8 using results given in Fig. 2 for 

𝑑0 𝐷𝑝⁄  (curves FCC, BCC and SC). Comparison with experimental data is presented in Fig. 3. The 

theoretical curves describe reasonably the overall decrease measured for 𝑘 𝑉𝑝
2 3⁄⁄  as a function of 𝜙𝑠, 

although none of them describes quantitatively the full set of data. More precisely, the FCC curve 

underestimates the data for 𝜙𝑠 ≳ 0.15, the BCC curve underestimates the data for 𝜙𝑠 ≳ 0.3 and the 

SC curve overestimates the data over the full range of solid volume fractions. This highlights issues 

associated to the description of the random foam structure with ideal foam crystals. 

 

Figure 5: Sketch of a periodic foam structure (Kelvin cells). Left: The macroscopic pressure gradient 

corresponds to a pressure difference equal to 𝛥𝑃 across the cell thickness ℎ. Centers of the neighbor 

pores are shown by color spheres: blue spheres are connected to the central pore (red sphere) by 

hexagonal faces and green spheres by square faces. Right: view from above of the same structure, i.e. 

it is a square of length side 𝑎. Fluid passing through such a foam structure in the direction 

perpendicular to cross-section 𝑎2 has to flow through the apertures shown in the figure. 

 

 

Figure 6: Mean pore of diameter 𝐷𝑝 representing the whole foam structure (all the pore 

configurations). Apertures of size 𝑑𝑜 connect the pore to 𝑁𝑜 neighbors with witch fluid flow rates 𝑞𝑖 

are exchanged. The fluid flow rate passing through the middle cross-section of the pore is equal to the 

sum of the flow rates crossing the 𝑁𝑜 2⁄  apertures located above. The angle 𝜃𝑖 measured the position 

of those apertures. 



15 
 

In order to overcome issues related to foam crystals, now we turn to a mean pore 

configuration: The permeability is estimated by assuming that pores are randomly distributed with 

coordination number 𝑁𝑜, i.e. each pore is directly connected to 𝑁𝑜 pores through apertures 

characterized by a single value 𝑑𝑜. We consider the reference area 𝐴 = 𝜋𝐷𝑝
2 4(1 − 𝜙𝑠)⁄  as the 

middle cross-section (perpendicular to the direction of the macroscopic pressure gradient ∇𝑃) of a 

spherical pore (see Fig. 6). Fluid flow passing through 𝐴 is coming at flow rate 𝑞𝑖 = 𝑑𝑜
3∆𝑃𝑖 24𝜇⁄  from 

each one of the 𝑁𝑜 2⁄  neighbor pores located above 𝐴, so: 

𝑘𝐷 ≈
𝜇∑ 𝑞𝑖

𝑁𝑜 2⁄
𝑖=1

𝐴(∆𝑃 𝐷𝑝⁄ )
≈

𝐷𝑝

24𝐴

𝑁𝑜

2
𝑑𝑜
3 〈
Δ𝑃𝑖

Δ𝑃
〉      (eq. 9) 

〈Δ𝑃𝑖〉 Δ𝑃⁄ = 〈𝑐𝑜𝑠𝜃〉 where the azimuthal angle 𝜃 is used to measure the position of the neighbor 

pores centers with respect to the reference pore along the direction of the macroscopic pressure 

gradient: 〈𝑐𝑜𝑠𝜃〉 = ∫ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃
𝜋 2⁄

0
= 1 2⁄ . Therefore, the dimensionless permeability writes: 

𝑘𝐷

𝑉𝑝
2 3⁄ ≅ 0.02 × (1 − 𝜙𝑠)𝑁𝑜 (

𝑑𝑜

𝐷𝑝
)
3

      (eq. 10) 

 

The case corresponding to 𝜙𝑠 ≈ 𝜙𝑠
∗ can be estimated easily: the number of apertures per pore 

is 𝑁𝑜 ≈ 6 [20] and the aperture size is expected to be given by  𝑑𝑜 𝐷𝑝⁄ ≅ 0.66(𝜙𝑠
∗ −𝜙𝑠)

0.5 (see Fig. 2). 

Therefore eq. 10 becomes: 

 

𝑘𝐷(𝜙𝑠≈𝜙𝑠
∗)

𝑉𝑝
2 3⁄ ≅ 0.035 × (1 − 𝜙𝑠

∗)(𝜙𝑠
∗ − 𝜙𝑠)

3 2⁄       (eq. 11) 

 

Comparison with permeability data (see Fig. 3b) provides the fitted value 𝜙𝑠
∗ ≈ 0.38 ± 0.02, which is 

consistent with the theoretical value corresponding to packings of monodisperse spherical bubbles, 

i.e. 0.36 [32]. Note that predicted values are almost three times smaller than those given by eq. 6 

although the power law behavior is identical. 

Using eqs 10, 3 and 4 allows for the permeability to be estimated over the full range of solid volume 

fraction. The corresponding values are plotted in Fig. 4b and show good agreement with 

experimental data. Actually, as the measured exponential behavior is reasonably described by the 

apertures model (i.e. eq. 10 or eq. 6) using the measured relationship between aperture size and 
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solid fraction, it suggests that the observed exponential decay mainly reflects the evolution of 

aperture size with solid volume fraction. 

This good agreement should not obscure the fact that several assumptions have been made to derive 

equation 10. The main issue concerns the averaging procedure for the positions of apertures around 

the reference plane. Moreover, a mean aperture size has been used whereas real apertures 

distribution should have been accounted for. In addition, the assumption of small aperture through 

pore faces is not fully justified for foams with small solid contents. Further investigation could help to 

understand how those effects interplay in the global permeability behavior. 

 

4. Conclusion 

 

Darcy permeability has been measured for open-cell foams with monodisperse pore diameter 

ranging from 200 to 1000 µm and solid volume fraction ranging from 0.1 to 0.38. The dimensionless 

permeability showed an exponential decay as a function of solid volume fraction, except for solid 

fractions close to packing volume fraction of monodisperse spheres. Existing models do not capture 

this exponential decay and actually they predict permeability values significantly larger than the 

measured values. Moreover, previously measured permeability for replication metal foams is also 

significantly larger than our data, suggesting that the microstructure of those metal foams differs 

from solid foams resulting from hardening of liquid capillary foams. The so-called apertures model, 

which is based on the assumption that most of the viscous dissipation occurs within the aperture 

areas that connect the pores, was found to be appropriate to reproduce the exponential behavior as 

soon as the measured apertures sizes is accounted for, which suggests that the exponential behavior 

mainly reflects the evolution of aperture size with solid volume fraction. 
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