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Permeability of monodisperse solid foams

Fluid permeability of solid foams is a crucial parameter to control transport phenomena in numerous engineering applications, such as heat exchangers or filters for example. Open-cell foams with monodisperse pore diameter ranging from 200 to 1000 µm and solid volume fraction ranging from 0.1 to 0.38 are produced and Darcy permeability is measured. The permeability divided by the square of the pore size shows an exponential decay as a function of solid volume fraction. Surprisingly, existing models do not capture this exponential decay and actually they predict permeability values significantly larger than the measured values. The observed exponential decay is then successfully described by using models based on the viscous dissipation occurring through the apertures that connect the foam pores and by accounting for both the mean size of the apertures and the mean number of apertures per pore.

Highlights

 Monodisperse solid foams have been produced with both controlled pore size and void fraction  The dimensionless permeability is shown to decrease exponentially over the full range of void fractions  The exponential behavior is successfully modelled from both the viscous dissipation occurring through pore connections and the mean number of apertures per pore

Introduction

Open cell solid foams are attractive materials used in various industries, especially as heat exchangers [START_REF] Kim | Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger[END_REF] or as thermal insulation materials [START_REF] Zhang | Geopolymer foam concrete: An emerging material for sustainable construction[END_REF], as crash energy [START_REF] Jung | Nanonickel coated aluminum foam for enhanced impact energy absorption[END_REF] or acoustical absorbers [START_REF] Trinh | Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations[END_REF], as filters for fluids, ... For many of those applications, permeability is a crucial parameter: as examples, it sets the pressure required to filter a given volume flow rate of fluid, and it is used to model sound absorption through foams [START_REF] Allard | Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials[END_REF].

In spite of the significant amount of work devoted to study foam permeability (see [START_REF] Edouard | Pressure drop modeling on SOLID foam: State-of-the art correlation[END_REF][START_REF] Kumar | State-of-the-Art of Pressure Drop in Open-Cell Porous Foams: Review of Experiments and Correlations[END_REF] for recent reviews), strong discrepancies appears within the literature results. The main reasons for such discrepancies seem to be related to measurement and data treatment issues, to the use of different morphological definitions (number of pores per inch, strut width, strut length, aperture diameter, pore diameter, …), to the large spectrum of different materials called foams (replication or capillary foams, fully open or partially open cells, …), to the limited range of void fraction available for each studied foam, … Actually, there is no general consensus to define the link between permeability and foam microstructure, and this limits the development of general models [START_REF] Edouard | Pressure drop modeling on SOLID foam: State-of-the art correlation[END_REF]. In order to increase our understanding about foam permeability, we perform experiments with monodisperse foams which were produced on purpose with several pore sizes and within a large range of void fraction. As shown in the following, monodispersity is very helpful for careful comparisons to be made with existing models, which will allow highlighting the ability of the so-called aperture model to describe our set of permeability values.

Production and characterization of the solid foam samples

Studied solid foams are geopolymer foams produced from metakaolin (MK) particles by using a dedicated process presented in the following.

Materials

We used an activating solution prepared by mixing NaOH solution (mass concentration C w = 0.35) with a solution containing Na 2 O (C w = 0.08) and SiO 2 (C w = 0.27) provided by MERCK KGaA, and water. The density is 𝜌 ℓ = 1400 kg/m 3 and the chemical composition is given by molar ratios The activated MK suspensions were prepared by mixing a mass 𝑚 ℓ of the activating solution with a mass 𝑚 𝑀𝐾 of metakaolin particles. The suspension is characterized by the ratio 𝐿 𝑆 ⁄ = 𝑚 ℓ 𝑚 𝑀𝐾 ⁄ . For the present study 𝐿 𝑆 ⁄ was within the range 1.75-2. The chemical composition of those samples is given by Si/Al and Na 2 O/Al 2 O 3 ratios, respectively within the ranges 1.8-2.5 and 1.2-2.7.

The typical setting time is about two hours.

Glucopon® 225 DK (alkyl polyglycoside provided by BASF) was used as surfactant for foaming purpose. Such a nonionic surfactant of molar mass equal to 420 g/mol was shown to be suitable to stabilize the foam morphology during the two hours preceding the geopolymerization stage. Surface tension of Glucopon water solutions was measured to be 𝜎 = 30 mN/m for concentrations above the critical micellar concentration. Dynamic viscosity of such water solutions is very close to that of pure water, i.e. 10 -3 Pa.s.

Production

The method used for the production of controlled MK foams has been presented in a previous paper [START_REF] Kaddami | A physical approach towards controlling the microstructure of metakaolin-based geopolymer foams[END_REF]. Here we recall the main steps but the reader can refer to [START_REF] Kaddami | A physical approach towards controlling the microstructure of metakaolin-based geopolymer foams[END_REF] for more details.

In broad outline, metakaolin foams are produced by mixing precursor aqueous foam with the metakaolin (MK) suspension described previously. The production process consists of two steps: [START_REF] Kim | Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger[END_REF] production of the precursor aqueous foam, (2) mixing of the precursor aqueous foam with the MK suspension and in-line filling of the resulting MK fresh foam in a vessel.

Step 1: Aqueous foam is generated by pushing both gas (nitrogen) and foaming liquid (glucopon water solution) through a T-junction. Tuning the gas/liquid flow rates ratio allows producing monodisperse bubbles with chosen diameters ranging between 200 µm and few millimeters. Generated bubbles are continuously collected into a vertical glass column. The average bubble diameter 𝐷 𝑏 is measured using a camera focused at the wall of the column in order to control this parameter. For foam made with bubble size 𝐷 𝑏 ≳ 500 µm, ripening turns out to be insignificant over the duration of the production step, so highly monodisperse precursor aqueous foams were obtained. In contrast, smaller bubble sizes were observed to evolve during the production step because of the ripening process. This can be explained by both the increase of the ripening rate for smaller bubbles (see page 104 of [START_REF] Cantat | Foams: Structure and Dynamics[END_REF]) and the decrease of the production rate (larger time required to produce the same volume of foam) for smaller bubbles. Such an evolution was efficiently counteracted by using perfluorohexane as a saturating vapor in the bubbling gas [START_REF] Gandolfo | Interbubble Gas Diffusion and the Stability of Foams[END_REF].

Step 2: After production of the required precursor foam volume, the latter is pushed with the MK suspension through a static mixer (flow focusing device and classical helical geometries). The gas volume fraction within the resulting MK foam can be adjusted by tuning the ratio of flow rates for the precursor foam and the MK suspension. The resulting fresh foam is continuously pushed in a sample vessel of diameter 26 mm and height 𝐻 0 = 50 mm. Typical volume flow rates for the production of the studied samples are of the order of 10 mL/min. The vessel is filled to the top and closed. Note that the values for the solid volume fraction 𝜙 𝑠 was also determined a posteriori by comparing the measured density of the fresh MK foam with the density of the MK suspension. After 2 days in the closed vessels, samples are let for drying at room temperature for 2 days before unmolding.

Foam microstructure

Optical microscopy was used to characterize the foam structure. Pore sizes were measured directly on pictures like Fig. 1b. According to our production method, the pore size in the solid foam is set by the initial bubble size in the liquid precursor foam. In other words, all the solid foams (a series) produced with the same precursor foam have the same pore size. It is to say that when measuring the pore size of such a series, it is preferable to turn to samples with higher 𝜙 𝑠 because pores are more spherical and their diameter can be measured more conveniently. For each of those samples, twenty circular pore diameters were measured and the average value 𝐷 𝑝 was calculated.

The expected error bar is Δ𝐷 𝑝 𝐷 𝑝 ⁄ ≈ 5%. Apertures were measured as follows: twenty diameters of apertures that could be fitted with a circle (i.e. located within a plane perpendicular to the observation axis) were measured and the average value 𝑑 0 was calculated. The expected error bar is

Δ𝑑 0 𝑑 0 ⁄ ≈ 5%.
In addition, X-ray tomography (EasyTom RX Solutions) were performed on few samples to obtain size distributions. Images of small samples (i.e. 5x5x10 mm) were obtained with a Ultratom scanner from RX solutions. Measurement involved a Hamamatsu L10801 X-ray source (160 kV) and a

Paxscan Varian 2520 V at-panel imager. All scans were performed at 60 kV and 85 µA. Frame rate was 3 images per second and 12 images were averaged to produce one projection (the resulting effective exposure time is therefore 4s). 3D tomographic reconstruction was performed with the X-Act commercial software developed by RX-Solutions. Voxel size for the obtained images is 5 µm.

Pores appear black on the reconstructed images and interstitial geopolymer solid is light grey. This allowed us to analyze the images with the freeware ImageJ program [START_REF] Rueden | ImageJ2: ImageJ for the next generation of scientific image data[END_REF] to compute the pore size distribution: First, a closing filter from MorphoLibJ plugin [START_REF] Legland | MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ[END_REF] with a 2 voxel-radius ball element was applied to reduce noise from the images. Then, image threshold was calculated using the Otsu method [START_REF] Otsu | A Threshold Selection Method from Gray-Level Histograms[END_REF]. 3D Watershed from MorphoLibJ was applied, then 1-voxel dilatation filter. Finally, 3D

Object Counter plugin returned the volume (𝑉 𝑝,𝑖 ) of each pore, from which the equivalent pore diameter 𝐷 𝑝,𝑖 = (6𝑉 𝑝,𝑖 𝜋 ⁄ ) 1/3 was calculated, as well as the number average value. The averaged values determined following this method were found to be consistent with diameters measured by optical microscopy, i.e. the observed deviation is smaller than 5%. Apertures were identified as follows: the described-above binarized image was subtracted to the image resulting from the Watershed plugin, which materializes the apertures as thin planar objects on which the 3D Object

Counter was used to get their sizes and positions. It appeared that the resulting mean aperture diameter was systematically smaller (by 25 µm) than the mean size measured by optical microscopy.

In the following, aperture sizes 𝑑 𝑜 correspond to optical microscopy measurements, except for Fig.

1d that shows size distributions where the value obtained by X-ray tomography is corrected by -25 µm. The number of apertures per pore 𝑁 𝑜 was deduced by matching both pores and apertures positions. This was performed for each neighbor pore couple, for example a pore of diameter 𝐷 𝑝,𝐴 with center at position A and another of diameter 𝐷 𝑝,𝐵 at B, by seeking for an aperture object near its expected position P, defined by the average position along the axis passing through both pore centers and weighted by the pore sizes, i.e. 𝐴𝑃 ⃗⃗⃗⃗⃗ = 𝐷 𝑝,𝐴 𝐷 𝑝,𝐴 +𝐷 𝑝,𝐵 𝐴𝐵 ⃗⃗⃗⃗⃗ .

Permeability measurement

Gas-flow permeability was measured with a home-made setup. A gas flow controller was used to push dry nitrogen at mass flow rate 𝜂 within the range 0-10 -5 kg/s (or equivalently a volume flow rate 𝑄 within the range 0-8 mL/s at 𝑃 0 = 10 5 Pa) through the foam sample (length 𝐿, typically within the range 3-5 cm, and circular cross-section 𝑆 = 5.3 cm 2 ) embedded with PTFE ribbon and fitting a cylindrical tube. The pressure difference ∆𝑃 across the sample was measured thanks to a manometer with precision equal to 0.1 Pa and pressure range 0-250 Pa.

The flow of gas through solid foams can be described by the following equation [START_REF] Bonnet | Flow laws in metal foams: Compressibility and pore size effects[END_REF]:

𝜌 𝑑𝑃 𝑑𝐿 ⁄ = -𝜂(𝜇 𝑘 𝐷 ⁄ + 𝛽𝜂),
where 𝜌 is the gas density, 𝜇 = 1.758 10 -5 Pa.s is the dynamic viscosity of the gas, 𝑘 𝐷 is the intrinsic foam permeability and 𝛽 is the inertia factor. By assuming a perfect gas behavior we have Δ𝜌 𝜌 0 ⁄ = Δ𝑃 𝑃 0 ⁄ , with 𝑃 0 = 10 5 Pa and 𝜌 0 = 1.25 kg/m 3 . Here we consider the maximum pressure drop value in our experiments, i.e. Δ𝑃 𝑚𝑎𝑥 ≈ 250 Pa, which means that (Δ𝜌 𝜌 0 ⁄ ) 𝑚𝑎𝑥 ≈ 0.25%. This shows that gas compressibility can be reasonably neglected in our experiment. Moreover, by using values we obtained for 𝑘 𝐷 (see Table 1), the ratio 𝛽𝜂𝑘 𝐷 𝜇 ⁄ is calculated to be of the order of 0.1% (we used [START_REF] Bonnet | Flow laws in metal foams: Compressibility and pore size effects[END_REF]: was determined by linear regression (see Fig. 3a). Note that all the measurements exhibit a linear behavior (see coefficients of determination 𝑅 2 ≈ 1 in Table 1), which is consistent with the analysis presented above for inertia effects.

𝛽 = 0.84 𝐷 𝑝 ⁄ ),

Results and discussion

First of all we describe the microstructure of our samples (see Fig. 1) evolution is expected to be described by a power law behavior [START_REF] Whyte | Applications and extensions of the Z-cone model for the energy of a foam[END_REF], such as:

𝑑 𝑜 𝐷 𝑝 ≅ 𝑎(𝜙 𝑠 * -𝜙 𝑠 ) 𝑏 (eq. 1)
Fig. 2 shows that, close to 𝜙 𝑠 ≈ 𝜙 𝑠 * , each one of the three foam structures can be described by eq. 1

using the same values for 𝑎 = 0.66 and 𝑏 = 0.5. The description of aperture size over the full range of solid volume fractions has been proposed by Despois & Mortensen [START_REF] Despois | Permeability of open-pore microcellular materials[END_REF] for metal foams. Such solid foams are obtained by the socalled replication method and it was proposed to draw a parallel between the shape of pores in these foams and that of sintered (initially) spherical solid particles (more precisely, the geometricallyinversed structure of such system is considered). According to such an assumption, the dimensionless aperture size was modeled to be [START_REF] Despois | Permeability of open-pore microcellular materials[END_REF]:

𝑑 𝑜 𝐷 𝑝 ≅ ( 𝜙 𝑠 * -𝜙 𝑠 3𝜙 𝑠 * ) 1 2 ⁄ (eq. 2)
Eq. 2 is plotted in Fig. 2 against experimental data (using 𝜙 𝑠 * = 0.38) and shows significant overestimation of aperture sizes. Actually, reasonable agreement is observed only for 𝜙 𝑠 ≈ 𝜙 𝑠 * , which is consistent with the power law behavior expected for this regime (i.e. eq. 1). This suggests that the microstructure of (replication) metal foams differs noticeably from capillary solid foams (i.e.

solidified capillary foams). The quantitative description of 𝑑 𝑜 𝐷 𝑝 ⁄ over the full range of solid volume fraction is a difficult task. Here we consider that the complete curve 𝑑 𝑜 𝐷 𝑝 ⁄ can be constructed by joining curves corresponding to both regimes 𝜙 𝑠 ≪ 𝜙 𝑠 * and 𝜙 𝑠 ≈ 𝜙 𝑠 * . The latter regime is described by eq. 1. In order to obtain an expression for the first regime we assume that the length 𝑑 𝑜 is given by the difference between the typical face width 𝐿 on a polyhedral bubble and the length 2𝑥𝑟 covered by the peripheral Plateau borders (struts) around the face (see Fig. 1 

𝑉 𝑝 = 𝜋𝐷 𝑝 3 6
⁄ is the pore volume. Data are well described by an exponential function over the full range of solid volume fraction. However this behavior is expected to evolve strongly for 𝜙 𝑠 ≈ 𝜙 𝑠 * due to the particular behavior observed for parameter 𝑑 𝑜 𝐷 𝑝 ⁄ in this range of solid volume fractions (see Fig. 2). In the following, theoretical models are compared to the measured foam permeability. The Carman-Kozeny model for permeability of porous media is based on the specific surface area 𝐴 𝑠 which is defined as the ratio of pore surface area in contact with the flowing fluid over the total volume of the porous material [START_REF] Kozeny | Ueber kapillare Leitung des Wassers im Boden[END_REF][START_REF] Carman | Fluid flow through granular beds[END_REF]. Then the permeability writes:

𝑘 𝐷 = (1-𝜙 𝑠 ) 3
𝐶 𝐾 𝐴 𝑠 2 (eq. 5)

𝐶 𝐾 is the Kozeny constant and it is expected to be obtained by comparison with experimental data.

For example, 𝐶 𝐾 ≈ 5 for packings of solid spheres [START_REF] Dullien | Porous media : fluid transport and pore structure[END_REF]. 𝐴 𝑠 can be estimated for 𝜙 𝑆 ≪ 1, where most of the surface area is due to the slender struts, of thickness 𝑟~𝐷 𝑝 𝜙 𝑠 ⁄ . In this regime, the fluid permeability is therefore expected to vary as 𝑘~𝐷 𝑝 2 𝜙 𝑠 ⁄ . In order to go further, the parameter 𝐴 𝑠 is now determined from numerical simulations. Such an approach has been shown to be useful to describe the drainage liquid flow through bubbles in liquid foams [START_REF] Cantat | Foams: Structure and Dynamics[END_REF][START_REF] Pitois | Specific surface area model for foam permeability[END_REF][START_REF] Rouyer | Permeability of a bubble assembly: From the very dry to the wet limit[END_REF]. 𝐴 𝑠 values have been determined by using the Surface Evolver software and the values are shown in Fig. 4a as a function of 𝜙 𝑠 , as well as the corresponding permeability values against experimental data. Note that the constant 𝐶 𝐾 can be fitted in order to describe the data within the range 𝜙 𝑆 ≲ 0.1, but significant deviations are observed for 𝜙 𝑠 > 0.1. Actually, the predicted slope |𝑑𝑘 𝑑𝜙 𝑠 ⁄ | is too low as compared to experimental data, which can be understood by the small amount (small surface area) of solid involved in the progressive closing of the apertures compared to the strong viscous dissipation occurring in those areas.

More specific analytical models have been proposed to estimate the permeability of open-cell foams. Those models are based on various pore-scale geometric assumptions (representative unit cell) depending on the considered range of pore volume fraction. Two basic pore-scale geometries can be found in literature: struts network (see [START_REF] Yang | An analytical model for permeability of isotropic porous media[END_REF][START_REF] Woudberg | An analytical Ergun-type equation for porous foams[END_REF] for example) or pores connected by apertures (see for example [START_REF] Despois | Permeability of open-pore microcellular materials[END_REF][START_REF] Otaru | The permeability of virtual macroporous structures generated by sphere packing models: Comparison with analytical models[END_REF][START_REF] Weber | Fluid flow through replicated microcellular materials in the Darcy-Forchheimer regime[END_REF][START_REF] Langlois | Permeability of solid foam: Effect of pore connections[END_REF]). The former are expected to be relevant for high porosity values, where foam structure can be described, indeed, as a network of slender struts. Here we compare our data with the models proposed by Yang et al. [START_REF] Yang | An analytical model for permeability of isotropic porous media[END_REF] and Woudberg & Du Plessis [START_REF] Woudberg | An analytical Ergun-type equation for porous foams[END_REF] which were found to compare satisfactorily with available experimental data. As shown in Fig. 4b, such models fail to predict the measured foam permeability by almost one order of magnitude, except at very high pore volume fraction. This suggests that the assumed pore-scale geometry does not describe correctly the microstructure of solid foams over the full range of solid volume fraction. More precisely, the expected strong effect of narrow apertures is not accounted for. The opposite approach is to consider solely the effect of apertures. This was proposed initially by Despois & Mortensen [START_REF] Despois | Permeability of open-pore microcellular materials[END_REF] and it was successfully used recently to predict the permeability in model Kelvin foam [START_REF] Langlois | Permeability of solid foam: Effect of pore connections[END_REF]. It is based on the assumption that the pressure-flow rate relation for fluid flowing through one circular aperture of diameter 𝑑 𝑜 is 𝑞 = 𝑑 𝑜 3 ∆𝑝 24𝜇 ⁄ , where ∆𝑝 is the pressure difference across the aperture [START_REF] Sampson | On Stokes's Current Function[END_REF]. By averaging the local flow rates passing through the pores and by using eq. 2 to estimate the aperture size, the authors have proposed the following expression for the foam permeability:

𝑘 𝐷 𝑉 𝑝 2 3 ⁄ = (1-𝜙 𝑠 ) 𝜋(4𝜋 3 ⁄ ) 2 3 ⁄ ( 𝜙 𝑠 * -𝜙 𝑠 3𝜙 𝑠 * ) 3 2 ⁄ 
(eq. 6)

Eq. 6 is plotted in Fig. 4b by assuming 𝜙 𝑠 * = 0.38, showing poor agreement except for 𝜙 𝑠 ≈ 0.02 and for 𝜙 𝑠 ≳ 0.3. We stress that eq. 6 assumes apertures size given by eq. 2 and that the latter was found to overestimate the measured aperture sizes. In order to fully decouple the effect of aperture size from the intrinsic ability of the model to predict foam permeability, now we consider the case of ideal foam structures for which aperture size is known (see FCC, BCC and SC curves in Fig. 2). A representative periodic foam structure is considered as enclosed in a box of cross-section area 𝑎 2

(perpendicular to the direction of the macroscopic pressure gradient) and thickness ℎ (see Fig. 5).

The Darcy permeability writes:

𝑘 𝐷 = 𝜇 𝑄ℎ 𝑎 2 ∆𝑃 (eq. 7)
where the macroscopic volume flow rate 𝑄 passing through the cross-section is related to the volume flow rates 𝑞 𝑖 exchanged with neighbor pores through apertures 𝑖: 𝑄 = ∑ 𝑞 𝑖 𝑖 , and ∆𝑃 is the pressure difference across the thickness ℎ. By assuming that the flow of the fluid through each aperture of size 𝑑 𝑜,𝑖 within the foam structure is given by 𝑞 𝑖 = 𝑑 𝑜,𝑖 3 ∆𝑃 𝑖 24𝜇 ⁄ [START_REF] Sampson | On Stokes's Current Function[END_REF], the theoretical permeability writes [START_REF] Otaru | The permeability of virtual macroporous structures generated by sphere packing models: Comparison with analytical models[END_REF]:

𝑘 𝐷 = 𝜇 ℎ 𝑎 2 ∆𝑃 ∑ 𝑞 𝑖 𝑁 𝑖=1 = 1 24 ℎ 𝑎 2 ∑ 𝑑 𝑜,𝑖 3 ∆𝑃 𝑖 ∆𝑃 𝑁 𝑖=1
(eq. 8)

Note that the ratio ∆𝑃 𝑖 ∆𝑃 ⁄ also writes ∆𝑧 𝑖 ℎ ⁄ , where ∆𝑧 𝑖 is the distance between centers of the two pores connected by the aperture 𝑖, measured along the direction of the macroscopic pressure gradient. As an example, the Kelvin structure presented in Fig. 5 shows 2 square faces (1 full and 4 quarters) with ∆𝑃 𝑖 ∆𝑃 ⁄ = 1 and 4 full hexagonal faces with ∆𝑃 𝑖 ∆𝑃 ⁄ = ½. Fig. 2 shows 𝑑 𝑜 𝐷 𝑝 ⁄ as a function of 𝜙 𝑠 for three foam structures: FCC (Face-Centered Cubic), BCC (Body-Centered Cubic) and SC (Simple Cubic). Foam permeability is therefore calculated by eq. 8 using results given in Fig. 2 for 𝑑 0 𝐷 𝑝 ⁄ (curves FCC, BCC and SC). Comparison with experimental data is presented in Fig. 3. The theoretical curves describe reasonably the overall decrease measured for 𝑘 𝑉 𝑝 In order to overcome issues related to foam crystals, now we turn to a mean pore configuration: The permeability is estimated by assuming that pores are randomly distributed with coordination number 𝑁 𝑜 , i.e. each pore is directly connected to 𝑁 𝑜 pores through apertures characterized by a single value 𝑑 𝑜 . We consider the reference area 𝐴 = 𝜋𝐷 𝑝 2 4(1 -𝜙 𝑠 ) ⁄ as the middle cross-section (perpendicular to the direction of the macroscopic pressure gradient ∇𝑃) of a spherical pore (see Fig. 6). Fluid flow passing through 𝐴 is coming at flow rate 𝑞 𝑖 = 𝑑 𝑜 3 ∆𝑃 𝑖 24𝜇 ⁄ from each one of the 𝑁 𝑜 2 ⁄ neighbor pores located above 𝐴, so:

𝑘 𝐷 ≈ 𝜇 ∑ 𝑞 𝑖 𝑁 𝑜 2 ⁄ 𝑖=1 𝐴(∆𝑃 𝐷 𝑝 ⁄ ) ≈ 𝐷 𝑝 24𝐴 𝑁 𝑜 2 𝑑 𝑜 3 〈
Δ𝑃 𝑖 Δ𝑃 〉 (eq. 9)

〈Δ𝑃 𝑖 〉 Δ𝑃 ⁄ = 〈𝑐𝑜𝑠𝜃〉 where the azimuthal angle 𝜃 is used to measure the position of the neighbor pores centers with respect to the reference pore along the direction of the macroscopic pressure gradient: 〈𝑐𝑜𝑠𝜃〉 = ∫ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃 𝜋 2 ⁄ 0 = 1 2 ⁄ . Therefore, the dimensionless permeability writes:

𝑘 𝐷 𝑉 𝑝 2 3 ⁄ ≅ 0.02 × (1 -𝜙 𝑠 )𝑁 𝑜 ( 𝑑 𝑜 𝐷 𝑝 ) 3
(eq. 10)

The case corresponding to 𝜙 𝑠 ≈ 𝜙 𝑠 * can be estimated easily: the number of apertures per pore is 𝑁 𝑜 ≈ 6 [START_REF] Chaikin | Some Observations on the Random Packing of Hard Ellipsoids[END_REF] and the aperture size is expected to be given by 𝑑 𝑜 𝐷 𝑝 ⁄ ≅ 0.66(𝜙 𝑠 * -𝜙 𝑠 ) 0.5 (see Fig. 2).

Therefore eq. 10 becomes: Comparison with permeability data (see Fig. 3b) provides the fitted value 𝜙 𝑠 * ≈ 0.38 ± 0.02, which is consistent with the theoretical value corresponding to packings of monodisperse spherical bubbles, i.e. 0.36 [START_REF] Torquato | Is Random Close Packing of Spheres Well Defined?[END_REF]. Note that predicted values are almost three times smaller than those given by eq. 6

although the power law behavior is identical.

Using eqs 10, 3 and 4 allows for the permeability to be estimated over the full range of solid volume fraction. The corresponding values are plotted in Fig. 4b and show good agreement with experimental data. Actually, as the measured exponential behavior is reasonably described by the apertures model (i.e. eq. 10 or eq. 6) using the measured relationship between aperture size and solid fraction, it suggests that the observed exponential decay mainly reflects the evolution of aperture size with solid volume fraction.

This good agreement should not obscure the fact that several assumptions have been made to derive equation 10. The main issue concerns the averaging procedure for the positions of apertures around the reference plane. Moreover, a mean aperture size has been used whereas real apertures distribution should have been accounted for. In addition, the assumption of small aperture through pore faces is not fully justified for foams with small solid contents. Further investigation could help to understand how those effects interplay in the global permeability behavior.

Conclusion

Darcy permeability has been measured for open-cell foams with monodisperse pore diameter ranging from 200 to 1000 µm and solid volume fraction ranging from 0.1 to 0.38. The dimensionless permeability showed an exponential decay as a function of solid volume fraction, except for solid fractions close to packing volume fraction of monodisperse spheres. Existing models do not capture this exponential decay and actually they predict permeability values significantly larger than the measured values. Moreover, previously measured permeability for replication metal foams is also significantly larger than our data, suggesting that the microstructure of those metal foams differs from solid foams resulting from hardening of liquid capillary foams. The so-called apertures model, which is based on the assumption that most of the viscous dissipation occurs within the aperture areas that connect the pores, was found to be appropriate to reproduce the exponential behavior as soon as the measured apertures sizes is accounted for, which suggests that the exponential behavior mainly reflects the evolution of aperture size with solid volume fraction.

H 2 O

 2 /Na 2 O = 14.68 and SiO 2 /Na 2 O = 1.01. Metakaolin (MK) particles were provided by AGS Minéraux (France): Argical M 1200s. Chemical compositions: SiO 2 55.0%, Al 2 O 3 39.0%, Fe 2 O 3 1.8%, TiO 2 1.5%, K 2 O+Na 2 O 1.0%, CaO+MgO 0.6%. As provided by the supplier: BET specific surface area is equal to 19 m 2 /g and median diameter of the volume weighted size distribution is approximately 𝑑 𝑝 ≈ 2 µm. Their density is 𝜌 𝑀𝐾 = 2200 kg/m 3 .

Figure 1 :

 1 Figure 1: Microstructure of the solid MK foams. (a) Picture of a sample seen from above (𝐷 𝑝 ≈ 600 µm, 𝜙 𝑠 = 0.2). (b1) Close-up of foam samples revealing the open-cell microstructure and showing pores (continuous lines) and pore apertures (dotted lines). Left: 𝐷 𝑝 ≈ 800 µm, 𝜙 𝑠 = 0.08; right: 𝐷 𝑝 ≈ 800 µm, 𝜙 𝑠 = 0.3. (b2) Scheme of the foam structure showing the Plateau border network and the apertures, which are the passages between the pores: 𝐿 is the node-to-node distance, 𝑟 is the thickness of the Plateau borders and 𝑥𝑟 corresponds to the covering length of the Plateau borders over apertures. (c) Number pore diameter (𝐷 𝑝 ) distribution (probability density function) for three samples. The three Gaussian curves are plotted with mean and standard deviation equal to: (C1) 188 µm and 7 µm, (C2) 640 µm and 50 µm, 1060 µm and 28 µm. (d) Number aperture diameter (𝑑 𝑜 ) distribution (probability density function) for two samples with same pore size 𝐷 𝑝 ≈ 300 µm. The

Figure 2 :

 2 Figure 2: Diameter of apertures 𝑑 𝑜 divided by the pore diameter 𝐷 𝑝 as a function of solid volume fraction 𝜙 𝑠 . Continuous curves show the theoretical values for several structures: red -Kelvin/BCC, blue -FCC, green -Simple Cubic. Note that both square and hexagonal faces are found in the Kelvin structure, so an area-weighted average value is presented. Dotted curves correspond to power law functions: 𝑑 𝑜 𝐷 𝑝 ⁄ = 0.66(𝜙 𝑠 * -𝜙 𝑠 ) 0.5 with 𝜙 𝑠 * equal to 0.32 for BCC (red), 0.26 for FCC (blue), 0.476 for CC (green) and 0.38 for the black dots. The dashed line corresponds to eq. 2 [16]. Continuous, dashed and dotted black lines correspond to eq. 3. Empty symbols: experimental data for MK foam samples with different pore sizes and different solid volume fractions. Filled symbol: data published by Trinh et al.[4] for monodisperse open-cell polymer foams.

Figure 3 : 3 ⁄

 33 Figure 3: (a) Measured pressure gradient ∆𝑃 𝐿 ⁄ as a function of the superficial velocity 𝑄 𝑆 ⁄ . The permeability 𝑘 𝐷 is deduced from the slope of the straight line by assuming that the viscosity of the fluid is 𝜇 ≅ 1.758 10 -5 Pa s. Results are presented for two pore diameters, (a1) 𝐷 𝑝 = 200 µm and (a2) 𝐷 𝑝 = 1000 µm, and several solid volume fractions 𝜙 𝑠 as indicated. (b) Darcy permeability 𝑘 𝐷 of the studied foam samples divided by 𝑉 𝑝 2 3 ⁄ = (𝜋𝐷 𝑝 3 6 ⁄ )

1 2 ⁄ 3 ⁄

 123 (see Fig. 1(b2)), forming the solid foam skeleton: 𝐴 𝑠 ~𝑟𝐷 𝑝 𝐷 𝑝 , or equivalently 𝐷 𝑝 𝐴 𝑠 ~𝜙𝑠 1 2

Figure 4 : 3 ⁄

 43 Figure 4: Foam permeability (divided by 𝑉 𝑝 2 3 ⁄ ) as a function of solid volume fraction. Empty symbols correspond to data already shown in Fig. 3b. Full symbol: data published by Trinh et al.[4] for monodisperse polymer foams. (a) Values predicted by the Kozeny-Carman model (eq. 5) for three foam crystals: red -BCC, blue -FCC, green -SC. Permeability values are calculated from the specific surface area 𝐴 𝑠 determined for the three structures (see the inset). Values for the Kozeny constant 𝐶 𝐾 used in eq. 6 are the following: 10 for BCC, 11 for FCC et 20 for SC. (b) Comparison of experimental data with different models: Woudberg & Du Plessis [27], Yang et al. [26], Despois & Mortensen [16], and eqs 10,3,4.

  of 𝜙 𝑠 , although none of them describes quantitatively the full set of data. More precisely, the FCC curve underestimates the data for 𝜙 𝑠 ≳ 0.15, the BCC curve underestimates the data for 𝜙 𝑠 ≳ 0.3 and the SC curve overestimates the data over the full range of solid volume fractions. This highlights issues associated to the description of the random foam structure with ideal foam crystals.

Figure 5 :

 5 Figure 5: Sketch of a periodic foam structure (Kelvin cells). Left: The macroscopic pressure gradient corresponds to a pressure difference equal to 𝛥𝑃 across the cell thickness ℎ. Centers of the neighbor pores are shown by color spheres: blue spheres are connected to the central pore (red sphere) by hexagonal faces and green spheres by square faces. Right: view from above of the same structure, i.e. it is a square of length side 𝑎. Fluid passing through such a foam structure in the direction perpendicular to cross-section 𝑎 2 has to flow through the apertures shown in the figure.

Figure 6 :

 6 Figure 6: Mean pore of diameter 𝐷 𝑝 representing the whole foam structure (all the pore configurations). Apertures of size 𝑑 𝑜 connect the pore to 𝑁 𝑜 neighbors with witch fluid flow rates 𝑞 𝑖 are exchanged. The fluid flow rate passing through the middle cross-section of the pore is equal to the sum of the flow rates crossing the 𝑁 𝑜 2 ⁄ apertures located above. The angle 𝜃 𝑖 measured the position of those apertures.

  𝑅𝑒 = 𝜌(𝑄 𝑆 ⁄ )𝐷 𝑝 𝜇 ⁄ . Here we calculate the average value 𝑅𝑒 ̅̅̅̅ for each sample within our experimental conditions. It is shown in Table 1 that 0.1 ≤ 𝑅𝑒 ̅̅̅̅ ≤ 0.6, which suggests low inertia effects. Reported values for 𝑘 𝐷 were obtained by assuming the Darcy law and were determined as follows: ∆𝑃 𝐿 ⁄ values were plotted as a function of 𝑄 𝑆 ⁄ and the slope 𝑘 𝐷 𝜇 ⁄

which means that the above equation boils down to the Darcy law: 𝑑𝑃 𝑑𝐿 ⁄ = -(𝑄 𝑆 ⁄ )𝜇 𝑘 𝐷 ⁄ . When considering inertia effects, it is usual to refer to the Reynolds number,

  In capillary foams the apertures diameter decreases abruptly as 𝜙 𝑠 gets close to 𝜙 𝑠 * and it vanishes at 𝜙 𝑠

. Highly monodisperse open cell foams are obtained with several pores sizes. The effect of solid volume fraction is shown in Fig.

1b

: foam can be described as interconnected struts at small 𝜙 𝑠 values, but spherical pores with small circular apertures are seen for larger 𝜙 𝑠 values. Sizes of the apertures appear to be more dispersed than pore sizes (see Fig.

1c & d

), and their mean value decreases as a function of solid volume fraction. The number of apertures per pore 𝑁 𝑜 is shown in Fig.

1e

for several samples. 𝑁 𝑜 decreases as a function of solid volume fraction: 𝑁 𝑜 ≅ 10 for 𝜙 𝑠 ≅ 0.2 and 𝑁 𝑜 ≅ 7 for 𝜙 𝑠 ≅ 0.3.

All our results for the mean aperture diameter 𝑑 𝑜 are presented in Fig.

2

, showing the dimensionless parameter 𝑑 𝑜 𝐷 𝑝 ⁄ as a function of 𝜙 𝑠 . Aperture size decreases from 𝑑 𝑜 𝐷 𝑝 ⁄ ≈ 0.4 for 𝜙 𝑠 ≈ 0.05 down to 𝑑 𝑜 𝐷 𝑝 ⁄ < 0.2 for 𝜙 𝑠 > 0.3. Note that we don't report 𝑑 𝑜 values for 𝜙 𝑠 > 𝜙 𝑠 * ≅ 0.38 because apertures are scarce for such samples and the sample's homogeneity was not ensured. Actually the decrease of apertures size is very strong between 0.35 and 𝜙 𝑠 * , where it is expected to vanish. This behavior can be inferred from the known packing volume fraction of monodisperse spheres, for which the corresponding critical value is equal to 0.36. Besides, note that the aperture size measured at 𝜙 𝑠 ≈ 0.02 for monodisperse open-cell polymer foams [4] shows good agreement with our data. Theoretical curves corresponding to ideal crystalline foam structures were obtained by numerical simulations (fine convergence was obtained by using the Surface Evolver -Fluid Interface Tool) and are plotted in Fig. 2. It appears that crystalline structures can be used to describe aperture values only within a small range of 𝜙 𝑠 values, i.e. 𝜙 𝑠 ≲ 0.1 for FCC (Face-Centered Cubic) and 0.1 ≲ 𝜙 𝑠 ≲ 0.2 for BCC (Body-Centered Cubic). Actually, deviations are significant as 𝜙 𝑠 gets close to the corresponding critical value, i.e. 𝜙 𝑠 * = 0.26 for FCC and 𝜙 𝑠 * = 0.32 for BCC. * . This

  Our data for 𝑁 𝑜 (𝜙 𝑠 ) are partial but they can be combined with expected bounds, i.e. 𝑁 𝑜 ≈ 14 for 𝜙 𝑠 ≪ 1 (Kelvin cells[START_REF] Weaire | The Physics of Foams[END_REF]) and 𝑁 𝑜 ≈ 6 for 𝜙 𝑠 ≈ 𝜙 𝑠 *[START_REF] Chaikin | Some Observations on the Random Packing of Hard Ellipsoids[END_REF]. Fig.1eshows that 𝑁 𝑜 (𝜙 𝑠 ) can be

			(b2)): 𝑑 𝑜 𝐷 𝑝 ⁄ ≅ 𝐿 𝐷 𝑝 ⁄ -
	2𝑥𝑟 𝐷 𝑝 ⁄ , where 𝑥 ≈ 2/3 [17] and 𝐿 𝐷 𝑝 ⁄ ≈ 0.55 [18] are geometrical coefficients. For small solid
	contents, Plateau border width is known to vary as [9,18,19] 𝑟 𝐷 𝑝 ⁄ ≃ 𝑐𝜙 𝑠 1 2 ⁄ , which gives information
	𝜙 𝑠 ≤ 0.28: 𝜙 𝑠 ≥ 0.35: about 𝑑 𝑜 𝐷 { 0.28 ≤ 𝜙 𝑠 ≤ 0.35: 𝑑 𝑜 𝐷 𝑝 = 0.55 -0.685𝜙 𝑠 1 2 ⁄ 𝑑 𝑜 𝐷 𝑝 = 0.66(𝜙 𝑠 * -𝜙 𝑠 ) 1 2 ⁄ 𝑑 𝑜 𝐷 𝑝 = -94.000𝜙 𝑠 3	+ 79.847𝜙 𝑠 2 -23.252𝜙 𝑠 + 2.501	(eq. 3)
	Alternatively, we propose the following expression to describe the measured aperture size over the
	full range of solid volume fraction: 𝑑 0 𝐷 𝑝 ⁄ ≈ [(𝜙 𝑠 * -𝜙 𝑠 )(1 -𝜙 𝑠 * + 𝜙 𝑠 )] 1 2 ⁄ + 𝜙 𝑠 (3.8𝜙 𝑠 -1.48).
	described by the following relation:		
	𝑁 𝑜 (𝜙 𝑠 ) ≈ 2 (7 -4	𝜙 𝑠 𝜙 𝑠 * ) (eq. 4)
	Results for the foam permeability are presented in Table 1 and Fig. 3b. It is shown that all the
	permeability values are gathered on a single curve when plotting 𝑘 𝐷 𝑉 𝑝 2 3 ⁄

𝑝 ⁄ in this regime. Actually, good agreement is found for the latter equation (with 𝑐 ≃ 0.5) with our data within the range 0.02 ≲ 𝜙 𝑠 ≲ 0.28. Therefore, a piecewise function can be built from this behavior combined with Eq. 1, as well as a third-order polynomial function as a joining function:

⁄

as a function of 𝜙 𝑠 , where
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