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Abstract: By means of the incremental elastic modulus for small deformations 
superimposed on creep and subsequent recovery tests, we follow the structural state of 
various soft-jammed systems (yield stress fluids) in their solid regime. We demonstrate 
that the solid state of the material is associated with a persistent elastic network of 
constant elastic modulus up to yielding (solid-liquid transition), while progressively more 
additional elastoplastic elements are involved. The main features of these elastoplastic 
elements, i.e. increase of both the plastic and the elastic deformation components with 
the square of the shear stress, reveal the fundamental characteristics of a simple generic 
model (independent of  material structure) describing the different components of the 
mechanical behavior of such systems in their solid regime.  

 

1. Introduction 

A wide range of materials (emulsions, gels, foams, colloids, etc) are soft-jammed systems, deforming 
only in a finite way below some critical stress, but flowing indefinitely, like liquids, beyond this stress. 
These trends have long been identified as the hallmark of yield stress fluids [1-2] and were at the origin 
of the idea that these systems might be considered as analogous to glasses by replacing the 
temperature by the stress [3-4].  

As apparently described by a generic phenomenological model, i.e. the so-called Herschel-Bulkley 
model [5-7], the mechanical behavior of these systems in the liquid regime has attracted so far the 
most attention by physicists [8-12] who have proposed models for the physical origin of this behavior 
and the parameters of this model. On the other side, the solid regime behavior, and in particular the 
elastic components, appear to play a significant role under various flow conditions [13]. Nevertheless, 
theoretical approaches for the basic aspects of the behavior in this regime, i.e. the stress vs 
deformation relationship, have been proposed [14-18], but these models are essentially aimed at good 
prediction of the transitional characteristics, i.e. the characteristics of the solid to liquid transition, and 
the proposed behavior in the solid regime is generally rather simplistic. So far, the mechanical response 
in the solid regime has essentially been considered in details through its dynamical aspects: creep flow 
[19-21], aging [19, 22-24], characterization of the solid/liquid transition [22]. The detailed components 
of the constitutive equation for the static regime have not been explored experimentally, and it is a 
fortiori not yet clear whether there exists some generic behavior in this regime.  

Yet, the solid regime is of wide interest, not only as its complete description might provide keys for 
understanding or predicting the solid-liquid transition, but also because of the analogy of these 
systems with amorphous materials such as metals and glasses or plastic materials [7] and the research 
on the physical origin of plasticity. It was in particular shown, generally by means of simulations, that 
plastic deformation manifests as local rearrangements exhibiting a broad distribution of sizes and 
shapes [25-26], non-affine displacements [27], and connectivity changes between particles [28] that 
lead to a redistribution of elastic stresses in the system [29]. Furthermore, the collective behavior of 
these reorganizations includes spontaneous strain localization, intermittent dynamics, power-law 
distributed avalanches [30] and spatial cooperativity [31]. On the experimental side, diffusion-wave 
spectroscopy also directly provided information about reversible and irreversible motions as a function 
of deformations [32-33] and direct 3D-imaging of the structure evolution finally showed localized 
irreversible shear transformation zones [34] and growing clusters of non-affine deformation 
percolating at yielding [35]. However, the relationship between these rearrangements and the 
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mechanical behavior has been rarely explored. The standard rheological approaches such as the 
frequency sweep basically developed for polymers, the strain or stress amplitude sweep to appreciate 
the solid-liquid transition [5], or even more sophisticated ones such as LAOS [17, 36], do not provide 
clear information on this question. Here we propose a new probing of the structure, which provides 
both a new way for appreciating plastic and elastic events (through their impact on macroscopic 
deformation) and detailed information on the mechanical behavior.  

We follow the structural state of various soft-jammed systems by means of their elastic modulus at 
small deformation and recovery tests after different deformations in the solid regime. This makes it 
possible to show that the solid regime is characterized by the persistence of a network of constant 
elastic modulus over the whole range of deformations, with additional elastic and plastic deformations 
of similar value and increasing with the square of the applied stress. From this information we deduce 
a detailed and generic mechanical description of the behavior of jammed systems in their solid regime.  

 

2. Materials and procedures 

We test a set of materials with various types of structures: an oil in water emulsion, a physical gel 
(Carbopol), a model colloidal suspension (laponite), and a natural clay water system (bentonite).  

2.1 Materials 

A concentrated direct (oil in water) emulsion (volume fraction: 87%) was prepared by dispersing 
Dodecane (oil) in a mixture of water and 3 wt % of TTAB (tetradecyltrimethylammonium bromide), an 
ionic surfactant. Dodecane is progressively poured in the water-surfactant solution and dispersed as 
droplets by using a Silverson mixer (model L4RT). The velocity of the mixer is increased in steps of 500 
rpm up to the maximum velocity (6000 rpm). This process leads to a homogeneous emulsion with a 
rather well controlled droplet size ( ≈ 2 𝜇𝑚) [40]. The high volume fraction of oil droplets form a 
compact network which has to be broken for flow to occur.  

We use a commercial hair gel from Couleur Soleil. This is a Carbopol gel which mainly contains 
carbomers (Polyacrylic acid), which release H+  ions, dispersed in water and a concentrated base in 
order to neutralize the solution. The polymers then organize in spherical structures which swell until 
reaching a jammed state. The material may be seen as a soft glass comprised of individual elastic micro-
sponges of size depending on the preparation and generally in the range μm 101−  [41-42]. 

We used Laponite, a synthetic hectorite clay, from Atlantis Stouls CXD-France, to prepare a 2.5 wt % 
aqueous suspension. The powder is poured into water and mixed with a magnetic stirrer during 20 
min, which gives a macroscopic homogeneous liquid with a viscosity quite similar to water. Afterwards, 
salt (NaCl) is added at a concentration of 5x10-3 mol/l and the suspension is thoroughly mixed with a 
paddle stirrer at 2000 rpm during 20 min, then left at rest for two weeks. Laponite particles are disk-
shaped particles with a thickness of 1 nm and a diameter of 25 nm. They are negatively charged at 
their faces, and positively at their edges. There is no consensus about the association mode [43] of 
these platelets (aggregation face/face, association edge/face or association edge/edge…). However 
the main point is that, since the particles charges are screened by Na+ ions, their oppositely charged 
surfaces can be linked by weak Van der Waals forces to form a network spanning the sample at rest, 
at the origin of their yield stress [44]. 

Bentonite is an absorbent aluminium phyllosilicate clay consisting mostly of montmorillonite. We used 
a bentonite C clair T from Mon-Droguiste.com to prepare a 12 wt % of aqueous suspension. Dry 
bentonite powder is poured into distilled water and mixed thoroughly with a paddle stirrer at 2000 
rpm during 25 min. The suspension is then left at rest for one week to hydrate clay particles. Bentonite 
particles are long flexible platelets of large aspect ratios, with a thickness around 10 nm and a length 
around 1 μm [45]. It has been suggested that they form a lenticular network resulting from random 
aggregation of these flexible platelets, thus exhibiting an alternation of dense clay-water regions and 

https://en.wikipedia.org/wiki/Aluminium
https://en.wikipedia.org/wiki/Silicate_minerals#Phyllosilicates
https://en.wikipedia.org/wiki/Clay
https://en.wikipedia.org/wiki/Montmorillonite
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water pores with a size of the order of the particle length [46-47]. This type of material is a typical 
thixotropic fluid, i.e. whose rheological behaviour at a given time depends on the flow history. 

All these materials are yield stress fluids, i.e. they are able to flow steadily only when a stress larger 

than a critical stress (i.e. 
c
 ,  the yield stress) is applied. Concentrated emulsions and Carbopol gels are 

known to be essentially simple yield stress fluids [48-50], whereas laponite and bentonite suspensions 
are thixotropic yield stress fluids, i.e. their apparent yield stress increases with the time of rest before 
the test and their apparent viscosity decreases in time during flow [51-53]. A detailed characterization 
of these features is out of the scope of the present work which will focus on the material properties in 
the solid regime of these fluids.  

 

2.2 Rheometry  

For these tests we used a controlled stress Malvern Kinexus rheometer equipped with rough (to avoid 
wall slip) parallel disks (50 mm diameter) and a gap of 1 mm. The resolution on the rotation angle 

measurement is 10 nrad, which gives a deformation resolution of 72.5 10− . Note that for long tests 
we place a wet system around the sample periphery to damp evaporation. 

We carried out creep tests consisting in imposing a given shear stress ( ) to the material initially at 
rest and follow its deformation in time. Recovery tests were also carried out after some time of creep, 
which consisted to abruptly release the stress and follow again the deformation in time. 

Since bentonite and laponite suspensions are thixotropic materials their mechanical characteristics 
(e.g. elastic modulus and yield stress) vary with time. Thus, to perform creep tests with such materials, 
a reference state should be defined prior to any measurement. Here, the reference state is obtained 

by first pre-shearing the material at a high shear rate ( -1s 150 for bentonite and -1s 500  for laponite) 
during 1 min to erase their flow history (rejuvenation), then leaving the material at rest during 1 min. 
From this reference state, we apply a stress and follow the deformation as a function of time and then 
repeat the entire procedure at other stress levels, to have the same reference state. 

The emulsion and Carbopol gel are simple yield stress fluids but, after some flow, there can remain 
some residual stress progressively relaxing. This appears to negligibly affect yield stress or elastic 
modulus measurements, but this might slightly affect the deformation in the solid regime. To avoid 
such problem, we also prepare the material in a reference state before each (creep) test, by pre-

shearing it during a short time (10 s) at a shear rate of -1s 100  then leaving it at rest for 1 min. 

In order to probe the structure of the different materials during creep tests in the solid regime (
c
 

), we also use a more original but robust test [22] which consists in superimposing to a constant stress 

(
0
 ), a small stress oscillation, so that the total stress writes t sin

0
+= , with   the frequency of 

the oscillations. The frequency is kept constant at 1Hz, results are generally independent of the 
frequency for such materials [54]. The resulting deformation can be well represented as 

)sin(
0

 −+= t , in which 
0
  and   are deformation amplitudes and   the phase shift. Here the 

amplitude of the oscillations ( ) is chosen so as to induce an additional deformation in the linear 

regime of the materials. The typical value resulting from this choice for   was -310 . An “elastic” ( 'G ) 
and a “viscous” ( "G ) moduli associated with the material behaviour under such oscillations are then 
computed as  )cos('=G  and  )sin("=G . 

 

3. Results and discussion 

3.1 Constant elastic network before yielding 

The different flow regimes of these materials appear from a simple procedure which consists to apply 
a shear stress ( ) to the material and follow the resulting deformation ( ) as a function of time ( t ). 



4 
 

The test is then repeated at another stress level, with the material prepared in the same initial state 
(e.g. preshear then resting time).   

Under such conditions we typically observe two distinct regimes for all the yield stress fluids (see inset 
of Fig.1, and Appendix 1 for the other materials): for   smaller than a critical value (i.e. the material 
yield stress,

c
 ) the material is just slightly deformed over a short time, then   reaches a plateau 

indicating that no further significant motion occurs (and if there is some slow flow the apparent shear 
rate continuously decreases towards zero); for 

c
  , after a short period,    increases linearly with 

time, indicating that the material flows steadily. In that case we can define  , i.e. the apparent steady 

state shear rate associated to  , as the slope of the )(t  curve. This makes it possible to distinguish 

the solid regime, associated with negligible flow and limited deformation, from the liquid regime, 
associated with steady-state flow after some time. For simple yield stress fluids we get values for 

going down to low values when 
+

→
c

 .  

For thixotropic yield stress fluids (laponite and bentonite) there exists a finite value (i.e. a critical shear 
rate) below which we cannot get a steady state flow [55]. This clearly appears from the fact that in 
Figures A2a and A2b, at the solid-liquid transition, there is a large gap between the two sets of the 
deformation vs time curves corresponding respectively to the solid and the liquid regime, because  the 
shear rate jumps to a relatively large value when the applied stress is slightly increased above the yield 
stress. However this trend will not play a significant role here, since we focus on the solid regime 
characteristics.  

On another side, for some materials,   goes on slightly increasing in time for 
c
  , and 

continuously decreases in time (see e.g. Figure A3). We will leave apart such creep flows corresponding 
to viscous and/or aging effects in the solid regime and, by means appropriate experimental protocols 
(see below), we will focus on (instantaneous) elastoplastic effects observed through the deformation 
induced over short times.     

In order to probe the structure during the deformations induced in these creep tests we superimpose 
small oscillations and measure the corresponding elastic and loss moduli of the material, as defined 
above. Remarkably, in the solid regime, after a short transient period, the elastic modulus keeps a high 

value and remains constant, even for 
c

 →  (see Fig. 1). This means that whatever the (total) 

deformation undergone by the system, there persists a similar elastic network. Similar conclusions 
were previously reached by measuring the elastic modulus from the analysis of the elasto-inertia 
oscillations during start up flow [56]. Note that this technique induces uncontrolled small amplitude 
oscillations.  

This result, i.e. the constancy, under small deformation, of the elastic modulus in the solid regime, 
appears to be valid for any type of soft-jammed system (see Fig. 2). We can nevertheless remark that 
for the clay suspension (bentonite) some slight increase of this modulus can be observed, suggesting 
that there is in addition a strain hardening effect for larger deformation tending to reinforce this basic 
elastic network, a trend that we will neglect in the following.  

Since this elastic network, observed under small oscillatory deformations, persists at any (constant) 
deformation in the solid regime, this means that it constitutes a fundamental component of the 
structure of the material whatever the deformation in this regime.  
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Figure 1: Elastic modulus of the emulsion measured from oscillations under low stress 
amplitude as a function of time during creep tests under various shear stress values (see 

legend). The red square symbols correspond to the solid regime (
c
  ), the blue circle 

symbols correspond to the liquid regime (
c
  ). The inset shows the corresponding 

deformation undergone by the fluid in time (same symbols).  

 

Just beyond 
c
 , the elastic modulus collapses, it typically drops of several orders of magnitude (see 

Fig.2). Thus, the elastic structure prevailing in the solid regime appears to be fully broken. However, 
since in that case the material flows and is thus widely deformed (see inset of Fig.1) while we impose 
additional low stress oscillations, this measure cannot be considered as reflecting the properties of 
some fixed network or structure, since the structure evolves continuously in time, at a rate. In this 
context, the meaning of the 'G  measure is unclear. Here, the main point is that 'G  is constant all 
along the solid regime, i.e. up to this transition point.  

In parallel, the loss modulus ( "G ), does not vary much below the yield stress (see inset of Fig.2), and 
remains much lower than the elastic modulus in the solid regime for all materials (see Fig.2). Beyond 
the yield stress, for simple yield stress fluids (emulsion and gel), "G  suddenly jumps at a higher value, 
then progressively decreases towards low values when   increases (see Fig.2 inset). For thixotropic 
fluids, it drops to much lower values just beyond the yield stress and keeps close values as the stress 
increases.  

Actually, these variations for 
c   can find a simple explanation. The material behavior in its liquid 

state may be well described by a Herschel-Bulkley model, i.e. n

c k  = + , with k  and n  two material 

parameters (see Appendix 3). For a creep flow under given stress plus a small oscillating stress the 

shear rate is given by )cos(
0

 −+= t  and must satisfy n

c
kt  +=+= sin

0 . It follows 

that for stationary oscillations, at first order, 
0 0

n

c k  = + , 2 = , 0'=G  and 

00
)("  

c
nG −== . 

The agreement of this prediction with the data is excellent for the simple yield stress fluids, except just 
beyond the yield stress for the gel (see Fig.2). This discrepancy may be due to some elastic effects or 
to some flow heterogeneity around the yield stress values, as already observed for this material type 
[19]. For the thixotropic fluids, this theoretical approach effectively predicts the negligible observed 
values for 'G , and the low and almost constant values for "G  (see inset of Fig.2). Note however that 
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the exact level and shape of the "G variations are not well predicted, which may be due to the very 
low, and thus uncertain, values observed in this regime.  
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Figure 2: Elastic modulus for low oscillations during creep tests as a function of the 
imposed shear stress value rescaled by the yield stress, for different materials: emulsion 
(orange squares), Carbopol gel (blue circles), laponite suspension (red stars), bentonite 
suspension (black diamonds). The legend gives the material yield stress values. The 
horizontal dotted lines indicate the (mean) value (


G ) retained for the elastic modulus 

in the solid regime for each material. The inset shows the loss modulus measured during 
the same creep tests by means of small oscillations (same symbols). The dashed lines in 
the inset correspond to the calculated "G  values at first order according to theory (see 
text). Note that for laponite and bentonite the moduli values are taken 20 s after the 
test beginning, i.e. before the significant evolutions observed later during the flow (see 
Appendix 1). 

 

 

3.2 Elastic and plastic components 

We now turn to a further analysis of the behavior in the solid regime. In that aim, after a creep test 
under constant stress, we release the stress and observe the deformation in time. This deformation 
typically rapidly decreases towards a plateau (see Fig.3 inset). The oscillations observed at short time 
(before 0.5 s) both at the very beginning of the creep test and in the very first times of the recovery 
test (see inset of Fig.3), are due to the coupling of the material elasticity with the system inertia. These 
oscillations soon damp and the deformation stabilizes at some level. The elastic component (

e
 ) of the 

deformed solid structure then corresponds to the recovered deformation (difference between the 

initial value and the deformation plateau), while the plastic component ( p
 ) is the non-recovered 

deformation (see inset of Fig.3).  

Note that for this analysis we wish to focus strictly on elastic and plastic effects and leave apart the 
possible viscous and/or aging effects inducing some slow flows. However, during creep tests, except 
for the emulsion, in the solid regime the deformation does not strictly reach a plateau, i.e. there is 
some slight creep flow (See Appendix 2, Figure A4a), which results from such viscous and/or aging 
effects. In order to leave apart these effects and estimate the deformation resulting from “immediate” 
elastic or plastic effects only, we reduce the duration of creep tests to have deformation data (see 
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Figure A4a) over short times (typically less than 3 s). We then take the immediate deformation as the 
level of the plateau around which elasto-inertia oscillations occur in the initial phase (see [19]). We 
then release the stress at a time as close as possible to the end of the oscillating period, again in order 
to avoid viscous effects before recovery. Again some oscillations can be observed in the very first times 
of the recovery, and we take the deformation recovery as that observed in the plateau just after the 
end of oscillations (Figure A4b). 
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Figure 3: Shear stress vs induced deformation during recovery tests (stress release) for 
the emulsion: elastic (reversible) component (crossed squares), plastic (irreversible) 
component (open squares), total deformation (filled squares). The dotted line is the 

equation 


=G , with 


G  taken as the constant 'G  (490 Pa for the emulsion) in small 

oscillations tests. The inset shows a typical recovery test: deformation induced during 
creep test then deformation recovery for stress release, allowing to distinguish the two 
(elastic and plastic) components.  

 

For all the materials 
e

  and p
  increase non-linearly with   (see Fig.3). This increase of p

 , starting 

from low stress values, is consistent with the observation of an increasing volume fraction of 
irreversible rearrangements with the strain amplitude in emulsions [32]. 

On the other side, the increase of 
e

  with   might be viewed as a consequence of an elastic network 

with non-linear characteristics. However, the simultaneous increase of p
  with   suggests another 

common physical origin: the progressive implication, in the deformation, of structure components 
exhibiting an elasto-plastic behavior, in addition to the elastic deformation associated with the basic 
elastic network distinguished above (of elastic modulus called 


G  in the following). In order to check 

this assumption, for each stress value, we subtract, from the total elastic component, the deformation 
(i.e. 


G ) of the constant linear elastic network submitted to this stress: 


−= G

ee
 . Note that 

for very low stress we expect a linear regime, which should lead to 


 G
e

 , as in this linear regime 

the shear modulus should be equal to the constant elastic modulus from smaller oscillations. As may 
be seen in Figure 3, Figure A1c, A2c and A3, for a stress much smaller than the yield stress (typically 1 
Pa in our measurements) we effectively have an excellent agreement between the apparent shear 
modulus associated with elastic deformation under creep tests and the deformation predicted from 


G  determined from the superimposition of small oscillations (values associated with the plateau in 

Fig.2). The total elastic deformation then rapidly deviates from the simple straight line 


 G
e

  (see 

e.g. Fig.A1c).  
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We then compare the resulting (additional) elastic component (
e

 ) to the plastic component: it 

appears that they are very close over the whole range of stresses (typically covering one decade and 
half) (see Fig.4) except, in some cases, at the approach of 

c
 . Moreover, these components vary with 

the square of the stress (see Fig.4). This result supports the idea of additional elasticity and plasticity 
progressively involved as   increases, and with a specific link between the two components. 

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
1

10
-4

10
-3

10
-2

10
-1



 

 

(Pa) 

Emulsion, 490 Pa

Gel, 183 Pa

Bentonite, 680 Pa

Laponite, 135 Pa

 

 

e


(Pa)   

Figure 4 : Additional elastic deformation (filled symbols) with regards to the 
deformation of the constant elastic network, and plastic deformation (open symbols), 
as a function of the stress applied for different materials (same type of data in the inset). 
The dotted lines (of slope 2) corresponds to the model fitted to data (see text) with 

0.8 =  (emulsion), 1 =  (gel), 0.5 =  (colloid (laponite)), 1.2 =  (clay (bentonite)).  
 

 

4. Modelling 

These observations allow us to build a model representing the mechanical behavior in the solid regime. 
The persistence of an elastic network of constant elastic modulus whatever the deformation, imposes 
a representation with a basic spring of modulus 


G  in series with a solid remaining perfectly rigid 

under low stress but also able to store some elastic energy under some conditions. Thus we expect 
that this additional solid will be made of elasto-plastic elements. These additional elements cannot 
involve simple elastic elements in series with other elasto-plastic elements, otherwise the elastic 
modulus of the whole system would differ from 


G . These elements should thus basically include 

some spring (of elastic modulus, G ) in parallel with a frictional slider (with a yield value, 
c

  ). Note 

also that here we definitely focus on the solid regime, and not on the liquid regime or the transition to 
the liquid regime. This in particular means that the model does not need to predict by itself the 
transition to the liquid regime, it will be sufficient to consider, besides, that the liquid regime is reached 
for an applied stress 

c
  . 

Let us assume that there is only one such elasto-plastic element, in addition to the basic constant 
elastic network, as represented in Figure 5. This predicts a purely elastic deformation, 


= G , for 

an applied stress   , as in that case the slider precludes the deformation of the second element. A 
deformation involving an elastic and a plastic components, i.e. GG )(  −+=


, is nevertheless 

obtained for 
c

  , as the stress on the second element is now sufficient to decompose as a term 

( ) associated with the slider motion and a term allowing spring stretching (  − ). In this case, when 
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the stress is released, the deformation of the first (purely elastic) element is entirely recovered, while 
the deformation of the second element is recovered partially only if the stress associated with spring 
deformation allows to move the slider oppositely. More precisely, the non-recovered (plastic) 
deformation is G)(  −  for  2 , and G  for  2

c
. This model globally reproduces the 

trends observed for the different materials (see e.g. Figure 3): the elastic and plastic components both 
grow with the imposed stress (see Fig.5). However, in details, this does not fit to our observations 
which show that: (i) a plastic component appears at low stress, (ii) this component does not increase 
linearly with the applied stress and (iii) is not constant beyond some point (see Figs. 4 and 5). 

 

 

Figure 5: (a) Representation of the simplest model reproducing the constant elastic 
network and some additional elastoplastic component. (b) Resulting elastic, plastic and 
total deformation components when submitted to stress then recovery, for different 
stress levels.   

 

In order to build a model which will be able to represent these different trends (i.e. (i), (ii) and (iii)), we 
suggest to extend the above behavior type, in the form of a series of such basic elements of critical 

stress n,...2,1
  and elastic modulus n

G
,...2,1  (see Figure 6).  

 

 

Figure 6: Representation of the complete model (see text) in discrete form. 

 

A continuous version of this model assumes a series of elements of critical stress   and elastic modulus 

)(G , with   ranging from 0 to c
 , in agreement with our observations. Moreover the weight of each 

of these elements is described by the density distribution )(n  of such elements over the range 

]0[
c

− , so that the number of elements with a critical stress between    and  d+  is nd . In this 

context, the model is completely described by the two functions )(G  and )(n . 
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Under these conditions, the deformation undergone by the material (initially fully relaxed) when a 
stress   is applied is: 







nd
GG 
−

+=


0

)(
         (1) 

When this stress is released, the elements for which 2   will not recover at all, and the other 

elements will partially recover down to a residual deformation G . Finally the plastic deformation is  














nd
G

nd
G

p 
−

+=
2

2

0
          (2) 

and the elastic recovery is  







nd
GG

pe 
−

+=−=


2

0

)2(
        (3) 

Equations (2) and (3) describe the detailed mechanical behavior (when a given stress is applied) within 
the frame of this very general model.  

Let us now examine the implications of the experimental observations on the parameters of this 
model.  

If we impose that the expression (2) for p
  varies with 2 , we deduce by derivation that 

( ) 



 dGn

2
, which implies that Gn  is constant. A similar conclusion is reached if we assume 

instead that 2 
e . Now, with Gn  being constant, it follows from (2) and (3) that pe

 = .  

If, instead of assuming the square variation of the plastic deformation with the stress, we initially only 

assume that pe
 = , a derivation of this equation using (2) and (3) leads to

( )  dddGd
pe

=−
 , from which we deduce : 



d
G

n
d

G

n
 =

2

00
2 . Since a function such that 

)(2)2(  ff =  is linear, we deduce that 
0

n
d

G



  , which means that Gn  is constant, from which 

we deduce the square variation of the deformation with the stress. 

It is thus remarkable that each of the main features of the variations of the elastic and plastic 
components identified experimentally has, independently, within the frame of this general model, the 
same implication on the variation of Gn . This demonstrates the consistency and robustness of these 

characteristics with regards to this modelling approach. 

Besides, note that this model effectively predicts that, when imposing an oscillation of small amplitude 

  around a much larger stress 
0
 , the apparent elastic modulus is equal to 


G  whatever the stress 

value and the resulting total deformation. Indeed, in that case only the (additional) elements for which 
   can recover, which corresponds to a fraction of elements n , undergoing a deformation 

recovery G)(2  − . The resulting total deformation recovery of the additional elements will thus be 

of order 2 , negligible compared to the recovery of the basic elastic network which is of the order  . 

We can now finalize the fitting of this model to our data. Actually, it is natural to simply assume that 
G  is constant and equal to 


G  which, as a macroscopic parameter, represents some average of the 

elastic properties at the local (particle) scale, and thus should also well represent the elastic properties 
of other kinds of events in the medium. This assumption on the elastic modulus implies that n  is 
constant, which means that the distribution of the different additional elastoplastic events is uniform 
over the possible range of stresses. This may be written 4 cn  =  with   a parameter to be 
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determined (from experimental data), which reflects the total amount of elastoplastic elements in the 

material, since 
0

1 4
c

nd


 =  .  

From (2) and (3) we deduce the different deformation components observed when a given stress is 
applied: 

2

p

cG


 


= ; 

2

e

cG G

 
 

 

= +  ; 
22

cG G

 


 

= +       (4) 

Since it has been built in relation with the main experimental features, we obviously have a good 
agreement of this model with the data (see Fig.4). The fit of this model to the data (see Fig.4) 
surprisingly gives values for   in a rather narrow range, i.e. between 0.5 and 1.2. This means that 
despite the various microstructures of these materials, made of polymer blobs, droplets, platelet 
particles or long deformable sheets, not only the mechanical properties in the solid regime have similar 
features and can be described with a single model, but also the physical details, such as the density of 
elastoplatic events, are close from each other.  

Finally, according to this model, the critical deformation is (2 1)c c G   = + . For the emulsion this 

actually does not exactly correspond to the effective value, due to the faster increase than the square 
stress function of the plastic component at the approach of the yield stress (see Fig.4). For the other 
materials this represents a good prediction of the observed value, as expected by construction of the 
model. At last, remark that this model clarifies the question of a linear regime at small deformation: 
such a regime may be observed when the second (non-linear) term of the total deformation (last 
equation of (4)) is small compared to the first term, i.e.  2

c
 . 

 

5. Conclusion  

By looking at the detailed mechanical characteristics of soft jammed systems we were able to 
demonstrate that the solid state of these materials is associated with a persistent elastic network of 
constant elastic modulus up to yielding, while progressively more additional elastoplastic elements are 
involved. A simple generic model describing the main features of these elastoplastic elements, i.e. 
similar increase of both the plastic and the elastic deformation components with the square of the 
shear stress, has been proposed. 

The strength of this approach is that it is entirely deductive, i.e. the structure of the model has been 
established thanks to the main experimental observations. This model seems compatible with the 
elasto-plastic models [7] generally used for amorphous systems which predicts elastoplastic events of 
larger amplitude as the stress increases, and with the observation of the growing size of non-affine 
structures with increasing deformation in colloidal systems [35].  

Our approach finally establishes a generic model of the mechanical behavior of soft-jammed systems 
in their solid regime, which might provide key elements concerning the physical origin of this behavior. 
Indeed, it is interesting to see that despite relatively complex phenomena when looking at the 
structure characteristics, the impact in terms of stresses vs deformation is rather simple. Considering 
that this model applies to soft materials independently of their structures, this suggests that it is 
inherent to a solid structure and thus might be applicable to standard solids too. 

The fact that such a generic model applies to a set of materials of such various structures, suggests 
that the fundamentals of this model rely on the common property of these materials, i.e. their jammed 
structure, whatever the physico-chemical origin of the interactions leading to this jamming. Let us for 
example consider an emulsion. The mechanical behavior may be related to the existence of a constant 
network of (repulsive) interactions throughout the sample, which is at the origin of the constant elastic 
modulus for small deformations. This network persists whatever the deformations undergone by the 
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system in the solid regime, i.e. the initial structure is not broken yet. This structure is nevertheless 
disordered, so that the droplets are locally jammed, and thus in potential wells, but the depth of these 
wells lies in a wide range; for example, it seems possible that some droplets can be moved out of their 
potential well thanks to some slight force leading to a very small displacement, while others can be 
moved out only thanks to a local stress approaching the yield stress. For some deformation, a fraction 
of these droplets would thus be removed from their potential well leading to some plastic 
deformation, affecting the global network but leaving its elastic modulus (for small deformation) 
unchanged. Such a scheme may be extended to other disordered jammed materials, the condition 
being that a sufficient disorder exists in the structure which leads to a wide distribution of potential 
wells. The square variation of the plastic component with the stress results from this distribution, but 
it remains to be found why such a generic distribution exists in these systems. 
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Appendix 1: Detailed results for the Carbopol gel and the bentonite and laponite suspensions 
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Figure A1:  Gel: (a) Deformation vs time during creep tests under different stress levels; 
(b) Elastic modulus under low stress oscillations during creep tests; (c) Shear stress vs 
induced deformation during recovery tests (stress release): elastic (reversible) 
component, plastic (irreversible) component, total deformation. The dotted line is the 

equation 


=G , with 


G  taken as the constant 'G  (183 Pa here) in small oscillations 

tests. The inset shows a zoom of these data on low stress values to better appreciate the 
deviation of elastic deformation from linearity in that range. 

 

A.1.2 Bentonite  
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Figure A2:  Bentonite suspension: (a) Deformation vs time during creep tests under 
different stress levels; (b) Elastic modulus under low stress oscillations during creep tests; 
(c) Shear stress vs induced deformation during recovery tests (stress release): elastic 
(reversible) component, plastic (irreversible) component, total deformation. The dotted 
line is the equation 


=G , with 


G  taken as the constant 'G  (680 Pa here) in small 

oscillations tests. Note that for (a) the initial time is the time at which the stress is 
imposed, while for (b) it is the time just after preshear. 

 

A.1.3 Laponite  
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Figure A3:  Laponite suspension: (a) Deformation vs time during creep tests under 
different stress levels; the horizontal dashed line is a guide for the eye; (b) Elastic modulus 
under low stress oscillations during creep tests; (c) Shear stress vs induced deformation 
during recovery tests (stress release): elastic (reversible) component, plastic (irreversible) 
component, total deformation. The dotted line is the equation 


=G , with 


G  taken 

as the constant 'G  (135 Pa here) in small oscillations tests. Note that for (a) the initial 
time is the time at which the stress is imposed, while for (b) it is the time just after 
preshear. 

 

Appendix 2. Determination of elastic and plastic deformations. 
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Figure A4.  (a) Deformation vs time observed for creep tests on bentonite suspension at 
different stress levels. The horizontal dotted lines show the level of the plateau 
deformation retained as the measure of the elasto-plastic deformation. (b) Deformation 
vs time observed with Carbopol gel during recovery tests, after creep tests under different 
stress levels. The horizontal dotted lines show the level of the plateau deformation 
retained as the measure of the residual (plastic) deformation. 

 

 

Appendix 3. Flow curves 
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Figure A5 : Flow curve data for the different materials as deduced from steady                                                                                

state flows during creep tests. The continuous lines are the Herschel-Bulkley models fitted 

to the different material data: emulsion ( n Pa.s7=k , 38.0=n ), gel ( n Pa.s12=k , 4.0=n

), bentonite ( n Pa.s027.0=k , 1=n ), laponite ( n Pa.s02.0=k , 1=n ).            

                                                                                                                                                                                                                                                                            




