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Normale Supérieure (ENS), Paris, France
b Institute for Geophysics and Meteorology (IGM), University of Cologne, Cologne,

Germany

This is the Author’s Original Manuscript (AOM); that is, the manuscript in its original form;
a “preprint” . The Version of Record of this manuscript has been accepted for publication by
the Journal of Geophysical & Astrophysical Fluid Dynamics, published by Taylor & Francis.
The publisher’s version is available at https://doi.org/10.1080/03091929.2020.1805448.

https://doi.org/10.1080/03091929.2020.1805448


August 10, 2020 Geophysical and Astrophysical Fluid Dynamics EqModonsWITGAF˙Unmarked˙Rev2

Geophysical and Astrophysical Fluid Dynamics
Vol. 00, No. 00, 00 Month 20xx, 2–22

Eastward-moving Equatorial Modons in moist-convective Shallow-Water Models.

MASOUD ROSTAMI† ‡ and VLADIMIR ZEITLIN †
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It is shown that steady large-scale slowly eastward-moving twin-cyclone coherent1

structures, the equatorial modons, exist in both one- and two layer versions of the2

rotating shallow water model on the equatorial beta plane. They arise via the pro-3

cess of “ageostrophic adjustment” from the analytic asymptotic modon solutions of4

the vorticity equation obtained in the limit of small pressure perturbations. Evolu-5

tion of these structures in adiabatic and moist-convective environments, and also in6

the presence of topography is analyzed, showing their robustness in the one-layer7

model. It is demonstrated that moist convection enhances and helps maintain the8

modons. In the two-layer model the barotropic and quasi-barotropic modons display9

similar to one-layer modon features, while increasing baroclinicity leads to eventual10

loss of coherence and arrest of the eastward propagation. Some features of equa-11

torial modons resemble those observed in the Madden-Julian Oscillation events in12

tropical atmosphere, which hints at their possible relevance to the dynamics of this13

phenomenon.14

Keywords: Equatorial Waves, Madden Julian Oscillation, Modon, Moist Convection, Rotating Shallow15

Water Model16

1. Introduction17

Atmospheric dynamics in the equatorial regions of rotating planets significantly differs from18

that in higher latitudes due to the simple fact that the rotation axis lies in the tangent plane19

to the equator. As is well known starting from the pioneering paper by Matsuno (1966),20

equatorial dynamics is dominated by specific equatorial waves, e.g. (Gill 1982). These waves21

are well identified in meteorological in situ and satellite observations, e.g. (Wheeler and Kiladis22

1999). Yet, both kinds of observations reveal slow eastward-propagating structures which do23

not fall in any class of equatorial waves. They were identified as periodically arising large-scale24

patterns of enhanced deep convection which are slowly moving from the Indian Ocean over the25

maritime continent and dying out in the Pacific, the Madden-Julian Oscillation (MJO). After26

its discovery (Madden and Julian 1972), much was learnt about its structure and properties,27

e.g. Zhang (2005). Yet dynamical nature of MJO is not fully understood (Zhang 2005) and,28

in particular, there is no clear answer to the question why MJO events are slowly moving29

eastward. Climate models have difficulties in reproducing them, e.g. (Kim et al. 2011). The30

Kelvin waves, the only species of the equatorial waves that can produce steady large-scale31
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eastward-moving structures, have much faster velocity than MJO (Straub and Kiladis 2002).32

There exist simplified models of MJO, either quasi-linear, e.g. Majda and Stechman (2009),33

Sobel and Maloney (2012), or nonlinear Haertel et al. (2013), all of them heavily relying on34

the dynamical role of moist convection.35

The question however arises, whether there exist “dry” dynamical structures moving slowly36

eastwards along the equator, which could provide a dynamical “backbone” of the MJO events.37

The spectrum of linear equatorial waves being well established, such objects should be nec-38

essarily nonlinear. There do exist steady eastward-moving structures in a fluid layer in the39

mid-latitude tangent- plane approximation, the so-called modons, exact dipolar solutions of40

the quasi-geostrophic (QG) equations discovered by Larichev and Reznik (1976). Although41

the classical modons were found analytically in the QG approximation, it was shown first by42

a computer-assisted analysis (Kizner et al. 2008) and then by direct numerical simulations43

(Ribstein et al. 2010) that corresponding solutions exist also in the parent rotating shallow44

water (RSW) model on the f - plane. The QG modon solutions were extended to the full45

sphere (Verkley 1984, Tribbia 1984) in the framework of equivalent barotropic model, which46

is structurally close to QG. In their pioneering paper, Yano and Tribbia (2017) came up with47

an idea that the MJO could be related to such a modon in spherical geometry and showed48

that, like on the tangent plane (Ribstein et al. 2010), the equivalent barotropic modon persists49

in the parent RSW model on the sphere. Yet, the archetype model for understanding dynam-50

ics of the tropical atmosphere is RSW on the equatorial beta-plane, e.g. Matsuno (1966). For51

example, the spectrum of convectively coupled equatorial waves, including MJO, is studied by52

projection onto the wave-spectrum of the RSW model (Wheeler and Kiladis 1999, Straub and53

Kiladis 2002). The idea, thus, arises to look for modons in this model. However, it encounters54

an obstacle from the very beginning because a consistent QG approximation at the equator55

is problematic, e.g. James (1994), so the known QG modon solutions can not be directly bor-56

rowed. We should emphasize at this point, that coherent westward-propagating dipoles were57

found in the RSW model on the equatorial beta-plane by Boyd (1985), and were also called58

modons. However, their nature is different, as they correspond to the KdV solitons of weakly59

nonlinear long equatorial Rossby waves, see (LeSommer et al. 2004). A conjecture that east-60

ward propagating modons could exist was also formulated by Boyd (1985). We will discuss61

this point in Sect. 3 below.62

Let us also emphasize that the applications of the RSW model on the equatorial beta-plane63

are not limited to tropical meteorology. The related equatorial wave dynamics is regularly64

invoked for explanations of the observations in the equatorial regions of planetary atmospheres,65

e.g. (Showman and Dowling 2000, Legarreta et al. 2016, Sanchez-Lavega et al. 2017).66

Our main observation (Rostami and Zeitlin 2019a) is that there exist a dynamical regime67

in the RSW model, corresponding to the so-called long-wave approximation in oceanography68

(Gill 1982), which arises in the limit of small pressure variations and gives, to the leading or-69

der, a vorticity equation which does allow for modon solutions. This quasi-barotropic regime is70

the RSW analog of Charney (1963) non-divergent balance model for equatorial atmosphere.71

The relevance of this model to large-scale tropical motions is supported by scale and data72

analyses (Yano and Bonazzola 2009, Yano et al. 2009). Modon solutions in this regime were73

constructed in Rostami and Zeitlin (2019a). Following the strategy of Ribstein et al. (2010),74

these asymptotic solutions were then used to initialize high-resolution numerical simulations75

with the full RSW model, and to show that coherent dipolar steady eastward-moving struc-76

tures, the RSW modons, do arise and persist. However, the domain of attraction of such77

modon solutions seems to be limited as they do not arise without added dipolar vorticity78

component from initial localized circular pressure anomalies, even if these latter have consid-79

erable amplitudes. The modon configurations, however do arise from such configurations in80

the presence of moist-convective feedback (Rostami and Zeitlin 2019b).81

Below we recall the derivation of equatorial modon solutions in one-layer RSW and present82



August 10, 2020 Geophysical and Astrophysical Fluid Dynamics EqModonsWITGAF˙Unmarked˙Rev2

4 M. ROSTAMI & V. ZEITLIN

numerical simulations illustrating the influence of the effects of moisture and topography on83

their behavior. We show that topographic obstacles of reasonable amplitude do not disrupt84

the modons, and that inclusion of moisture, with condensation and evaporation, enhances85

the modons, and produces some specific convective and condensation patterns. We then turn86

to baroclinic generalizations of one-layer modons, and look for similar solutions in the two-87

layer equatorial RSW model. We analyze different parameter regimes in this model, under the88

same hypothesis of small pressure variations, and explore the possibilities of having coherent89

dipolar solutions. We show that such asymptotic solutions do exist, verifying layer-wise in90

the leading order the same vorticity equation as in the one-layer RSW. We then follow the91

same strategy as in the one-layer case, and initialize high-resolution numerical simulations92

with well-balanced finite-volume scheme for two-layer RSW equations on the equatorial beta-93

plane with the velocity fields corresponding to such asymptotic solutions. The simulations94

reveal that only close to barotropic initializations, i.e. those with the same in each layer,95

or close to, initial asymptotic modons, give rise to slowly eastward-moving two-layer RSW96

modons, while baroclinic, i.e. with asymptotic modons of essentially different size and/or97

intensity, initializations result in dipolar structures which are eventually turning westward98

and becoming equatorial Rossby-wave packets.99

The paper is organized as follows. We first recall the theory of barotropic equatorial modons100

in one-layer equatorial RSW, and then analyze its generalization to the two-layer case in Sect.101

2. We present the results of numerical simulations initialized with asymptotic modon solutions102

in both one- and two-layer cases, and in both “dry” and moist-convective environments in103

Sect. 3. Section 4 contains summary and discussion.104

2. Modons in one- and two-layer RSW models: theory105

2.1. One-layer configuration106

2.1.1. From one-layer RSW to barotropic model107

In this Section we recall the construction of equatorial modons which was sketched in108

Rostami and Zeitlin (2019a). The RSW model we are using should be understood as vertically109

averaged primitive equations in pseudo-height pressure coordinates (Zeitlin 2018), and can be110

extended to include water vapor with condensation and related latent heat release (Bouchut111

et al. 2009), as well as surface evaporation (Lahaye and Zeitlin 2016, Rostami and Zeitlin 2017).112

Liquid water, precipitation, vaporisation and related cooling can be also incorporated into the113

model, as well as vertical structure, see Rostami and Zeitlin (2018) for these generalizations,114

and references therein for previous successful applications of the model. Below we recall the115

approximations leading to the Charney regime in one-layer RSW model on the equatorial116

beta-plane following Rostami and Zeitlin (2019a).117

The“dry” one-layer RSW equations in the equatorial beta- plane with no dissipation read:118

∂tv + v · ∇v + βy ẑ ∧ v + g∇h = 0 , (1)119

120

∂th+∇ · [v(h− b)] = 0 , (2)121

where ∇ = (∂x, ∂y), v = (u, v), u is zonal and v- meridional components of velocity, h is122

thickness in pseudo-height coordinates, b > 0 represents topography, β is the meridional123

gradient of the Coriolis parameter, and ẑ is a unit vertical vector. We introduce a nonlinearity124

parameter λ, which measures the amplitude of pressure variations h = H(1 + λη), where H125

is the unperturbed thickness, and rewrite the momentum equations correspondingly:126

∂tv + v · ∇v + βy ẑ ∧ v + gHλ∇η = 0 , (3)127
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where we omitted topography, which would be reintroduced later. We then choose the same128

spatial and velocity scales in both zonal and meridional directions (x, y) ∼ L, (u, v) ∼ V ,129

and choose the time-scale as: t ∼ (L/V ). Notice that such uniform in zonal and meridional130

directions scaling differs from the traditionally used one, cf. Gill (1980), LeSommer et al.131

(2004). The non-dimensional momentum equations are:132

∂tv + v · ∇v + βy ẑ ∧ v +
gHλ

V 2
∇η = 0 , (4)133

where we introduced a non-dimensional beta parameter β = βL2/V , which is, in fact, the134

inverse equatorial Rossby number. We should emphasize that, unlike the traditional equatorial135

scaling, which uses the equatorial deformation radius Ld = (gH)
1

4 /β
1

2 , the spatial scale is not136

rigidly related to other parameters here. If we suppose that137

λ→ 0, and
gHλ

V 2
= O(1), (5)138

which immediately gives V �
√
gH, that is the characteristic velocity is much smaller than139

the phase velocity of the fastest waves c =
√
gH, like Kelvin wave, then the momentum and140

mass conservation equations become:141

∂tv + v · ∇v + βy ẑ ∧ v +∇η = 0 , (6)142

λ(∂tη + v · ∇η) + (1 + λη)∇ · v = 0. (7)143

In the leading order of the expansion in λ: v = v0 +λv1 + ... equation (7) gives ∇·v0 = 0, and144

the motion is divergenceless. Hence, we can introduce a streamfunction for the leading-order145

velocity:146

u0 = −∂yψ, v0 = ∂xψ. (8)

First-order corrections u1, v1 can be found in the next order of the asymptotic expansion147

in λ. There is no guarantee that such expansion converges, but numerical results presented148

below suggest that there is indeed a correspondence between solutions of the full equations149

(1), (2) and the asymptotic ones. Cross-differentiation of the zonal and meridional momentum150

equations allows to eliminate η and gives the vorticity equation for streamfunction:151

∇2ψt + J (ψ,∇2ψ) + βψx = 0, (9)152

where J denotes the Jacobian.153

If topography would be of the order one, and would be kept, we would have (H − b)u0 =154

−∂yψ, (H − b)v0 = ∂xψ instead of (8), and the resulting system would become an equatorial155

version of the long-wave approximation, which is used for studies of the dynamical effects of156

topography in oceanography, cf. (Gill 1982). Here we will use it first without topography, in157

order to construct the modon solutions.158

2.1.2. One-layer RSW modons159

Equation (9) coincides with the infinite deformation radius limit of one-layer QG equa-160

tion, e.g. Zeitlin (2018), so the construction of the modon solutions can be straightforwardly161

transposed, following the pioneering paper of Larichev and Reznik (1976). Let us recall that162

these solutions are obtained under hypothesis of steady motion with constant zonal velocity163

U , by supposing a linear relationship between the absolute vorticity and streamfunction in164

the co-moving frame, which leads to an inhomogeneous Helmholtz equation. It is solved by165

separation of variables in polar coordinates in terms of Bessel functions, first in the outer166

with respect to a separatrix domain, under condition of decay at infinity, and then in the167

inner domain, and matching the inner and outer solutions at the separatrix. The separatrix168

is a circle of radius a in the (x, y) - plane. The matching conditions are continuity of the169
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Figure 1. Streamlines and velocity field of the asymptotic modon corresponding to the first root (a, p) = (0.5, 3.1623)
of the equation (11), with slow eastward propagation U = 0.1, in stationary (left panel), and co-moving frames (middle
panel), and a solution corresponding to the second root in the stationary frame (right panel). Dashed line: separatrix of
radius a.

streamfunction and its normal derivative across the circle. It is worth noting that the actual170

size of the vortex, as a nonlinear solution, is larger than a. The solution is:171 
ψext = − Ua

K1(pa)K1(pr) sin θ, r > a,

ψint =
[

Up2

k2J1(ka)J1(kr)− r
k2 (1 + U + Uk2)

]
sin θ, r < a,

(10)172

where J1 and K1 are ordinary and modified Bessel functions, respectively, p is real, and173

p2 = β/U , so U > 0, and the motion is eastward. The matching conditions give:174

J ′1(ka)

J1(ka)
=

1

ka
(1 +

k2

p2
)− k

p

K ′1(pa)

K1(pa)
, (11)

and for each pair (a, p) (or (a, U)) there exist a series of eigenvalues of k arising from (11), of175

which the lowest corresponds to a vortex dipole, to be called the asymptotic modon. We will176

be using below U as a governing parameter. The higher eigenvalues correspond to multi-polar177

vortices with significant velocity shear inside the core, which are more sensitive to dissipation,178

and are rarely considered in the literature. By construction, thus obtained solutions can be179

centered anywhere in the equatorial beta-plane. Yet it is only when the center of the circle is180

at the equator that the modon is a pair of cyclones, due to the change of sign of the planetary181

vorticity βy, otherwise it is a cyclone-anticyclone pair. The streamlines of the asymptotic182

modons corresponding to the first and the second roots of the equation (11) are presented in183

Fig. 1. Pressure distribution at a given ψ is obtained by differentiating and combining the184

leading-order momentum equations:185

∇2η = Hess[ψ] + β(ψy + y∇2ψ) (12)

where Hess[ψ] = ∂2
xxψ ∂

2
yyψ− (∂2

xyψ)2 is the Hessian of ψ. Notice that equations (9) and (12)186

are shallow-water counterparts of the non-divergent model for large-scale tropical motions187

derived in Charney (1963).188

2.2. Two-layer configuration189

2.2.1. The model, and small pressure perturbation limit(s)190

We start with the “dry” two-layer atmospheric RSW momentum and mass equations in191

the equatorial β-plane with no topography and dissipation. The model is sketched in Figure192
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Figure 2. A sketch of the two-layer atmospheric rotating shallow water model.

2 The equations of the model read:193 

∂tv1 + v1 · ∇v1 + β y ẑ ∧ v1 + g∇(h1 + h2) = 0 ,

∂tv2 + v2 · ∇v2 + β y ẑ ∧ v2 + g∇(h1 + sh2) = 0 ,

∂th1 +∇ · (v1h1) = 0 ,

∂th2 +∇ · (v2h2) = 0 ,

(13)194

where s = θ2/θ1 > 1 is a stratification parameter, θ1,2 are potential temperatures of the195

layers, and β is the meridional gradient of the Coriolis parameter, as before. We introduce the196

deviations η1 and η2 of the free surface and interface between the layers from their positions197

at rest, respectively, and corresponding nonlinearity parameters λ1,2, as follows:198 h2 = H2 − η2 = H(d2 − λ2η2),

h1 = H1 − η1 + η2 = H(d1 − λ1η1 + λ2η2),
(14)

Here d2 = H2/H, and d1 = H1/H are non-dimensional thicknesses of the layers. d1 and199

d2 = 1−d1 are not independent. We nonetheless use both d1 and d2 explicitly in the formulas200

below to keep their expression concise. With the same choice of scaling as in the one-layer201

model for both layers, the non-dimensional equations (13) are:202 

∂tv1 + v1 · ∇v1 + β y ẑ ∧ v1 = −gHλ1

V 2
∇η1,

∂tv2 + v2 · ∇v2 + β y ẑ ∧ v2 = −gH
V 2

[λ1∇η1 − (1− s)λ2∇η2],

d1∇ · v1 − λ1[∂tη1 +∇(η1v1)] + λ2[∂tη2 +∇(η2v1)] = 0,

d2∇ · v2 − λ2[∂tη2 +∇(η2v2)] = 0,

(15)203

Even if we suppose that parameters s and d1,2 which control the stratification are of the order204

one, there are still two small parameters λ1,2 in the small pressure perturbations limit, and205

their ratio should be prescribed in order to fix a dynamical regime. There are two obvious206

choices: both λ1 and λ2 are of the same order, or one of them is much smaller than the other207

one. We will call them, respectively, Regime 1 and Regime 2, the second one having two208

sub-regimes depending on which of λ1,2 is smaller.209
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2.2.2. Regime 1210

In this regime deviations of the free surface and of the interface are of the same order: λ1211

∼ λ2 ∼ λ→ 0, hence [(gHλ)/V 2] ∼ 1 and from the third and forth equations in (15) we get,212

analogously to the one-layer case: ∇ · v1 = ∇ · v2 = 0. Therefore,213

∇2ψ(1,2)t + J (ψ(1,2),∇2ψ(1,2)) + βψ(1,2)x = 0, (16)214

where ψ(1,2) are streamfunctions in respective layers. Each of these equations has modon215

solutions, but they are not necessarily the same and may differ in scale and/or intensity.216

To the leading order, thus, the velocities in the layers do not influence each other, but the217

pressures do. Indeed, by taking divergence of the momentum equation for layer 1, and using218

the fact that to the leading order the divergence of velocity is zero, we get a diagnostic219

equation for η1 analogous to (12), which allows to determine η1 in terms of velocity in layer220

1. Similar manipulations with the momentum equation for layer 2 give a diagnostic equation221

for η2 which, however, contains η1, and thus is taking into account a coupling between the222

layers. We should emphasize that the present dynamical regime is fully consistent with the223

construction of Charney (1963) for continuously stratified atmosphere, where the horizontal224

velocity obeying the equation (9) could have arbitrary modulation in the vertical.225

2.2.3. Regime 2a226

In this regime the deviation of the free surface is much smaller than that of the interface:
λ1 ∼ λ2, λ2 ∼ λ → 0. Still supposing that [(gHλ)/V 2] ∼ 1, we therefore have to rescale the
lower-layer velocity: v1 = λv∗1, and thus get:

∂tv
∗
1 + λv∗1 · ∇v∗1 + β y ẑ ∧ v∗1 = −∇η1, (17a)

∂tv2 + v2 · ∇v2 + β y ẑ ∧ v2 = (1− s)∇η2, (17b)

d1∇ · v∗1 + ∂tη2 = 0, (17c)

∇ · v2 = 0, (17d)

Cross-differentiation and differentiation of (17a) give, respectively, to the leading order n λ:

∂tζ
∗
1 + β y∇ · v∗1 + β v∗1 = 0, (18a)

∂t(∇ · v∗1)− β y ζ∗1 + β u∗1 = ∇2η1, (18b)

We introduce a potential and a streamfunction for the lower-layer velocity, which is not di-227

vergenceless, contrary to Regime 1:228 {
u∗1 = φ∗1x − ψ∗1y,
v∗1 = φ∗1y − ψ∗1x,

(19)229

such that ζ∗1 = ∇2ψ∗1 and ∇·v∗1 = ∇2φ∗1. Consequently Eq.(17c) can be rewritten as ∇2φ∗1 =230

−(1/d1)η2t. Substitution in (18a) gives:231

∇2ψ1t + β ψ1x =
1

d1
(β yη2t + ∂y∇−2η2t ) (20)232

At the same time, the upper-layer equations (17b), (17d) have the same form as in the one-233

layer case, modulo a constant in front of the pressure gradient in the momentum equation,234

and are treated analogously giving equation (9) for the upper-layer streamfunction, which has235

asymptotic modon solutions. Equation (20) means that the equatorial modon in the upper236

layer is accompanied by a linear Rossby-wave field in the lower layer, which is forced by237

the pressure perturbations of the upper layer. Thus, the upper-layer modon is “leaky” and238

loses energy through the generation of this Rossby-wave field, which means that its coherence239

cannot be maintained for long time.240
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2.2.4. Regime 2b241

In this regime the deviation of the interface is much smaller than that of the free surface242

λ1 ∼ λ, λ2 ∼ λ2, which means that we have an effectively barotropic situation. Indeed, the243

equations for upper- and lower-layer velocities become identical in the leading order in λ:244 

∂tv1 + v1 · ∇v1 + β y ẑ ∧ v1 = −gHλ
V 2
∇η1,

∂tv2 + v2 · ∇v2 + β y ẑ ∧ v2 = −gHλ
V 2
∇η1,

∇ · v1 = 0,

∇ · v2 = 0.

(21)245

Hence v1 = v2 and we get an asymptotic modon solution which is uniform through the whole246

fluid column, that is barotropic, and the situation is effectively equivalent to the one-layer247

case.248

3. Numerical simulations with asymptotic modon initializations in one- and two- layer249

RSW models250

3.1. Equatorial modon in different environments in one-layer model251

Numerical simulations in the one-layer case were performed in a symmetric with respect to the252

equator and wide enough domain, 9Ld × 6.5Ld, to minimize the boundary effects. Numerical253

sponges allowing to absorb short inertia-gravity waves were implemented at the boundaries.254

Here Ld is the equatorial deformation radius,
√
c/β, where c =

√
gH. We use the high-255

resolution, well-balanced finite-volume numerical scheme of Bouchut (2007). The dimensional256

units of length and time in the numerical scheme were Ld and 1/(βLd), respectively, which257

corresponds to non-dimensional β equal to one. Dimensional values of g and β were fixed to be258

those for the Earth, thus the mean depth H is a single parameter. If, for example, it is chosen259

to be H = 10km, which roughly corresponds to two thirds of the thickness of the tropical260

troposphere, then the dimensional space and time units are Ld ≈ 3000km, 1/βLd ≈ 3h. Spatial261

resolution varied from 600× 600 to 1200× 1200, in order to check numerical convergence. No262

external forcing nor dissipation or thermal relaxation were introduced.263

3.1.1. Adjustment of asymptotic modons, and formation of RSW modons264

We first recall the results of the numerical simulations initialized with theoretical asymp-265

totic modon solutions, which were sketched in Rostami and Zeitlin (2019a), and give some266

additional important details. The “dry” adiabatic RSW model is initialized with just a veloc-267

ity field acquired from the asymptotic modon solution (10), with U �
√
gH, and no pressure268

perturbation. Nonlinear evolution of asymptotic modon leads to a process of relaxation pre-269

sented in Fig. 3, which consists in emission of short inertia-gravity waves and formation of a270

dipolar coherent structure. Such “ageostrophic adjustment” of asymptotic modon to “real”271

modon solutions of the full RSW equations was first observed in the simulations with RSW272

model in the f -plane approximation in Ribstein et al. (2010). It lasts about one inertial period273

T = 1/(βLd). After adjustment of pressure and velocity fields to twin cyclones on both sides274

of the Equator, this coherent structure moves eastward, cf. Fig. 3. The phase speed of the275

modon depends on the values of (a, U) used for initialization. We compared the evolution276

starting from two sets of initial conditions corresponding to U = 0.1, U = 0.2 in (10), (11),277

both with radius a = 0.5Ld. We should emphasize that there is a threshold U ≈ 0.07 be-278
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Figure 3. Initial “ageostrophic” adjustment of the asymptotic modon with parameters (a, p) = (0.5, 3.1623) correspond-
ing to initialization with an asymptotic modon with U = 0.1, as seen in the thickness field.

low which a coherent dipole does not form from the initialization with respective asymptotic279

modon. In both cases we have a formation of a coherent dipolar structure from the asymptotic280

modon. However, while the weaker/slower dipole corresponding to U = 0.1 eventually slows281

down and disaggregates at a distance ≈ 2Ld from the initial location, the stronger one with282

U = 0.2 continues to move eastward for much longer times. A comparison of the structure283

of the dipoles arising from each initialization is presented in Fig. 4, their coherence following284

from the scatter plot of potential vorticity vs Bernoulli function, cf. the left panel of Fig. 6.285

The resulting RSW modons differ essentially from the parent asymptotic ones, as they has286

a considerable thickness anomalies, cf. Fig. 4, with the respective values of non-dimensional287

nonlinearity parameter ≈ 0.075 and ≈ 0.15, respectively, but also a pronounced divergence288

pattern, as follows from Fig. 5.289

In spite of their coherence, we detected an enstrophy loss during the propagation of thus290

arising RSW modons, which diminishes with increasing resolution (Fig. 6). This loss of en-291

strophy because of numerical dissipation, which also affects the energy conservation, is not292

negligible for weaker/slower modon (U = 0.1, a = 0.5Ld), while it is reduced to just few % for293

stronger/faster modons (U = 0.2, a = 0.5Ld).294

3.1.2. Modons in adiabatic vs most-convective environment295

We now switch on the effects of moisture within the simplest version of the diabatic moist-296

convective RSW (mcRSW) (Bouchut et al. 2009), in order to compare the behavior of equa-297

torial modons in adiabatic and moist-convective environments. The equations of the model298

read:299 ∂tv + v · ∇v + β y ẑ ∧ v = −g∇h,
∂th+∇· (vh) = −γP,
∂tQ+∇·(Qv) = −P + E.

(22)300

We introduced Q, a bulk amount of water vapor in the air column, with a condensation sink301

P and evaporation source E, which are parameterized as follows:302

P =
Q−Qs

τ
H(Q−Qs), E = α|v|(Qs −Q)H(Qs −Q). (23)303

Here Qs is a saturation moisture threshold, τ is relaxation time, α is a parameter regulating304

evaporation, γ is a parameter depending on background stratification, and H(...) denotes the305

Heaviside (step-)function. The parameterization of the condensation (23) is a bulk version of306

the Betts-Miller parameterization, and the parameterization of the evaporation is standard.307

As in the previous test simulations (Bouchut et al. 2009), we take a uniform initial moisture308
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Figure 4. Comparison of the structure of weaker (upper panel) and stronger (lower panel) modons, arising, respectively
from initializations with U = 0.1 and U = 0.2. Left panel: thickness h at T = 3[βLd]−1. Middle panel: meridional section
across the center of the modon. Right panel: zonal section of the equatorial modon across the center of each cyclone.

distribution Qi close to saturation: Qi = Qs − 0.01 with Qs = 0.9, a short relaxation time τ309

equal to several time-steps of the numerical scheme, γ = 1, and α = O(10−1). The values of310

Qi,s are chosen to be the same as in (Bouchut et al. 2009) for benchmarking reasons; small311

variations around them do not change qualitatively the results. A step-by-step comparison of312

propagation of an equatorial modon in “dry” and moist-convective environments is presented313

in Fig. 7. As follows from the Figure, the phase velocity of the modon in “dry” environment314

is ≈ 0.025L2
d β ≈ 5m/s, while in moist-convective environment it increases to ≈ 0.035L2

d β ≈315

12m/s, and the modon keeps its coherence. This is the effect of increase of the cyclonic316

vorticity due to the moist convection, which is easy to understand within the mcRSW model,317

cf. Lambaerts et al. (2011a). It is worth emphasizing that the phase velocity of a weak modon318

is not constant because of enstrophy and energy losses due to numerical dissipation. This319

is an indication that external friction forces are able to kill such modon. Nevertheless, the320

convective enhancement and related increase of velocity allow the modon to run over ≈ 3Ld,321

which would be enough to pass over Indian Ocean, for example. Its scale, its propagation322

speed, and associated convection patterns of this equatorial modon (cf. Rostami and Zeitlin323

(2019a)) indicate a possible relevance to the MJO events. A specific feature introduced by the324

steady zonal motion of equatorial modons is the mean zonal velocity which is induced in the325

equatorial belt, and which can be of importance in the context of super-rotation of planetary326

atmospheres. We present the zonally averaged velocity profile introduced by a modon, both327

in adiabatic and moist-convective environments, in Fig. 8.328

3.1.3. Interactions of equatorial modons with topography329

We now investigate interactions of equatorial modons with topography, and changes in330

convective patterns introduced by this latter. For this, we consider a simplest configuration331

with an infinite zonally localized meridional ridge with a Gaussian profile of height, which332

is situated downstream from the advancing modon. The maximum height of the ridge is333

bmax = 0.2H and it median width is equal to the radius of the core of the modon. The334

results are presented in Fig. 9. As seen in the Figure, the only effect of the ridge upon the335
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and divergence (right panel) of the modon initialized with a = 0.5, U = 0.2.
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Figure 6. Left panel : Scatter plot of Bernoulli function (mean value subtracted) in the co-moving frame vs potential
vorticity (PV), which demonstrates the coherence of the modon. initialized with (a, p) = (0.5, 3.1623), corresponding to
U = 0.1. Right panel : Sensitivity of the loss of enstrophy to numerical resolution.

geopotential and vorticity fields is a temporary lateral extension of the modon during the336

passage over the ridge, which does not change neither its trajectory, nor coherence. Yet, the337

zonal speed of the modon over topography abruptly decreases. Fig.10 shows evolution of338

divergence and condensation patterns associated with the modon during the passage over the339

ridge. Generation of inertia-gravity waves and of topographic waves, with related condensation340

patterns is clearly seen. A weak signal corresponding to a reflected Rossby wave can be341

identified on the left panel of Fig. 9, to the left of the ridge. Notice a typical condensation342

pattern associated with the modon far from topography, which resembles that of the MJO343

events.344
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Figure 7. Snapshots of pressure and velocity fields of the modon arising from an asymptotic modon initialization with
U = 0.1 ((a, p) = (0.5, 3.1623)) in adiabatic (left panel) and moist-convective (right panel) environments.
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Figure 8. Superposition of steady-state mean zonal velocity profile induced by the modon initialized with a = 0.5, U =
0.2, β = 1 in adiabatic (solid line) and diabatic (dashed line) environments.

Figure 9. Propagation of the equatorial modon in moist-convective environment over an idealized meridional ridge of
Gaussian shape, as seen in the geopotential height (left column) and relative vorticity (right column) fields. Snapshots
at T = 10, 20, 30, 40 [1/(βLd)], from top to bottom. Maximum height of the ridge is 0.2H, and its median width is
[−0.25 .25]. Vertical dashed line represents the position of the center of the ridge. (a = 0.5, U = 0.2, α = 0.05).

3.2. Two-layer Equatorial Modons345

3.2.1. Adjustment of asymptotic modons, and existence of two-layer shallow-water modons346

in adiabatic environment347

Following the strategy which proved to be fruitful in the one-layer model, and using the348

fact that the asymptotic modon solutions in Regimes 1 and 3 of section 2.2 are the same349

as in the one-layer model layerwise, we first initialize the simulations with “dry” two-layer350

equations (13) by the velocity field of the asymptotic modon solutions of section 2.1.2 in351
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Figure 10. Evolution of divergence (left column ) and condensed water vapor (right column ) fields during the passage of
an equatorial modon over an idealized meridional ridge in moist-convective environment. Snapshots at T = 10, 20, 30, 40
[1/(βLd)], from top to bottom. Same conventions as in Fig. 9.

each layer, and no pressure perturbations, with a hope that via the process of ageostrophic352

adjustment these configurations will end up in quasi-stationary states, like in the one-layer353

case. Notice that such initialization fits all the regimes of section 2.2, as pressure anomalies of354

the layers are initially identically zero. For simulations with two-layer model we are using the355

numerical scheme of Bouchut and Zeitlin (2010), which was successfully tested in numerous356

applications. In all simulations below the nonperturbed thicknesses of the layers are the same,357

with the same total thickness as in the one-layer case, and the stratification parameter s is358

equal to 1.1. The simulations were performed with initializations corresponding to asymptotic359

modons of different sizes and intensities in respective layers. The overall conclusion following360

from such experiments is that only the initializations with identical, or very close, asymptotic361

modons in each layer, i.e. quasi-barotropic initializations, give rise to coherent slowly eastward-362

propagating structures, while essentially baroclinic initializations are eventually transformed363

into equatorial Rossby-wave packets, although initially they form dipoles which may move364

eastwards for some time.365

A comparison of the evolution of strictly barotropic and weakly baroclinic initializations366

with velocity fields corresponding, respectively, to the asymptotic modon of sec. 2.1.2 with367

U1 = U2 = 0.2 in both layers , and with U1 = 0.2 in the lower, and U2 = 0.1 in the upper368

layer is presented in Figure 11. As follows from the figure, the barotropic initialization leads369

to a barotropic coherent dipole keeping its form and moving eastwards, while the dipole370

produced by the weakly baroclinic initialization slows down and then engages in the reverse371

westward motion losing its shape at the same time, that is gradually becoming a packet of372

Rossby waves. The diagnostics of coherence with the scatter plots of Bernoulli function vs.373

PV in the lower layer presented in Figure 12 confirm this conclusion. In the following we will374

be calling stronger (weaker) baroclinic configurations those with larger (smaller) difference375
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Figure 11. “Dry” evolution of relative vorticity layer-wise starting from barotropic (first column: upper layer, second
column: lower layer) and weakly baroclinic (third column: upper layer, fourth column: lower layer) initializations with
velocity fields corresponding, respectively, to the asymptotic modon of sec. 2.1.2 with U1 = U2 = 0.2 in both layers ,
and with U1 = 0.2 in the lower, and U2 = 0.1 in the upper layer. Snapshots at T = 0, 10, 20, 30, 50 [1/(βLd)], from top
to bottom.

between the amplitudes of initial parameters of asymptotic-modon initializations in the layers376

U1 − U2. Our results show that strong baroclinic initializations do not produce coherent377

long-living dipoles. A comparison of the evolution of strongly baroclinic initializations, with378

asymptotic modon velocity parameter U2 = 0.2 in the lower layer, with quiescent upper layer379

(U1 = 0), and, inversely, with the same field in the upper layer, with quiescent lower layer380

is presented in Figure 13, and shows a similar, modulo the layer swap, behavior displaying381

a transformation of initial dipole into a wave-train. Analogous initialization with U1 = 0.1,382

i.e. smaller baroclinicity, produces a more coherent and long-leaving structure, see Figure 14383

below.384

3.2.2. 2-layer modons in moist-convective environment385

To perform the two-layer simulations in moist-convective environment we work on the equa-386

torial beta-plane with the simplest version of two-layer mcRSW with moist lower and dry387

upper layers, which was proposed in Lambaerts et al. (2011b) and ameliorated by including388

evaporation in Rostami and Zeitlin (2017). The equations of the model, in the same setting389
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Figure 12. Comparison of scatter plots of Bernoulli function (with subtracted mean value) vs PV in the lower layer of
barotropic (left panel), and baroclinic (right panel) dipoles of Fig. 11 (U1 = 0.2, U2 = 0.1) at T = 20 [1/(βLd)], computed
in a circle of radius 2a/3 with respect to the center of the dipole.

Figure 13. “Dry” evolution of relative vorticity in the lower layer (first column), and baroclinic velocity v1 − v2 and
pressure η1 − η2 (second column) produced by essentially baroclinic initializations with the velocity parameter of the
asymptotic modon of sec. 2.1.2 in the lower layer U1 = 0.2, and quiescent upper layer: U2 = 0. Same for initialization
with asymptotic modon in the upper layer with U1 = 0, U2 = 0.2, respectively, the relative vorticity (third column), and
baroclinic velocity and pressure (fourth column) in the upper layer. Snapshots at T = 0, 15, 40, 60, 80 [1/(βLd)], from
top to bottom.
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as in (13), read:390



D1v1

Dt
+ βy ẑ ∧ v1 = −g∇(h1 + h2),

D2v2

Dt
+ βy ẑ ∧ v2 = −g∇(h1 + sh2) +

v1 − v2

h2
βP1,

D1h1

Dt
+ ∇ · (h1v1) = −βP1,

D2h2

Dt
+ ∇ · (h2v2) = +βP1,

∂tQ1 + ∇ · (Q1v1) = −P1 + E.

(24)

Here Di/Dt = ∂t + v i ·∇v i, i = 1, 2. The convective flux is linked to the water-vapour con-391

densation P1 in the lower, humid layer, and produces a sink (source) in the mass conservation392

equation in the lower (upper) layer, like in the one-layer mcRSW (22). However, now the total393

mass is conserved. Due to the convective mass exchange the same flux leads to appearance of394

the Rayleigh drag in the upper-layer momentum equation. Condensation and evaporation are395

expressed in terms of the bulk moisture in the lower-layer column Q1 in the same way as in396

(23). The equations (22) arise from (24) in the limit of infinitely thick upper layer. The setup397

is the same as in the “dry” simulations above. We take a uniform initial moisture distribution398

in the lower layer close to saturation: Q1 = Qs − 0.01 with Qs = 0.8, and choose α = 0.2.399

Before presenting the results of numerical experiments with two-layer mcRSW, let us recall400

that condensation leads to enhancement of cyclonic vorticity in moist-convective environment,401

as already mentioned. Hence, one can expect that, as in the one-layer case, the effects of402

condensation make the dipoles arising from the adjustment of asymptotic modons more robust.403

This is, indeed, what happens. In Figure 14 we show a comparison of “dry” and moist-404

convective evolution produced by the same as in Figure 13 initialization, but with a weaker405

baroclinicity, with U1 = 0.1, and quiescent upper layer. As follows from the Figure, the “dry”406

modon in the lower layer keeps its coherence, while moving eastward for some time, but407

then changes shape and engages in a westward motion becoming a looser dipole. The moist-408

convective evolution, with the same initial perturbation, maintains the eastward motion and409

coherence of the initial modon in the lower layer for much longer times, with more intense410

cyclonic vorticity compared to the “dry” case, although, eventually, the dipole is getting looser411

and stops.412

It would be tempting to interpret the westward-moving dipole arising in the “dry” scenario413

in Figure 14 as a Rossby-wave soliton discovered by Boyd (1985) (which was also called modon)414

and shown, theoretically and numerically, to arise in the equatorial adjustment of pressure415

perturbations in (LeSommer et al. 2004). However, the Boyd’s soliton is expected to arise at416

much larger zonal to meridional aspect ratios, and was observed in numerical simulations in417

a form of anticyclonic dipole. In fact, although the cyclonic dipole we observe maintains its418

coherence for some time, it eventually loses it and becomes an equatorial Rossby-wave train419

(not shown).420

An interesting result is obtained with the barotropic initialization corresponding to the case421

of Figure 11 in moist-convective environment. It is presented in Figure 15, and shows that422

while the arising modon maintains it coherence for a long time, as follows from the vorticity423

snapshots (not shown), its baroclinic pressure pattern exhibits a quadrupolar structure, sim-424

ilar to that observed in the MJO events (Zhang 2005), with the condensation pattern also425

resembling that of MJO.426
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Figure 14. Comparison of “dry” (first and second columns) and moist-convective (third and fourth columns) evolution
of relative vorticity in the lower layer (first and third panels), and baroclinic velocity v1−v2 and pressure η1−η2 (second
and fourth panels) following an essentially baroclinic initialization with the velocity field in the lower layer corresponding
to the asymptotic modon of sec. 2.1.2 with U1 = 0.1, and quiescent upper layer: U2 = 0. Snapshots at T = 0, 15, 40, 60, 80
[1/(βLd)], from top to bottom.
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Figure 15. Snapshot at time at T = 20 [1/(βLd)] of baroclinic velocity v1−v2 and pressure η1−η2 (left panel) and con-
densation pattern (right panel) produced by barotropic initialization with the velocity field in both layers corresponding
to the asymptotic modon of sec. 2.1.2 with U = 0.2.

4. Conclusion and Discussion427

We, thus, established existence of nonlinear long-living, slow eastward-moving dipolar coherent428

structures, the modons, in the shallow-water dynamics in the equatorial beta-plane, both in429

one- and two-layer versions of the model, although robust modons are essentially barotropic430

in the latter case. These solutions of the fluid equations of motion at the Equator seem431

to be overlooked in the literature. The modons maintain their coherence in the presence432
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of moisture and are accompanied by a specific and persistent moist convection patterns, if433

condensation and evaporation are included. The scales of these structures are conditioned434

by the interpretation of the RSW model. At given g and β the actual scales depend on the435

value of the unperturbed thickness H, or, equivalently, on the value of the corresponding436

deformation radius Ld. A crucial observation which put us on the track of equatorial modons437

is that Charney (1963) equation for equatorial balanced motions coincides with (9) modulo438

parametric dependence on the vertical coordinate. Therefore, solutions of Charney’s balance439

equations in a form of asymptotic modons in the horizontal, with vertical modulation, do440

exist, although it remains to prove that they survive in the full primitive equations. As we441

showed, this is the case in one- and two-layer shallow-water models, provided the vertical442

modulation is weak.443

Coming back to a possible relation to MJO, we should emphasize that some features de-444

tected in numerical simulations we presented are indeed in resemblance with the MJO events.445

These latter clearly display twin cyclonic structures in the lower layer (Rui and Wang 1990,446

Yanai et al. 2000, Adames et al. 2014), and a quadrupolar structure of the first baroclinic447

mode (Zhang 2005). An equivalent barotropic structure of MJO with a strong dipolar vortic-448

ity component was recently emphasized by Wang et al. (2019). Condensation/precipitation449

patterns associated with equatorial modons resemble those of dipolar structures related to450

MJO. Intensification and acceleration of the equatorial modons in moist-convective environ-451

ment is consistent with the observation that the regions of most active MJO are correlated452

with the areas of large mean precipitation (Zhang and Dong 2004).453

We should, however, say that, apparently, barotropic, or quasi-barotropic, modons alone454

are not sufficient to explain the MJO events in all their complexity. It should not be forgotten455

that these events do not maintain a fixed structure all the time, and have their own life-cycle,456

an important part of which is related to interactions with Kelvin waves, e.g. (Haertel et al.457

2014). A coupling of a baroclinic long-living modon-like structure in the moist-convective458

environment, like that displayed in Figure 14, and a Kelvin wave, which was out of the scope459

of the present study, can be shown to play a primordial role in the MJO dynamics (Rostami460

and Zeitlin 2020). Yet, the coherent dipolar structures are certainly part of the MJO events,461

and the increase of their eastward velocity with increase of intensity of the moist convection462

is to be borne in mind in the context of global change and expected increase of temperature463

of the oceans.464

The existence of the slowly eastward-moving equatorial modons, and the scenarios of their465

evolution, in particular in the presence of moist convection, should be not forgotten in data466

analyses both on the Earth and on other planets. For example, the classical Gill’s mechanism467

(Gill 1980) was evoked in (Legarreta et al. 2016) with a support of “dry” RSW simulations,468

in order to explain the so-called Y -shaped structures observed in the equatorial atmosphere469

of Jupiter. The modifications of this mechanism with changes of parameters, and its ability470

to generate equatorial modons, which were reported in (Rostami and Zeitlin 2019b), and also471

the role of moist convection, which is known to be present in the Jovian atmosphere, as well472

as the above-described scenario of transformation of eastward-moving coherent dipoles into473

westward-moving and meridionally separating vortex pairs, should be kept in mind in this474

context.475



August 10, 2020 Geophysical and Astrophysical Fluid Dynamics EqModonsWITGAF˙Unmarked˙Rev2

REFERENCES 21

References476

Adames, A. F., Patoux, J., Foster, R. C., 2014. The contribution of extratropical waves to the MJO wind field.477

J. Atmos. Sci. 71 (1), 155–176.478

Bouchut, F., 2007. Chapter 4: Efficient numerical finite volume schemes for shallow water models. In: Zeitlin,479

V. (Ed.), Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances. Vol. 2 of Edited Series480

on Advances in Nonlinear Science and Complexity. Elsevier, pp. 189 – 256.481

Bouchut, F., Lambaerts, J., Lapeyre, G., Zeitlin, V., 2009. Fronts and nonlinear waves in a simplified shallow-482

water model of the atmosphere with moisture and convection. Phys. Fluids 21 (11), 116604.483

Bouchut, F., Zeitlin, V., 2010. A robust well-balanced scheme for multi-layer shallow water equations. Disc.484

Cont. Dyn. Sys. B 13 (4), 739–758.485

Boyd, J., 1985. Equatorial solitary waves. Part 3. Westward traveling modons. J. Phys. Oceanogr. 15, 46–54.486

Charney, J., 1963. A note on large-scale motions in the tropics. J. Atmos. Sci. 20, 607–609.487

Gill, A., 1980. Some simple solutions for heat induced tropical circulation. Q. J. Roy. Met. Soc. 106, 447–462.488

Gill, A., 1982. Atmosphere - Ocean Dynamics. Academic Press.489

Haertel, P., Straub, K., Budsock, A., 2014. Transforming circumnavigating Kelvin waves that initiate and490

dissipate the Madden - Julian Oscillation. Q. J. Roy. Met. Soc. 141, 1586–1602.491

Haertel, P., Straub, K., Fedorov, A., 2013. Lagrangian overturning and the Madden - Julian oscillation. Q. J.492

Roy. Met. Soc. 140, 1344–1361.493

James, I., 1994. Introduction to Circulating Atmospheres. Cambridge University Press.494

Kim, D., Sobel, A., Maloney, E., Frierson, D., Kang, I., 2011. A systematic relationship between intraseasonal495

variability and mean state bias in AGCM simulations. J. Climate 24, 5506–5520.496

Kizner, Z., Reznik, G., Fridman, B., Khvoles, R., McWilliams, J., 2008. Shallow-water modons on the f - plane.497

J. Fluid Mech. 603, 305–329.498

Lahaye, N., Zeitlin, V., 2016. Understanding instabilities of tropical cyclones and their evolution with a moist499

convective rotating shallow - water model. J. Atmos Sci. 73, 505–523.500

Lambaerts, J., Lapeyre, G., Zeitlin, V., 2011a. Moist versus dry barotropic instability in a shallow water model501

of the atmosphere with moist convection. J. Atmos. Sci. 68, 1234–1252.502

Lambaerts, J., Lapeyre, G., Zeitlin, V., Bouchut, F., 2011b. Simplified two-layer models of precipitating atmo-503

sphere and their properties. Phys. Fluids 23, 046603.504

Larichev, V., Reznik, G., 1976. Two-dimensional solitary Rossby waves. Doklady USSR Acad. Sci. 231, 1077–505

1080.506

Legarreta, J., Barrado-Izagirre, N., Garcia-Melendo, E., Sanchez-Lavega, A., Gomez-Forrellad, J., IOPW, 2016.507

A large active wave trapped in Jupiter’s equator. A & A A15, A154.508

LeSommer, J., Reznik, G., Zeitlin, V., 2004. Nonlinear geostrophic adjustment of long-wave disturbances in509

the shallow-water model on the equatorial beta-plane. J. Fluid Mech. 515, 135–170.510

Madden, R., Julian, P., 1972. Description of global-scale circulation cells in the tropics with a 40-50 day period.511

J. Atmos. Sci. 29, 1109–1123.512

Majda, A. J., Stechman, S. N., 2009. The skeleton of tropical intraseasonal oscillations. PNAS 106, 8417–8422.513

Matsuno, T., 1966. Quasi-geostrophic motions in the equatorial area. J. Met. Soc. Japan 44, 25–43.514

Ribstein, B., Gula, J., Zeitlin, V., 2010. (A)geostrophic adjustment of dipolar perturbations, formation of515

coherent structures and their properties, as follows from high-resolution numerical simulations with rotating516

shallow water model. Phys. Fluids 22, 116603.517

Rostami, M., Zeitlin, V., 2017. Influence of condensation and latent heat release upon barotropic and baroclinic518

instabilities of vortices in a rotating shallow water f-plane model. Geophys. Astrophys. Fluid Dyn. 111 (1),519

1–31.520

Rostami, M., Zeitlin, V., 2018. Improved moist-convective rotating shallow water model and its application to521

instabilities of hurricane-like vortices. Q. J. Roy. Met. Soc. 144, 1450–1462.522

Rostami, M., Zeitlin, V., 2019a. Eastward-moving convection-enhanced modons in shallow water in the equa-523

torial tangent plane. Phys. Fluids 31, 021701.524

Rostami, M., Zeitlin, V., 2019b. Geostrophic adjustment on the equatorial beta-plane revisited. Phys. Fluids525

31, 081702.526

Rostami, M., Zeitlin, V., 2020. Can geostrophic adjustment of baroclinic disturbances in tropical atmosphere527

explain MJO events? Q. J. Roy. Met. Soc. https://doi.org/10.1002/qj.3884.528

Rui, H., Wang, B., 1990. Development characteristics and dynamical structure of tropical intraseasonal con-529

vection anomalies. J. Atmos. Sci. 47, 357–379.530

Sanchez-Lavega, A., Lebonnois, S., Imamura, T., Read, P., Luz, D., 2017. The atmospheric dynamics of Venus.531

Space Sci. Rev. 212, 1541–1616.532

Showman, A. P., Dowling, T., 2000. Nonlinear simulations of Jupiter’s 5-micron hot spots. Science 289, 1737–533

1740.534

Sobel, A., Maloney, E., 2012. An idealized semi-empirical framework for modeling Madden-Julian oscillation.535

J. Atmos. Sci. 69, 1691–1705.536

Straub, K., Kiladis, G. N., 2002. Observations of a convectively coupled Kelvin wave in the Eastern pacific537

ITCZ. J. Atmos. Sci. 59, 30–52.538

Tribbia, J., 1984. Modons in spherical geometry. Geophys. Astrophys. Fluid Dyn. 30, 131–168.539

Verkley, W., 1984. The construction of barotropic modons on the sphere. J. Atmos. Sci. 41, 2492–2504.540



August 10, 2020 Geophysical and Astrophysical Fluid Dynamics EqModonsWITGAF˙Unmarked˙Rev2

22 REFERENCES

Wang, D., Yano, J.-I., Lin, Y., 2019. Madden Julian oscillations seen in the upper-Troposphere vorticity field:541

interactions with Rossby wave trains. J. Atmos. Sci. 76, 1785–1807.542

Wheeler, M., Kiladis, G., 1999. Convectively coupled equatorial waves: analysis of clouds and temperature in543

the wavenumberfrequency domain. J. Atmos. Sci. 56, 374–399.544

Yanai, M., Chen, B., Tung, W.-W., 2000. The Madden – Julian Oscillation observed during the TOGA COARE545

IOP: Global View. J. Atmos. Sci. 57 (15), 2374–2396.546

Yano, J.-I., Bonazzola, M., 2009. Scale analysis for large-scale tropical atmospheric dynamics. J. Atmos. Sci.547

66, 159–172.548

Yano, J.-I., Mulet, S., Bonazzola, M., 2009. Tropical large-scale circulations: asymptotically non-divergent?549

Tellus 61A, 417–427.550

Yano, J.-I., Tribbia, J., 2017. Tropical atmospheric Madden–Julian Oscillation: a strongly nonlinear free solitary551

Rossby wave? J. Atmos. Sci. 74, 3473–3489.552

Zeitlin, V., 2018. Geophysical Fluid Dynamics: Understanding (almost) Everything with Rotating Shallow553

Water Models. Oxford University Press.554

Zhang, C., 2005. Madden-Julian oscillation. Rev. Geophys. 43, RG2003.555

Zhang, C., Dong, M., 2004. Seasonality in the Madden – Julian oscillation. J. Climate 17 (16), 3169–3180.556


