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Abstract

We consider multi-dimensional extensions of Maxwell’s seminal rheo-
logical equation for 1D viscoelastic flows. We aim at a causal model for
compressible flows, defined by semi-group solutions given initial condi-
tions, and such that perturbations propagates at finite speed.

We propose a symmetric hyperbolic system of conservation laws that
contains the Upper-Convected Maxwell (UCM) equation as causal model.
The system is an extension of polyconvex elastodynamics, with an ad-
ditional material metric variable that relaxes to model viscous effects.
Interestingly, the framework could also cover other rheological equations,
depending on the chosen relaxation limit for the material metric variable.

We propose to apply the new system to incompressible free-surface
gravity flows in the shallow-water regime, when causality is important.
The system reduces to a viscoelastic extension of Saint-Venant 2D shallow-
water system that is symmetric-hyperbolic and that encompasses our pre-
vious viscoelastic extensions of Saint-Venant proposed with F. Bouchut.

1 Introduction

In 1867, when viscosity was already an important concept to model friction
within fluid flows at the human scale following Poisson’s theory of friction
[53], Maxwell introduced a seminal relaxation equation for the rheology of one-
dimensional (1D) flows where viscosity is defined from elasticity and a character-
istic time [46]. The viscoelastic model of Maxwell is long known as an interesting
model for 1D flows: given initial conditions, fluid motions are well-defined [30]
that are genuinely causal, i.e. causal and local in particular.

By contrast, nowadays, viscosity is often introduced in continuum mechanics
as a material parameter into the momentum balance of motions described in
spatial coordinates [15]. It still allows to define causal viscous flows as semi-
group solutions to Cauchy problems. However, it uses diffusive Partial Differ-
ential Equations (PDEs) like the celebrated Navier-Stokes equations [41], and
the latter viscous flows do not satisfy the desirable principle of locality (i.e. mo-
tions are not genuinely causal) because information propagates at infinite speed.

1



Now, locality is important in geophysics e.g. when unstationary processes asso-
ciated with internal friction obviously have a local character (the migration of
suspended particles, the production of turbulent energy. . . ).

In this work, to model viscosity in fluid flows, we follow Maxwell’s approach
and we look for a good (hyperbolic) viscoelastic model.

Many viscoelastic models have been proposed after Maxwell, in particular
to explain non-Newtonian flows of polymeric rubber-like liquids after [18] that
are mostly steady. For multi-dimensional flows, there is now a consensus about
the need for a rheological equation with objective derivatives, like the famous
Upper-Convected Maxwell (UCM) equation. But flow models with UCM are
usually formulated as quasilinear systems without more structure; and solutions
to Cauchy problems have remained difficult to analyze or simulate beyond 1D.
In practice, the UCM models – mostly used for incompressible flows – are often
modified with an additional “background viscosity” (equiv. a retardation time)
e.g. as in the Oldroyd-B model, which spoils the local character of Maxwell’s
model. See Section 2 for more details about standard viscoelastic models.

In this work, we propose the first formulation of the compressible UCM
model as a symmetric-hyperbolic system of conservation laws in Section 3.

Starting with the elastodynamics system like the K-BKZ theory for viscoelas-
tic models [33, 34, 2, 3], a new system of physically-meaningful conservation laws
is proposed for the compressible UCM model in section 3.1.

In section 3.2, it is then proved that the system is symmetric-hyperbolic,
using conservative variables adequate for the application of Godunov-Mock the-
orem. Recall that symmetric-hyperbolic systems of conservation laws are essen-
tial to the analysis and to the numerical simulation of solutions to quasilinear
systems [1], and to polyconvex elastodynamics in particular [16, 58, 7].

The new system is not simply a sound mathematical framework for the
viscoelastic models under development [42]. It is also one particular viscoelastic
case in a class of mathematically-sound models that unifies the hyperelastic solids
with viscous fluids.

In section 3.3, we show that the new system has not only a physical inter-
pretation as one extension of the polyconvex elastodynamics system (usually
modelling solids), but also one particular extension towards fluids, that uses an
additional material metric variable like other well-known extensions (e.g. the
elastoplastic systems). That latter interpretation shows the potentialities of the
new symmetric-hyperbolic system of conservation laws, to soundly unify the
solid and fluid dynamics of various materials.

Unifying fluid and solid dynamics has of course been the goal of many pre-
vious works in the literature, and it is not the aim of the present work to review
and compare them with our new system. Here, unification is simply mentioned
as a potentiality of our new system. Let us nevertheless mention the recent work
[51]. As for unification, that work is the only one we are aware of which, like
ours, first looks for a symmetric-hyperbolic system of conservation laws extend-
ing polyconvex elastodynamics to viscoelastic Maxwell fluids. In comparison
with [51], we extend polyconvex elastodynamics to a hyperbolic quasilinear sys-
tem with a different structure, using a different additional variable.

Last, we believe our new system will have very useful applications in the
shallow-water regime, to model free-surface gravity flows with viscosity.
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In Section 4, we precisely show how our new system can be reduced to
a symmetric-hyperbolic system of 2D conservation laws that is a physically-
meaningful viscoelastic extension of Saint-Venant models. The new 2D system
encompasses our former viscoelastic extensions of Saint-Venant models with
F. Bouchut [10, 11, 12], without a conservative formulation in 2D.

Developping 2D shallow-water models for free-surface flows with large ver-
tical vortices and viscous dissipation has also been the goal of many previous
works in the literature, see [22, 11] and references therein. Again, it is not the
goal of the present article to review and compare those numerous 2D works with
ours. Here, we simply mention an important application of our new 3D UCM
system, which delivers a symmetric-hyperbolic system of 2D conservation laws
in contrast to [23] and our former works [11, 12] e.g., see details in Section 4.

2 Viscoelastic flows in continuum mechanics

First recall standard viscoelastic constitutive assumptions to model smooth com-
pressible material fluid motions (equiv. flows) in continuum mechanics setting.

2.1 Continuum mechanics needs constitutive assumptions

Continuum mechanics aims at modelling the motions of “matter” as flows of
“continuous bodies” at the human scale (unlike “discrete particles” at the molec-
ular scale). A prerequisite is the definition of material bodies and their flows.

The classical theory considers bodies B that are Riemannian manifolds, and
flows that are collections of “configurations” i.e. mappings φt(B) indexed by
time t ∈ R into the Euclidean ambiant space [44]. For future reference, recall
that on bodies B with a coordinate system {aα} and a material (or body)
metric defined by a positive symmetric 2-tensor Gαβ ∈ S+(Rd×d) (d = 2, 3),

diva v = ∂α(
√
|G|vαβ...)/

√
|G| for v(a) = vαβ...eα⊗eβ . . . is well-defined when

Gαβ ∈ S++(Rd×d) i.e. the determinant is stricly positive |Gαβ | > 0, and an
inverse metric GαβG

βγ = δαγ exists – δαγ denoting Kronecker’s symbol –.
Next, one establishes a precise description of bodies motions i.e. “flows” us-

ing axioms and assumptions. Viscoelastic flows arise from particular constitutive
assumptions, see section 2.3. But let us first recall the continuum mechanics
setting and simpler consitutive equations (some notions need to be assumed
though, like those in quotes “. . . ”, and we refer to [16, 44, 60] for more details).

Given a force field f in the Euclidean ambiant space with a coordinate
system {xi}, one assumes a Galilean frame-invariant balance of total energy
E ≥ 0 holds as follows for bodies, with R the heat supplied during the process:

∂t(E ◦ φt) = diva(Siα∂tφ
i
t) + ∂tφ

i
t(f

i ◦ φt) +R . (1)

Then, bodies are characterized by a mass-density ρ̂(a) ≥ 0, and their motions
φt : a ∈ B → x = φt(a) ∈ Rd (d = 2, 3) satisfy the momentum balance:

ρ̂(∂2
ttφt) = diva S + ρ̂(f ◦ φt) (2)

where S is the (first) Piola-Kirchoff stress tensor, Siα in coordinates. For non-
polar bodies, it holds Siα∂αφ

j = Sjα∂αφ
i and, on introducing r ◦ φt = R/ρ̂,

ρ̂(∂te ◦ φt)− Siα∂2
tαφ

i
t = ρ̂(r ◦ φt) (3)
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where e ◦φt := E ◦φt/ρ̂− 1
2 |∂tφt|

2 is the internal energy. Note that we assume
adiabatic processes (i.e. no heat flux within bodies, which are assumed heat
insulators), and we use Einstein summation convention for repeated indices.

Next, if constitutive assumptions specify e as a function of ∂αφ
i
t – thus also

S by (3) –, motions φt can be defined as solutions to (2) for t ∈ [0, T ) given
φt=0 = φ0. Some constitutive assumptions and well-defined motions have shown
the practical interest of the theory for applications to various materials, see e.g.
[39, 7]. But specifying constitutive assumptions that are both mathematically
and physically meaningful is a difficult task since the beginning of the theory.
Despite many rationalization efforts guided by mathematical soundness, we are
not aware of a definitive approach to model particular real materials (many
practical constitutive assumptions exist, scattered in a vast literature). We
recall standard constitutive assumptions for viscoelastic fluids in section 2.3.

In section 2.2, we first recall fundamental constitutive assumptions for elastic
and viscous material bodies in the “solid” or “fluid” states, when e is function
of ∂αφ

i
t or |∂αφit|. Viscoelasticity arises as a unifying concept in between. We

consider smooth motions φt, diffeomorphisms with inverse φ−1
t , and we denote:

• F iα := ∂αφ
i
t ◦ φ

−1
t the deformation gradient in component form given two

coordinates systems {xi} and {aα}, i.e. the matrix representation of the
tensor F = F iαei ⊗ eα with rows labelled by a Roman letter like i, j, k . . .
to precise coordinates in the spatial frame and with columns labelled by
a Greek letter α, β, γ, . . . to precise coordinates in the material frame

• |F iα| the determinant of F iα, also sometimes denoted |F |

• Cαi the cofactor matrix (or transpose adjugate) of F iα

• ui := ∂tφ
i
t ◦ φ

−1
t the velocity

• D(u)ij := 1
2

(
∂iu

j + ∂ju
i
)

the strain-rate tensor

• divu = ∂iu
i the Euclidean divergence for a vector field u and

• δ the identity tensor compatible with the Kronecker symbol notation in
coordinates so δji = |F iα|−1F jαC

α
i for instance.

We classically assume that (1)–(2) are the Euler-Lagrange equations of a varia-
tional principle for a Lagrangian density ρ̂

(
1
2 |∂tφt|

2 − e ◦ φt
)

with e a function
of ∂αφ

i
t, [44], and Gαβ = δαβ for simplicity. Then, S is a function of F iα ◦φt i.e.

Siα = ρ̂∂F iαe (4)

so (3) holds with r = 0. And (2) rewrites within a system of conservation laws:

∂t
(
ρ̂ ui ◦ φt

)
− ∂αSiα = ρ̂f i

∂t
(
F iα ◦ φt

)
− ∂α

(
ui ◦ φt

)
= 0

∂t
(
|F iα| ◦ φt

)
− ∂α

(
Cαj ◦ φt uj ◦ φt

)
= 0

(5)

that fully defines causal motions in the so-called material (or Lagrangian) de-
scription as semi-group solutions, possibly after adding (6) to (5) when d = 3

∂t (Cαi ◦ φt) + σijkσαβγ∂β
(
F jγ ◦ φt uk ◦ φt

)
= 0 (6)
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where Cαi = σijkσαβγF
j
βF

k
γ , and σ is Levi-Civita’s symbol – so it holds e.g.

|F iα| = σijσαβF
i
αF

j
β Cαi = |F iα|σijσαβF

j
β

when d = 2. Moreover, when ρ̂ is constant, smooth motions with a material (or
Lagrangian) description also have a spatial (or Eulerian) description:

∂t
(
ρui
)

+ ∂j
(
ρujui − σij

)
= ρf i

∂t
(
ρF iα

)
+ ∂j

(
ρujF iα − ρF jαui

)
= 0

∂tρ+ ∂j
(
ρuj
)

= 0

(7)

with Cauchy stress σij := |F iα|−1F jαS
iα ◦ φ−1

t function of F iα, and ρ := |F iα|−1ρ̂
[58], possibly complemented when d = 3 by

∂t (ρCαi ) + ∂j
(
ρujCαi

)
+ σijkσαβγ∂l

(
|F iα|−1F lβF

j
γu

k
)

= 0 . (8)

The Lagrangian and Eulerian descriptions of smooth motions are equivalent as
long as the following Piola’s identities hold [58]:

∂j(|F iα|−1F jα) = 0 ∀ i = 1 . . . d. (9)

2.2 Constitutive assumptions for elastic bodies and fluids

Elastic motions have been considered since the beginnings of continuum
mechanics for “solids” [60, 45]. Some elastic constitutive assumptions efficiently
summarize the molecular structure of matter at a human scale and are useful
to predict real solid behaviours. In particular, smooth motions of hyperelastic
materials with an energy e(F iα ◦φt) can be well defined when r = 0 as solutions
to (a Cauchy problem for) either the second-order equation (2) [29], or a first-
order system of conservation laws: (5) in material coordinates, or (7) in spatial
coordinates, e.g. when e is polyconvex and both are symmetric-hyperbolic [58].

Postulating indifference to Galilean changes of spatial frames as usual in
classical physics requires that e is function of F iα through the right Cauchy-
Green deformation tensor F kαF

k
β . Then, for homogeneous isotropic bodies with

Gαβ = δαβ Euclidean, a useful polyconvex energy is the neo-Hookean

e(F kαF
k
α) :=

µ

2
(F kαF

k
α − d) (10)

with both molecular and phenomenological justifications [24].
The neo-Hookean model is simplistic, but it is already quantitativaly useful

for practical applications. Moreover, it has many refinements. For instance, the
neo-Hookean model cannot capture volumetric changes observed simultaneously
with elongation. But one can either use the model along with the incompressibil-
ity constraint |F iα| = 1 (if relevant) as a remedy. Or one can add a compressible
term function of |F iα| in the energy (10) that preserves polyconvexity.

Non-reversible motions with r 6= 0 can moreover be considered when e is a
function of F iα and entropy η such that it holds for some dissipation D ≥ 0:

r ◦ φt = (θ ◦ φt)∂t(η ◦ φt)−D ◦ φt . (11)

Usual elongations with volumetric changes are indeed non-reversible, with heat
exchanges r 6= 0; (11) means that the heat supply may be either dissipated
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by irreversible processes (“inelasticities”) or compensated for by variations in
the body state (through entropy). Using (11) as an additional constitutive
assumption leads one to introduce the temperature θ = −∂ηe [15]. Then, further
constitutive assumptions about inelasticities and D allow to close (2) (or (5),
or (7)) complemented by (3)–(11) when r 6= 0. For instance, smooth isentropic
motions such that ∂t(η ◦ φt) = 0 can be defined for polyconvex hyperelastic
bodies with e jointly convex in F iα and η, as well as non-smooth motions like
1D shocks using the inequality associated with (3)–(11) [16].

Thermo-elastic models in fact use the Helmholtz free energy ψ = e− θη as a
function of θ more often than e as a function of η, with a constitutive assumption
precising the temperature evolution rather than the entropy evolution. Then

ρ̂ ((η ◦ φt)∂t(θ ◦ φt) + ∂t(ψ ◦ φt))− Siα∂α(ui ◦ φt) = −ρ̂D ◦ φt (12)

complements (2) (or (5), or (7)) rather than (3)–(11). It allows one to de-
fine (smooth and non-smooth) isothermal motions for polyconvex hyperelastic
bodies when ψ is jointly convex in F iα and θ using η = −∂θψ and Siα = ρ̂∂F iαψ.

Non-reversible motions however need a more accurate description in many
applications. And it remains an active research field how to specify inelasticities,
especially over a range of temperatures where the material properties change a
lot (throughout phase transitions) and for large deformations of flowing bodies
when the fluidity concept enters [4]. Viscoelasticity is one example of inelasticity.
This will be very clear in Section 3 with our new UCM system. We show in
section 3.3 that the UCM model is only one viscoelastic instance within a large
class of mathematically-sound models with inelasticities. But first, let us recall
a standard introduction of viscosity alone, without elasticity, as a constitutive
assumption for imperfections in irreversible flows of fluids.

Fluid flows have long been considered in continuum mechanics. The molecu-
lar structure of fluids is more difficult to summarize than that of solids, because
they are much more deformable. Useful constitutive assumptions for simple
enough fluid materials have been proposed – though usually without a clear
link to solids, the fluid-solid transition being a well-identified difficulty [4].

A useful constitutive law for “perfect” fluids is the polytropic law

e(ρ) :=
C0

γ − 1
ργ−1. (13)

Smooth motions can be defined with (13) in the reduced spatial description

∂tρ+ ∂i(u
iρ) = 0

ρ
(
∂tu

i + uj∂ju
i
)
− ∂j σij = ρf i

(14)

where the Cauchy stress tensor reduces to a pure pressure p ≡ −∂ρ−1e = C0ρ
γ

σij = −p δij . (15)

The system (14) is indeed symmetric-hyperbolic, and it is useful e.g. for the
dynamics of simple (monoatomic) gases. But note that (14) is strictly contained
in the Eulerian system (7), and motions are not equivalently described by the
larger Lagrangian system (5) which is not symmetric hyperbolic.
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Non-smooth irreversible motions can also be considered with (14) comple-
mented by (11) and an entropy variable η. When e is (jointly) convex in ρ and
η, one can consider isentropic motions through weak solutions, and define uni-
voque 1D shocks [43]. Isomorphocally, one can define isothermal motions using
Helmholtz free energy ψ, the spatial version of (12)

ρ
(
η(∂t + ui∂i)θ + (∂t + ui∂i)ψ

)
= −ρD + σij∂ju

i (16)

and a temperature variable θ. However, more constitutive assumptions are
often needed to precisely describe irreversible fluid motions, like the vortices
observed in many viscous real fluid flows. To that aim, viscous stresses have
been introduced in (14) by adding an extra-stress τ as σ = −pδ+ τ in (15) i.e.

σij = −p δij + τ ij (17)

provided it is “objective” (invariant to Galilean change of spatial frames) and
“dissipative” i.e. D := τ ij∂ju

i ≥ 0 [15]. The Newtonian extra-stress e.g.

τ ij = 2µ̇D(u)ij + ` D(u)kk δij (18)

is admissible with D = 2µ̇D(u)ijD(u)ij + `|∂iui|2 ≥ 0, in ∂tη + (uj∂j)η = D/θ
when the entropy η is chosen as additional state variable [41], or in

∂tθ + (uj∂j)θ = −D/η (19)

when the temperature θ is the additional state variable. The NS equations have
an interpretation at the same molecular level as the polytropic law, with µ̇ > 0
& ` > 0 the shear & bulk viscosities typically measured for a fluid close to
its rest-state at given pressure and temperature. But although useful in many
cases, the flows defined by NS or any momentum balance with diffusion are not
local unlike the motions defined by (5) for polyconvex hyperelastic bodies.

To describe local viscous motions, we next follow Maxwell and consider vis-
coelastic fluids relaxing to an elastic equilibrium, where viscosity arises asymp-
totically only – just like the steady flows where it is actually measured ! For fast
relaxing fluid flows, one may prefer the standard extra-stress approach, leading
to the “simple” NS equations, at the price of losing locality. But that prefer-
ence depends on what “fast” means in comparison with the physically-relevant
speeds. For applications when time-dependence is particularly important, one
should prefer the viscoelastic models below to the viscous fluid model above.

2.3 Standard viscoelastic flow models with Maxwell fluids

Standard viscoelastic constitutive assumptions for the extra-stress are formu-
lated as extensions of viscous fluids, first constrained by “objectivity” like in
[15]. Viscoelastic fluids of Maxwell type [46] thus use differential equations like

λ
♦
τ +τ = 2µ̇D (20)

for the extra-stress in (17), with λ > 0 a relaxation time scale and
♦
τ an objective

time-rate [48, 5, 54]. The extra-stress governed by (20) is well understood

in small deformations when
♦
τ≈ ∂tτ : high-frequency motions are elastic with
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modulus µ := µ̇/λ (in stress units), and low-frequency motions are viscous with
viscosity µ̇. More generally, it evolves nonlinearly, using as time-rate in (20)

♦

τ ij= ∂tτ
ij + uk∂kτ

ij − ∂kuiτkj − τ ik∂kuj + ζ(D(u)ikτkj + τ ikD(u)kj) (21)

for some ζ ∈ [0, 2]. The nonlinear terms in (21) are believed responsible for non-
Newtonian motions observed experimentally, like rod-climbing (equiv. Weis-
senberg effect) with polymeric liquids [18]. Moreover, the “dissipativity” of the
extra-stress τ is standardly analyzed on introducing a conformation tensor c
[26] interpreted as E(R⊗R) where R(t,x) is the end-to-end vector of “dumb-
bells” modelling statistically macromolecules suspended in the fluid [6, 54].

Assume dumbbells are governed by the (overdamped) Langevin equation

dRi =

(
−(uj∂j)R

i + (∂ju
i)Rj − 2K

ξ
F i(R)

)
dt+

√
4kBθ

ξ
dW i(t) (22)

given friction ξ and spring factor K(θ) at θ. Using (21) with ζ = 0, it leads to

♦

cij= −4KH′

ξ
cij +

4kBθ

ξ
δij (23)

for c. Precisely, when F i in (22) is non-linear, a good approximation (23) should
postulate a non-linear potential H (tr(c)) i.e. H′ (tr(c)) non-constant so that c
remains strictly positive, see e.g. [28]. The particular case when F i(R) = H′Ri
withH′ constant does not need approximation: the random vectorR is Gaussian
and (23) is exact. It is the consitutive assumption for Upper-Convected Maxwell
(UCM) fluids. The motions defined with smooth solutions to (23) indeed satisfy

(∂t + uj∂j)F(c) = 2(KH′cij − kBθδij)∂iuj −
4

ξ
D (24)

on denoting [c−1]kl the matrix inverse of cij symmetric positive definite, with

F = KH (tr(c))− kBθ log |c| , (25)

D = (KH′cij − kBθδij)[c−1]jk(KH′cik − kBθδik) ≥ 0 . (26)

So D ≡ 4
ξD can be a dissipation in (16) for isothermal flows, and F a dumbbell

contribution to the Helmholtz free energy ψ = e0(ρ, θ) + F(c, θ) where e0(ρ, θ)
is a solvent contribution like the polytropic law (13), while the extra-stress

τ ij = 2ρ(KH′cij − kBθδij) (27)

is admissible in (17) and has a molecular interpretation through R, kB being
the same Boltzmann constant as in (22) [19, 6]. For incompressible isothermal
flows (∂iu

i ≡ 0) with ρ constant, the evolution of τ satisfies exactly Maxwell
upper-convected equation (20) with λ = ξ

4KH′ and µ̇ = 2λρkBθ. For general
flows, τ satisfies (20) with additional terms in RHS, see (41) in section 3.3.

Multi-dimensional models that are extensions of Maxwell seminal ideas often
use the UCM model (14)–(17)–(27)–(23) as a starting point, up to the recent
efforts [20, 42] toward non-isothermal flows, or some variations of UCM [38, 54],
using for instance another force F i in (22) than linear (which leads to a different
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viscoelastic flow model with a different free energy), or another Langevin equa-
tion (which could lead to an evolution of conformation (23) using ζ = 2 rather
than ζ = 0). General compressible viscoelastic motions have however hardly
been analyzed or simulated so far, with the full compressible UCM system or
any other similar viscoelastic model. We are aware of a 2D hyperbolic quasilin-
ear UCM model, but it is not a system of conservation laws, and its numerical
simulation relies on some empirical diffusion [52, 21, 49]. One difficulty with the
(multi-dimensional, compressible) viscoelastic models proposed so far might be
the lack of a mathematical structure to properly define motions through Cauchy
problems, such as a symmetric hyperbolic system of conservation laws [32, 43].

Viscoelastic motions have mostly been studied under the incompressibility
assumption and with additional diffusion so far, whether for UCM or other
fluids [50]. Indeed, incompressible viscoelastic motions with ∂iu

i = 0 and ρ
constant have been well defined as solutions to Cauchy problems for the UCM
model (7)–(17)–(27)–(23), as well as other quasilinear systems provided they
are regular enough [55]. Still, numerical simulations of the incompressible UCM
system have shown unstable in applications [31, 30] and most viscoelastic flows
have in fact been computed for incompressible fluids of Jeffrey type with an
additional retardation time (i.e. a rate-dependent term in (20) which induces
velocity diffusion with a “background viscosity”) [50]. In any case, assuming in-
compressibility prevents locality and limits applications to non-isothermal flows.
Diffusion does not restore the locality of motions, on the contrary.

So the question thus remains how to usefully extend Maxwell’s seminal vis-
coelastic model to general (compressible, multi-dimensional) motions.

3 Symmetrizing Upper-Convected Maxwell

We now propose to rewrite the UCM model as a useful symmetric-hyperbolic
system of conservation laws which extends the elastodynamics of polyconvex
hyperelastic materials using an additional material metric variable. The new
system of conservation laws is introduced in section 3.1. It is shown symmetric-
hyperbolic in section 3.2. Finally, the physics of UCM is discussed using that
new system in section 3.3. It allows to interpret UCM as one particular extension
of elastodynamics using an additional material metric variable, with much more
potentialities (beyond fluid viscoelasticity) to be discussed in future works.

The present new system already has interesting applications, see Section 4.

3.1 Conservation Laws for UCM

A reformulation of the standard UCM model was already proposed by the K-
BKZ theory [33, 34, 2, 3], to establish a clear link between the viscoelastic UCM
fluids and (elastic) solids, and to next improve the UCM model. But it leads
to an integro-differential systems that is not much more easily used for general
flows than standard UCM. Still, to get a useful formulation, we can follow K-
BKZ theory and first interpret the UCM model with the help of the full Eulerian
description (7) of (smooth) motions for continuous bodies as follows.

Proposition 3.1. Consider smooth motions of UCM fluids such that cij satis-
fies (23) with ζ = 0 in (21), and [F−1]αi denotes the inverse of the deformation-
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gradient F iα. It holds for Aαβ = [F−1]αi c
ij [F−1]βj in the material description:

∂t
(
Aαβ ◦ φt

)
=

4kBθ

ξ

(
[F−1 ◦ φt]αi [F−1 ◦ φt]

β
i

)
− 4KH′

ξ
Aαβ ◦ φt . (28)

Proof. Recalling (5), the deformation gradient F iα satisfies

(∂t + ui∂i)F
i
α − (∂ju

i)F jα = 0 (29)

in spatial description. Then, the inverse satisfies

(∂t + ui∂i)[F
−1]αi − [F−1]αi (∂ju

i) = 0 (30)

which can be combined with (23) to yield

(∂t + ui∂i)A
αβ = −4KH′

ξ
Aαβ +

4kBθ

ξ

(
[F−1]αi [F−1]βi

)
. (31)

It follows (28) in the material description.

Corollary 3.1. Consider smooth motions of UCM fluids like in Prop. 3.1 given
positive constants K, H′, ξ, θ. Then, denoting λ = ξ

4KH , it holds for t ≥ t0:

cij(t) ◦ φt = e
t0−t
λ F iα(t) ◦ φt[F−1]αk (t0) ◦ φt0 [F−1]βk(t0) ◦ φt0F

j
β(t) ◦ φt

+
kBθ

KH′

∫ t

t0

ds
1

λ
e
s−t
λ F iα(t) ◦ φt[F−1]αk (s) ◦ φs[F−1]βk(s) ◦ φsF

j
β(t) ◦ φt . (32)

Proof. One straightforwardly obtains (32) on injecting the exact solution to the
linear first-order differential equation (28) in cij = F iαA

αβF jβ .

Next, K-BKZ theory assumes

F iα(t) ◦ φt[F−1]αk (t0) ◦ φt0 [F−1]βk(t0) ◦ φt0F
j
β(t) ◦ φt → δij as t0 → −∞ , (33)

and rewrites the free energy (25) and the extra-stress (27) of UCM fluids with
the (history of) relative deformation gradients F iα(t)[F−1]αk (s), t ≥ s only, i.e.
without using explicitly material coordinates [33, 34, 2, 3]. The resulting integro-
differential system has allowed one to compute viscoelastic UCM motions and
also other viscoelastic motions after generalizing (32) to other “kernels” than
1
λe

s−t
λ , when incompressible (therefore not local) [55].
Here, to define local UCM motions, we propose a new purely differential

approach to compute multi-dimensional (compressible) flows with a symmetric-
hyperbolic system of conservation laws inspired by polyconvex elastodynamics.
Unlike K-BKZ theory, we do not avoid material coordinates. We propose to use
Aαβ as a variable of the system and to write cij as a function of F iα and Aαβ :

Proposition 3.2. The smooth isothermal viscoelastic motions solutions to the
Eulerian model (7)–(17)–(27)–(23) for compressible UCM fluids are equivalently
solutions to the system of conservation laws with algebraic source terms (34):

∂t(ρu
i) + ∂j

(
ρujui

)
− ∂j

(
−pδij + 2ρ(KH′F iαAαβF

j
β − kBθδij)

)
= ρf i

∂t(ρF
i
α) + ∂j

(
ρujF iα − ρuiF jα

)
= 0

∂tρ+ ∂i(u
iρ) = 0

∂t(ρA
αβ) + ∂j

(
ρujAαβ

)
=

4ρ

ξ

(
kBθ

(
[F−1]αi [F−1]βi

)
−KH′Aαβ

) (34)

10



with Aαβ = [F−1]αi c
ij [F−1]βj ∈ S++(Rd×d). Furthermore, they satisfy

∂tE + ∂j
(
ujE

)
− ∂j

(
uiσij

)
= f iui − 4ρ

ξ
D (35)

with E = ρ
(
|u|2

2 + ψ
)

, σij = −pδij + 2ρF iαF
j
β∂FkαFkβ ψ, p = ∂ρ−1e0(ρ, θ),

ψ(ρ, F iα, A
αβ) = e0(ρ) +KH′F iαF iβAαβ − kBθ log |F iαAαβF iβ | (36)

= e0(ρ) +KH′F iαF iβAαβ + 2kBθ(log ρ/ρ̂− log |Aαβ |) (37)

and D ≥ 0 the same dissipation as given by (26).

Proof. We have already shown that the smooth isothermal viscoelastic motions
described in spatial coordinates by the compressible UCM model (7)–(17)–(27)–
(23) satisfy (28). Now, smooth motions also satisfy (29) by definition, thus
the last line of (7) using the Piola identities (9) for smooth motions like in
elastodynamics [59]. So finally, the full system (34) is satisfied.

Reciprocally, the standard formulation of UCM is recovered from (34) using
cij = F iαA

αβF jβ and Piola identities for smooth motions φit such that ui ◦ φt =

∂tφ
i
t, F

i
α ◦ φt = ∂αφ

i
t, |F iα| = ρ−1ρ̂ > 0 with a constant ρ̂ > 0.

Last, one can check (35) with (36) or (37) directly for smooth motions, on
recalling ρ−1 = |F iα|ρ̂−1. The total energy balance (35) is also exactly that
satisfied by UCM using (16) with (25), cij = F iαA

αβF jβ and (26).

The UCM reformulation (34) is an interesting system of conservation laws.
When ξ → ∞ and Aαβ is constant in time, the system (34) coincides with
a spatial description for compressible motions of homogeneous neo-Hookean
materials, see [35] or [58, (3.7)] when Aαβ ≡ δαβ . Inspired by the latter, we show
that a further reformulation of (34) allows one to define flows of compressible
UCM fluids as solutions to a symmetric-hyperbolic system of conservation laws.

3.2 A strictly convex extension for UCM

Proposition 3.3. The isothermal viscoelastic motions of compressible UCM
fluids defined by smooth solutions to the system (34) with A ∈ S++(Rd×d) are
also equivalently defined by smooth solutions to

∂t(ρu
i) + ∂j

(
ρujui

)
− ∂j

(
−pδij + 2ρ(KH′F iαAαβF

j
β − kBθδij)

)
= ρf i

∂t(ρF
i
α) + ∂j

(
ρujF iα − ρuiF jα

)
= 0

∂tρ+ ∂i(u
iρ) = 0

∂t(ρY
αβ) + ∂j

(
ρujY αβ

)
= −4ρ

ξ
Y αγ

(
kBθZ

γδ − 2KH′δγδ
)
Y δβ

(38)

where A = Y −
1
2 is defined componentwise by identification with the square-root

matrix-inverse of Y = Y αβeα ⊗ eβ ∈ S++(Rd×d) and Z = F−TF−1A−1 +

A−1F−1F−T . Furthermore, if p = −∂ρ−1e0 is given by e0 strictly convex in
ρ−1, then the following additional conservation law is also satisfied

∂tẼ + ∂j

(
ujẼ

)
− ∂j

(
uiσij

)
= f iui − 4ρ

ξ
D̃ (39)
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with Ẽ = ρ
(
|u|2

2 + e0(ρ) +KH′F iαF iβAαβ + Y αβY αβ
)

, σij = −pδij+2ρF iαF
j
βA

αβ

and an algebraic source term D̃ without sign a priori. So the strictly convex
function Ẽ(ρ, ρui, ρF iα, ρY

αβ) defines a mathematical entropy for (38), (39) de-
fines a strictly convex extension for (38), and (38) is a symmetric-hyperbolic
system of conservation laws on the open set A+ := {ρ > 0, Y = Y T > 0}.

Proof. First, recalling ∂tA
−2 = −A−2(∂tA)A−1 − A−1(∂tA)A−2 for smooth

matrix-valued functions A(t) one straightforwardly establishes the equivalence
between formulations (38) and (34) when Y ,A ∈ S++(Rd×d). Note that
AαβAβγY γδ = δαδ defines a bi-univoque relationship on the open set A+. Next,
one shows directly (39): the computation is similar to that for E in Prop. 3.2.

Then, Godunov-Mock theorem [25, Chapter 3] implies that Ẽ is a mathemat-
ical entropy and (39) a strictly convex extension for the symmetric-hyperbolic
system (38) provided Ẽ(ρ, ρui, ρF iα, ρY

αβ) is strictly convex on the convex set

A+ ⊂ R1+d+d(d+1)/2+d2 . We recall that the (strict) convexity of Ẽ function of
(ρ, ρui, ρF iα, ρY

αβ) on A+ is equivalent to the (strict) convexity of E/ρ function
of (ρ−1, ui, F iα, Y

αβ) on A+, see [58, Th. 3.1] or [9, Lemma 1.4]. As a matter
of fact, E/ρ is a mathematical entropy for an equivalent system of conservation
laws in material coordinates which we detail later, see (44).

Now, e0 and |u|
2

2 are strictly convex in ρ−1 > 0 and ui, respectively. Then,
E/ρ is a strictly convex function of (ρ−1, ui, Y αβ , F iα) on A+ if F iαF

i
βA

αβ +

Y αβY αβ is a strictly convex function of (Y αβ , F iα) on A+. We conclude in two

steps. On the one hand, (F ,Y ) ∈ Rd×d × S++(Rd×d) → tr(FY −
1
2F T ) is a

(jointly) convex function of its d2 + d(d+ 1)/2 arguments by Theorem 2 in [40,
p.276] with r = 1

2 and p = 0. On the other hand, strict convexity holds since
Y αβY αβ is strictly convex in Y αβ , and F iαF

i
βA

αβ is strictly convex in F iα.

Corollary 3.2. Consider the UCM formulation (38) i.e. the conservation laws

∂tq + ∇qFi(q)∂iq = B(q) (40)

with Fi, B C∞ in q = (ρ, ρui, ρY αβ , ρF iα) when q ∈ A+ lies in an open convex
set, and (40) is symmetric-hyperbolic, recall Prop. 3.3. For all state q0 ∈ A+,
and for all

(
1 + d+ d(d+ 1)/2 + d2

)
-dimensional perturbation q̃0 ∈ Hs(Rd) in

Sobolev space Hs with s > 1+d/2 such that q0+q̃0 is compactly supported in A+,
there exists T > 0 and a unique classical solution q ∈ C1([0, T )×Rd) to (40) such
that q(t = 0) = q0 + q̃0. Furthermore, q−q0 ∈ C0([0, T ), Hs)∩C1([0, T ), Hs−1).

Proof. When the UCM reformulation (38) is a symmetric-hyperbolic system of
conservation laws with a smooth source term as in Prop. 3.3, the small-time
existence of smooth classical solutions is straightforward, see e.g. Theorem 10.1
in [1, Chapter 10]. In Corr. 3.2, one should however take care of the domain
A+. Now, it is open, convex and can be treated similarly to {ρ > 0} for the
Euler equations of gas dynamics like in Theorem 13.1 of [1, Chapter 13].

To our knowledge, Cor. 3.2 is the first well-posedness result for the Cauchy
problem of the compressible multi-dimensional UCM model without background
viscosity, i.e. the first well-posedness result for a model of genuinely causal
viscoelastic flows (of Maxwell fluids) satisfying the locality principle. Similarly
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to elastodynamics [58], that latter result straightforwardly extends to the non-
isothermal compressible UCM models where (38) is complemented with (19)
when Ẽ remains a convex extension, i.e. is strictly convex jointly for q and θ.

The “relaxation” form of source terms in (38) also suggests the possibility
of damping, and the existence of global (strong) solutions for sufficiently small
initial data close to an equilibrium q∞ such that B(q∞) = 0. However, we leave
this question for future works. Note that our symmetrizer has been obtained
with the convex extension (39), which is not dissipative like (35). But physically,
dissipativity should be required, for instance the inequality ≤ in (35). So the
setting is non-standard [16]. In particular, difficulties are also to be expected for
numerical simulations by the standard discretization of symmetric-hyperbolic
systems. Thus discretization will also be the object of future specialized works.

In any case, our new UCM formulation has promising applications in geo-
physics that can already be discussed here, see Section 4. To that aim, let us first
interpret physically the new variable Aαβ in section 3.3 below, which also shows
the many potentialities of our new system as an extension of elastodynamics.

3.3 UCM as extended elastodynamics and beyond

Let us recall that the system (34) models viscoelastic “fluid” flows (with stress
relaxation) insofar as the stress component τ defined in (27) satisfies an equation
of the type (20), with ξ = 0 and additional terms due to compressibility.

Proposition 3.4. In smooth motions defined by (34) the Cauchy stress σ in
the spatial momentum balance has a viscoelastic component

τ = 2ρ
(
KH′F iαAαβF

j
β − kBθδij

)
(41)

solution to the modified Maxwell equation (20) with one additional term

λ
♦
τ + divu λ τ + τ = 2µ̇D , (42)

an upper-convected time-rate with ξ = 0 in (21) and λ = 4KH′/ζ, µ̇ = 2ρkBθλ.

Proof. This is a direct computation on recalling θ,K,H are constants (in the

considered isothermal motions) so t := τ
2ρkBθ

is solution to λ
♦
t +t = 2λD.

So formally, the stress in the compressible UCM model (34) is then either
“elastic” (like the stress in hyperelastic solids) or “viscous” (like extra-stress
in Newtonian fluids) asymptotically as expected. This is usual for a “Maxwell
fluid”: it tends to a Newtonian fluid at a characteristic time-scale λ > 0, and it
is elastic at shorter times (recall the K-BKZ theory).

But our UCM system (34) can be precisely interpreted as an extension of
the elastodynamics of hyperelastic solids using an additional “material” metric
variable A (attached to matter, Aαβ in coordinates) that describes locally the
physical state of the material body, and our UCM fluid becomes Newtonian
with viscosity µ̇ > 0 at “large-time” equilibrium thanks to a specific form of the
relaxation limit for Aαβ . On the one hand, other relaxation limits for Aαβ are
possible, which are physically meaningful and reminiscent of complex materials
in the literature. The system (34) with one particular viscoelastic relaxation
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limit for Aαβ is only one instance in a class that extends elastodynamics to
complex materials with inelasticities, see subsection 3.3.2. On the other hand,
it suggests a new understanding of the Newtonian fluid, as explained below.

3.3.1 The Newtonian viscous limit regime

In smooth motions our formulation (34) of UCM contains standard formulations
of section 2.3, and the viscoelastic stress component then formally converges to
τ ≈ 2µ̇D when λ� 1, ρθ � 1 and µ̇ = 2ρkBθλ is fixed, like in standard cases.

But moreover, unlike standard cases, our symmetric-hyperbolic system allows
the (first) proof that the compressible UCM mode is mathematically sensible,
with univoque (strong) solutions to the Cauchy problem given smooth initial
values. So our system is also a new starting point to establish mathematically
the NS equations as a precise limit of viscoelastic equations, of UCM in par-
ticular. We will elaborate on this elsewhere, see [61] for a recent mathematical
justification of NS starting from a slightly modified UCM model.

Furthermore, our formulation with conservation laws suggests one to study
the formation and stability of shocks, i.e. weak solutions with jumps across a
discontinuity surface, which are physically relevant for fluids. Some conserva-
tion laws could be irrelevant, but our new formulation at least suggests one an
approach how to perform shock computations inline with seminal studies us-
ing (14) for gases, and inline with more recent studies using (7) for solids [47].
This will be the subject of future works, as well as other quantitative studies
discretizing our conservation laws with standard techniques.

3.3.2 The Hookean elastic limit regime and its inelastic extensions

Unlike the standard UCM systems of section 2.3, the formal limit of the vis-

coelastic stress τ ≈ µ
(
KH′
kBθ

F iαA
αβF jβ − δij

)
in (34) when λ � 1, µ̇ � 1 and

µ = µ̇/λ is clearly the same neo-Hookean elastic contribution as in elastodynam-

ics for a Riemannian body with inverse metric Gαβ = KH′
kBθ

Aαβ . Indeed, in the

limit λ � 1 where Aαβ becomes time-independent in the material description,
Aαβ can indeed be interpreted as the inner metric (inverse) Gαβ of a Rieman-
nian body, possibly non-Euclidean Gαβ 6= δαβ when the body is pre-stressed
[37]. But note that in general, the variable Aαβ solution to (34) is not time-
independent in the material description. So it cannot be a material metric like
Gαβ for the Riemannian flowing body as long as the mass balance in (34) reads
as usual for ρ = |F iα|−1

√
|G|ρ̂. In an evolution problem, the initial value of Aαβ

could nevertheless model pre-stress similarly to Gαβ when non-Euclidean.
In general, the new metric variable Aαβ should rather be compared with

the metric Kα
kK

β
k that arises in elasto-plasticity, after adding a plastic defor-

mation K−1 and a “flow rule” governing its evolution like in e.g. [36] and many
references therein, to extend elastodynamics with some inelasticities.

This may be seen more easily in the material (or Lagrangian) description.

Proposition 3.5. When ρ̂ is constant, the smooth isothermal (viscoelastic,
compressible) UCM motions are equivalently described in spatial coordinates,
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by either (7)–(17)–(27)–(23), or (34), or (38), and in material coordinates, by

∂t(u
i ◦ φt)− ∂α

([
−(p/ρ)[F−1]αi + 2(KH′AαβF iβ − kBθ[F−1]αi

]
◦ φt)

)
= ρf i ◦ φt

∂t(F
i
α ◦ φt)− ∂α(ui ◦ φt) = 0

∂t(ρ
−1 ◦ φt)− ∂α(ρ̂Cαi ◦ φtui ◦ φt) = 0

∂t(A
αβ ◦ φt) =

4

ξ

(
kBθ

(
[F−1]αi [F−1]βi

)
−KHAαβ

)
◦ φt

(43)

with Aαβ = [F−1]αi c
ij [F−1]βj ∈ S++(Rd×d). Furthermore, if p = ∂ρ−1e0(ρ, θ),

∂t([E/ρ] ◦ φt)− ∂α
(
[uiσij ] ◦ φt

)
= −4

ξ
D ◦ φt (44)

then holds with E/ρ = |u|2
2 +ψ, σij = ∂F iαψ, ψ as in (36) and D ≥ 0 as in (26).

Proof. Recalling Piola identities (9), the system (43) and the additional law
(44) for ui, Aαβ , F iα and E/ρ as functions of t,a are straightfrowardly derived
from (34) and (35) for ui, Aαβ , F iα and E/ρ as functions of t,x = φt(a).

When Aαβ is time-independent (λ� 1), the stress in (43) is the sum of[
−(p/ρ+ 2kBθ)[F

−1]αi + 2KH′AαβF iβ
]
◦ φt

i.e. Piola-Kirchhoff stress Siα for neo-Hookean materials, plus an additional
term to account for volumetric changes, recall section 2.2. More generally,
the viscoelastic stress (41) can be interpreted as the mean-field approximation

Aαβ = E
(
KαkK

β
k

)
of an elastoplastic model [36] with stochastic flow rule

[K−1]iα
(
dKαj + uk∂kK

α
j

)
= −δij

2KH′

ξ
dt+ [K−1]iα[F−1]αk

√
2kBθ

ξ d
dW k

j (t) (45)

in Ito notation, using a probability space with expectation E, and d2 Wiener
processes denoted W k

j (t), k, j = 1 . . . d.
The interpretation of white noise in (45) is left to future works, as well as

the comparison with the kinetic theory of dumbbells in rheology to establish
viscoelastic models [6], recall section 2.3. But one can already note here the
potential of the new system, with a new metric variable Aαβ to unify various
physically-relevant extensions of elastodynamics towards inelastic bodies. In
particular, UCM can be interpreted from the elastoplastic viewpoint with (45),
as a rate-dependent flow rule which models Newtonian viscous “fluid inelastic-
ities” when λ � 1. Reciprocally, the standard rate-independent elastoplastic
flow rules can be interpreted from the viscoelastic viewpoint as yielding materi-
als with permanently-fading memory. Variations of the relaxation limit of A to
model various inelasticities (i.e. rheologies) as extensions of polyconvex elasto-
dynamics will be investigated in future works. Here, we focus on viscoelasticity.

4 Application to geophysical water flows

Numerous geophysical flows are hardly-compressible shallow gravity flows with
a free surface, well described by the two-dimensional (2D) shallow-water equa-
tions attributed to Saint-Venant [17] for many purposes. For instance, the
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Saint-Venant systems usually forecast well river floods, in particular when the
equations are non-diffusive and local [57]. However, for some hydraulic applica-
tions, it is still unsure how to account for viscous effects like large vortices and
recirculation zones. We next show that, in the frame of free-boundary flows, our
compressible UCM formulation can serve such a purpose without introducing
diffusion and losing the local character of useful Saint-Venant equations, after
reduction à la Saint-Venant to a viscoelastic shallow-water system that gener-
alizes the usual shallow-water systems. But first, let us recall in subsection 4.1
the standard Saint-Venant equations with and without diffusion (of velocity).

4.1 Standard Saint-Venant models for shallow water flows

Let us equip the Euclidean ambiant space with Cartesian coordinates (ex, ey, ez)
so (fx, fy, fz) := (0, 0,−g) is a constant gravity field with magnitude g.

We consider a fluid filling Dt := {zb(x, y) < z < zb(x, y) + H(t, x, y)} sup-
posedly a smooth layer with surface of outward unit normal

nzb+H =
1√

1 + |∇H(zb +H)|2
(
−∂x(zb +H),−∂y(zb +H), 1

)
where ∇H = (∂x, ∂y) is the gradient associated with horizontal divergence divH .

The fluid flow is assumed governed by the reduced spatial description (14) in
the moving layer Dt (as usual for fluids) and by the so-called kinematic condition

∂tH + ux∂x(zb +H) + uy∂y(zb +H) = uz
√

1 + |∇H(zb +H)|2 (46)

at z = zb +H. Then, along with the free-surface condition

σijnj
zb+H

nizb+H = 0 , (47)

some constitutive assumptions for the fluid are known to close the 3D evolution
system (46)–(14). For instance, if the fluid is incompressible – which gives a
special meaning to p in (17) –, with Newtonian extra-stress (18), then one can
define unique solutions to Cauchy problems for (46)–(14) on requiring imper-
meability u ·nzb = 0 at z = zb, plus Navier friction conditions at z = zb, zb+H

σijnjz − (σkjnjzn
k
z)niz = −kz

(
ui − (ujnjz)n

i
z

)
(48)

with kzb+H = 0 (pure slip at free surface) and kb ≥ 0 (dissipation at bottom).
But the incompressible Navier-Stokes free-surface model is barely tractable for
numerical applications, let alone the propagation of information at infinite
speed. For the computation of hardly-compressible thin-layer (i.e. shallow)
geophysical water flows with uniform mass density ρ > 0, one often prefers a
2D model reduced after Saint-Venant [17], moreover local. Indeed, let us recall:

Proposition 4.1. Given a family zbε , ε → 0+ of smooth topographies, assume
there exist bounded regular solutions Hε, ρε, uε, pε τε to (46)–(14)–(17)–(47)–
(48) for (t, x, y) ∈ [0, T )×R×R, z ∈ (zbε , z

b
ε+Hε) such that Xε = X0+εX1+O(ε2)

holds pointwise for X ∈ {zb, H, ρ,u, p, τ} as well as

• ∇Hz
b
ε = O(ε) = Hε, i.e. Xε = εX1 +O(ε2) for X ∈ {b,H}
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• ρ0 is constant for all t, x, y and zbε < z < zbε +Hε, hence

divuε = O(ε) as ε→ 0 (49)

• at z = zbε , uε · nzbε = 0 and (48) with kzbε = O(ε)

• at z = zbε +Hε, (47) and (48) with kzbε+Hε = O(ε2).

Then, denoting uH = (ux, uy), it holds

∂tHε + divH(HεU ε) = O(ε2) , (50)

∂t(HεU ε) + divH

(∫ zbε+Hε

zbε

dz uHε ⊗ uHε

)
= O(ε3)

+ divH(Hε(Σ
zz
ε I −ΣH

ε ))− gHε∇H(zbε +Hε)− uHε kzbε/ρ0 , (51)

where ΣH
ε = Σxxε ex ⊗ ex + Σyyε ey ⊗ ey + Σxyε ex ⊗ ey + Σyxε ey ⊗ ex, Σzzε and

U ε(t, x, y) = Uxε (t, x, y)ex + Uyε (t, x, y)ey are defined by

U iε =
1

Hε

∫ zbε+Hε

zbε

dz uiε Σijε =
1

ρ0

1

Hε

∫ zbε+Hε

zbε

dz τ ijε . (52)

Prop. 4.1 rephrases a result that can be found in many places, see [22, 11]
and references therein. But we briefly recall its proof below for future reference.

Proof. The proof classically consists in three main steps:

1. ∇Hz
b
ε = O(ε) = Hε first imply uzε = O(ε), at z = zbε +Hε with (46) or at

z = zbε with impermeability and in the whole layer by (49), then (50),

2. (48) first imply τxzε , τyzε = O(ε), at z = zbε +Hε with kzbε+Hε = O(ε2) and
in the whole layer by the horizontal momentum balance

ρ0(∂t + ujε∂j)u
i
ε + ∂ipε − ∂jτ ijε = ρ0f

i (53)

with i ∈ {x, y}, then pε− τε = ρ0g(zbε +Hε− z) +O(ε) with (53) for i = z
and (47) i.e. pε − τzzε = O(ε2) at z = zbε +Hε

3. Depth-averageing the horizontal momentum balance (53) for i ∈ {x, y}
with (48) and (50) yields (51).

Given Prop. 4.1, the next step is to infer a 2D model of evolution form

∂tH + divH(HU) = 0 (54)

∂t(HU) + divH (HU ⊗U) =

+ divH(H(ΣzzI −ΣH))− gH∇H(zb +H)− kHU (55)

that is closed (with equations for the friction parameter k > 0 and stresses) so
that it can be used for fast and simple predictions of free-surface gravity flows.
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Corollary 4.1. Assume the family of solutions in Prop. 4.1 also satisfies∫ zbε+Hε

zbε

dz uHε = Hεu
H
ε +O(ε2) (56)

and uHε kzbε/ρ0 = kHεU ε + O(ε2) then, for small ε, H1 can be approximated by

a solution H ≈ H1, U ≈ uH0 to the Saint-Venant system (54)–(55) where

a) ΣzzI = ΣH , if τ izε = O(ε2) = τ iiε − τzzε for i ∈ {x, y};

b) Σzz = −νε(∂xUx + ∂yU
y), Σij = νε(∂iU

j + ∂jU
i) for i, j ∈ {x, y},

if τ ijε = νε∂ju
i
ε with νε = O(ε) for i, j ∈ {x, y, z}.

Proof. To show Cor. 4.1 starting from Prop. 4.1, see that (56) implies∫ zbε+Hε

zbε

dz uHε ⊗ uHε = HεU ε ⊗U ε +O(ε3)

and note that uH0 = 0 if limε→0 u
H
ε = 0 at z = zbε under (56), so the value of K

is undetermined but useless then.

So the flows of slightly viscous fluids with (quasi-)Newtonian extra-stress
(case b) could be approximated through a diffusive Saint-Venant system (54)–
(55) where k = kzbε (1−Hkzbε/3νε), or the non-diffusive limit system with k = kzbε
when the extra-stress is negligible (case a). In any case, the 2D system admits
smooth causal solutions to Cauchy problems that preserve H ≥ 0 and satisfy

∂t

(
H

(
1

2
|U |2 +

1

2
gH + gzb

))
+ divH

(
H

(
1

2
|U |2 + gH + gzb + Σzz

)
U −HΣH ·U

)
= −kH|U |2 −HD (57)

with D = 2νε

(
|∇HU + ∇HU

T |2/4 + 2|divH U |2
)
≥ 0, indeed.

But the latter 2D flows suffer the same problems as their 3D counterparts.
The diffusive shallow-water system is a 2D version of damped Navier-Stokes
equations, with a tensor viscosity as diffusion coefficients: it does not produce
local causal motions. And the non-diffusive shallow-water system exactly coin-
cides with a 2D version of the Euler equations with damping K, for polytropic
fluids with eH = gH/2 and energy E ≡ H

2

(
|U |2 + eH

)
: it lacks viscosity to

control vortices. Then, the same question arises as in the full 3D framework:
could causal motions also be local using a viscoelastic 2D flow model ?

4.2 Viscoelastic Saint-Venant models with UCM fluids

Viscoelastic shallow-water models have been proposed in the literature, but we
are not aware of 2D models with well-posed Cauchy problems. For instance, to
close (54)–(55) with Maxwell equations for Cauchy stress, we proposed in [11]:

(∂t + Ux∂x + Uy∂y)ΣH − (∇HU)ΣH −ΣH(∇HU)T

= (νε(∇HU + ∇HU
T )−ΣH)/λ (58)

(∂t + Ux∂x + Uy∂y)Σzz + 2(divH U)Σzz = (−2νε divH U − Σzz)/λ (59)
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for small ε and a λ > 0 given, which for UCM is the natural 2D generalization
of our 1D viscoelastic Saint-Venant model [10]. But similarly to the standard
system for 3D flows of UCM fluids, the quasilinear 2D system (54)–(55)–(58)–
(59) lacks additional structure such as symmetric hyperbolicity and we do not
know how to define solutions to Cauchy problems with that system.

On the contrary, we show in the sequel that the new 3D (compressible)
UCM model of Section 3 can be used to derive a symmetric-hyperbolic vis-
coelastic 2D Saint-Venant model with UCM fluids, having (54)–(55)–(58)–(59)
as a subsystem. To that aim, we first revise Prop. 4.1 with assumptions allowing
to depth-average all equations in (7), guided by the interest of (56) for closure.

Proposition 4.2. Given a family zbε , ε → 0+ of smooth topographies, assume
there exist bounded regular solutions Hε, F ε, uε, τε to (46)–(7)–(47)–(48) in
(t, x, y) ∈ [0, T )×R×R, z ∈ (zbε , z

b
ε +Hε) that define the motions of fluid layers

with reference configurations {c ∈ (0, ε)} in a Cartesian frame (ea, eb, ec), such
that Xε = X0 + εX1 +O(ε2) holds pointwise for X ∈ {b,H,F ,u, p, τ} as well as

• ∇Hz
b
ε = O(ε) = Hε, which means Xε = εX1 +O(ε2) for X ∈ {b,H}

• |F 0| = 1 for all t, x, y and zbε < z < zbε +Hε, hence it holds (49)

• at z = zbε , uε · nzbε = 0 and (48) with kzbε = O(ε)

• at z = zbε +Hε, (47) and (48) with kzbε+Hε = O(ε2)

• ∂zuH = O(ε) hence (56) and

• at t = 0, F iε,c = O(ε) = F zε,α for i ∈ {x, y}, α ∈ {a, b}, and for Ĥ > 0

H1/Ĥ = F z0,c ≡ |F
H
0 |−1 . (60)

Then, as ε→ 0, Hε,U ε,Σ
H
ε ,Σ

zz
ε defined as in (52) and

FHε =
∑

i∈{x,y},α∈{a,b}

(
1

Hε

∫ bε+Hε

bε

dzF iα

)
ei ⊗ eα

can be approximated by H = H1 ≡ ĤF z0,c, U = uH0 , ΣH = ΣH
0 , Σzz = Σzz0 and

FH = FH0 solution to (54)–(55)–(61) such that H = Ĥ|FH |−1 and

∂t(HF
H) + divH(HU ⊗ FH −HFH ⊗U) = 0 . (61)

Moreover, if the 2D Piola identities (62) hold at t = 0

Ĥ divH

(
|FH |−1FH

)
≡ divH(HFH) ≡ ∂i(HF iα) = 0 (62)

the motions defined by solutions to (54)–(55)–(61) have an equivalent 2D La-
grangian description using ΦH

t such that ∂tΦ
H
t = U ◦ΦH

t , ∇HΦH
t = FH ◦ΦH

t .

Proof. It suffices to complement the proof of Prop. 4.1 and Cor.4.1 as follows.

1. The hypothesis ∂zu
H = O(ε), and the intermediary result ∂Hu

z = O(ε)
in the proof of Prop. 4.1, imply that F iε,c = O(ε) = F zε,α hold for i ∈
{x, y}, α ∈ {a, b} and all t ≥ 0 if they hold at t = 0, recall (7).
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2. Then, by (7), the hypothesis H1/Ĥ = F z0,c in (60) is also preserved for all
t ≥ 0 if it holds at t = 0.

3. Last, (7) yields (61) for FH = limε→0 F
H
ε insofar as F z0,c = 1/|FH0 | holds

for all t ≥ 0 by assumption |F 0| = |FH0 |F z0,c = 1.

The equivalence of a Eulerian description with a Lagrangian description when
the Piola identities (62) hold for all t ≥ 0 is classical, see e.g. [58]. Now, note
that by (61), (62) hold for all t ≥ 0 if they hold at t = 0.

Corollary 4.2. Assume that the solutions considered in Prop. 4.2 also satisfy
uHε kzbε/ρ0 = kHεU ε +O(ε2). Assume moreover that τ ijε = O(ε) satisfy

τ ijε = GεF iε,αAαβε F jε,β +O(ε2) (63)

with Gε = O(ε) and Aε = Aαβε eα ⊗ eβ ∈ S++(Rd×d) such that

λ(∂t + ui∂i)A
αβ
ε = Aαβε + Θ

(
[F−1
ε ]αi [F−1

ε ]βi

)
+O(ε) (64)

for some λ > 0 while at t = 0, it holds

Aαβε = O(ε) if either α or β equals c. (65)

Then, for small ε, H1 can be approximated by a solution H ≡ Ĥ|FH |−1 ≈
H1, U ≈ uH0 , FH ≈ FH0 , Acc ≈ Acc0 > 0, AH = Aαβeα ⊗ eβ ∈ S++(Rd×d),
Aαβ ≈ Aαβ0 , α, β ∈ {a, b} to (54)–(55)–(61)–(66)–(67)–(68)

Σzz = GεAccH2 ΣH = GεFHAH(FH)T (66)

λ(∂t +U ·∇H)AH = ((FH)TFH)−1 −AH (67)

λ(∂t +U ·∇H)Acc = H−2 −Acc (68)

where the source terms for AH = (AH)T > 0 are defined using matrix products.
Moreover, the full Saint-Venant system (54)–(55)–(61)–(67)–(68) has an

equivalent in material coordinates for smooth motions ΦH
t such that ∂tΦ

H
t =

U ◦ΦH
t , ∇HΦH

t = FH ◦ΦH
t if Piola’s identities (62) hold at t = 0.

Proof. 1. First observe F−1 = F−1
0 + O(ε) after using e.g. the Neumann

series expansion of (I + εF−1
0 R)−1 := F−1

ε F 0.

2. Then recall from the proof of Prop. 4.2 that F iε,c = O(ε) = F zε,α hold for
i ∈ {x, y}, α ∈ {a, b} and all t ≥ 0 in so far it holds at t = 0, so (63) is
preserved for all t ≥ 0 if it holds at t = 0.

3. With H1 = ĤF z0,c = Ĥ|FH0 |−1 > 0, the first result above yields (67)–(68).
Moreover, with the second result above, (63) yields (66).

Last, motions remain sufficiently smooth for changing to material coordi-
nates without more constraint than in Prop. 4.2.

We have thus obtained a 2D system for the shallow flows of UCM fluids
which is a natural viscoelastic extension of the standard Saint-Venant system
(for the shallow flows of Newtonian fluids), and which we term Saint-Venant
Maxwell (SVM in short). Let us now show that the system of equations is a
useful symmetric-hyperbolic system of conservation laws.
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Proposition 4.3. Smooth solutions to (54)–(55)–(61)–(67)–(68)–(66) i.e. to

∂t(HU) + divH

(
HU ⊗U +

(g
2
H2 + GεAccH3

)
I − GεHFHAH(FH)T

)
= −gH∇Hzb − kHU

∂tH + divH(HU) = 0

∂t(HF
H) + divH(HU ⊗ FH −HFH ⊗U) = 0

∂t(HA
H) + divH(HUAH) = H

(
((FH)TFH)−1 −AH

)
/λ

∂t(HA
cc) + divH(HUAcc) = H

(
H−2 −Acc

)
/λ

(69)
are equivalently solutions to (54)–(55)–(58)–(59) (our former formulation in [11]
of a viscoelastic Saint-Venant system for Maxwell fluids) when νε = Gελ > 0
and the latter is complemented by (61)–(66), or to a Lagrangian description in
material coordinates using U ◦ΦH

t = ∂tΦ
H
t , FH ◦ΦH

t = ∇HΦH
t when moreover

(62) holds with H|FH | = Ĥ > 0 constant. Furthermore, they satisfy

∂tE + divH

(
U(E +

g

2
H2) + GεH(Σzz −ΣH) ·U

)
= −kH|U |2 − gHU ·∇Hzb −HD (70)

with GελD = tr ΣH + tr(ΣH)−1 + Σzz + (Σzz)−1 − 6 ≥ 0 and

E =
H

2

(
|U |2 + gH +

(
tr ΣH + Σzz − log(Σzz|ΣH |)

))
. (71)

Proof. The equivalence between the Eulerian descriptions of viscoelastic 2D
Saint-Venant flows for Maxwell fluids can be seen e.g. on introducing

cH = FHAH(FH)T czz = H2Acc > 0 (72)

which can be thought as the first-order approximation (i.e. the depth-average)
of the conformation tensor c classically used for the viscoelastic modelling of
polymeric flows, recall section 2.3. On noting cH = λΣH/νε+I, czz = λΣzz/νε+
1, and starting from the system of conservation laws, one obtains

∂tH + divH(HU) = 0

∂t(HU) + divH(HU ⊗U + (gH2/2 + GεHczz)I − GεHcH) = −kHU − gH∇Hzb

∂tcH +U ·∇HcH − (∇HU)cH − cH(∇HU)T = (I − cH)/λ

∂tczz +U ·∇Hczz + 2czz divH U = (1− czz)/λ
(73)

which is obviously equivalent to the 2D system proposed in [11] as an extension
of the 1D viscoelastic system in [10] when it is complemented by (61)–(72).

Reciprocally, the quasilinear system (73) complemented by (72)–(61) rewrites
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as the system of conservation laws (69) i.e.

∂t(HU
i) + ∂j(HU

jU i + (gH
2

2 + GεH3Acc)δi=j − GεHF iαAαβF
j
β) = −HkU i − gH∂izb

∂t(HF
i
α) + ∂j(HU

jF iα −HF jαU i) = 0

∂tH + ∂j(HU
j) = 0

∂t(HA
αβ) + ∂j(HU

jAαβ) = H(|F h|−2σαα′σββ′F
k
α′F

k
β′ −Aαβ)/λ

∂t(HA
cc) + ∂j(HU

jAcc) = H(H−2 −Acc)/λ
(74)

in coordinates using α ∈ {a, b}, i ∈ {x, y} (note that adding (72),(61) was not
necessary in 1D [10]). Moreover, if Piola’s identities (62) hold and H|FH | = Ĥ
then one has the equivalent Lagrangian description

∂tU
i + ∂α

(
(gH2/2 + GεH3Acc)σijσαβF

j
β − GεF

i
βAβα

)
= −kU i − g∂izb

∂tF
i
α − ∂αU i = 0

∂tH
−1 − ∂α(U jσjkσαβF

k
β ) = 0

∂tA
αβ = (|FH |−2σαα′σββ′F

k
α′F

k
β′ −Aαβ)/λ

∂tA
cc = (H−2 −Acc)/λ

(75)

using fields functions of material coordinates (defined in a reference configuratio
of the body) – i.e. for the sake of clarity we abusively used the same notation
in (75) as in the Eulerian description (74), omitting ◦ΦH

t .
Last, one easily computes the following balance in the Lagrangian description

∂t

(
1

2

∑
i

|U i|2 +
1

2
gH +

1

2
Gε
(
F iαA

αβF iβ +H2Acc
))

+ ∂α

(
U i
(

(
g

2
H2 + GεH3Acc)σijσαβF

j
β − GεF

i
αA

αβ
))

= −k|U |2 − U i(∂izb) + (δαβ − F kαF kβAαβ)/λ+ (1−H2Acc)/λ (76)

hence (70) in spatial coordinates on noting

(∂t +UH ·∇H) log |F iαAαβF iβ | = (∂t +UH ·∇H) log |cH |

= tr
(

(cH)−1(∂t +UH ·∇H)cH

)
= 2(divH U) + (tr(cH)−1 − 2)/λ (77)

(∂t +UH ·∇H) log(H2Acc) = c−1
zz (∂t +UH ·∇H)czz

= −2(divH U) + (c−1
zz − 1)/λ (78)

and x+ x−1 ≥ 2, ∀x > 0.

Remark 1 (Saint-Venant extension to weakly-sheared RANS models). Despite
the similarity between (54)–(55)–(66)–(58)–(59) and the 2D system in the recent
work [23] that extends Saint-Venant to weakly-sheared RANS models, the latter
has no known conservative formulation as opposed to the former. This is a
well-known “apparent similarity” between RANS and Maxwell equations, see
e.g. [56].
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Proposition 4.4. Smooth solutions to (69) with AH ∈ S++(Rd×d), Acc > 0
are in bijection with smooth solutions q = (H,HU , HFH , HY H , HY cc) to

∂t(HU) + divH

(
HU ⊗U +

(g
2
H2 + GεAccH3

)
I − GεHFHAH(FH)T

)
=

− gH∇Hzb − kHU
∂tH + divH(HU) = 0

∂t(HF
H) + divH(HU ⊗ FH −HFH ⊗U) = 0

∂t(HY
H) + divH(HUY H) = −HY H

(
ZH − Y H

)
Y H/λ

∂t(HY
cc) + divH(HUY cc) = H

(
H−2(Y cc)−3 − Y cc

)
/4λ

(79)

when AH = (Y H)−
1
2 , Acc = (Y cc)4 is defined componentwise by identifica-

tion with the square-root matrix-inverse of Y H = Y αβeα ⊗ eβ ∈ S++(Rd×d),

ZH := (AHFH(FH)T )−1 + (FH(FH)TAH)−1, and we recall H|FH | = Ĥ > 0.
Furthermore, for some algebraic term D̃ without sign a priori, the functional

Ẽ =
H

2

(
|U |2 + gH +

(
tr ΣH + Σzz + tr

(
Y HY H

)))
(80)

strictly convex in q ∈ A+
H := {H > 0 , Y H = (Y H)T > 0 , Ycc > 0} satisfies

∂tẼ + divH

(
U(Ẽ +

g

2
H2) +H(Σzz −ΣH) ·U

)
= −kH|U |2 − gHU ·∇Hzb −HD̃ . (81)

Thus Ẽ defines a mathematical entropy for (79), (81) defines a strictly convex
extension for (79), and (79) is a symmetric-hyperbolic system of conservation
laws on the open set A+

H ≡ {H > 0 , AH = AH > 0 , Acc > 0}.
Proof. It is a lengthy but straightforward computation to show the bijection
between smooth solutions, i.e. the equivalence between (69) and (79). Next,
recalling Godunov-Mock theorem [25], it suffices to show that Ẽ is (jointly)
strictly convex in q i.e. the Lagrangian energy Ẽ/H is (jointly) strictly convex
in (H−1,U ,FH ,Y H , Y cc), recall e.g. [8]. Now, to that aim, note that Ẽ/H is
the sum of (a) |U |2/2 strictly convex in U , plus (b) gH +GεH2(Y cc)−4 strictly
convex in (H−1, Y cc) ∈ (R+

∗ )2 – compute for instance the Hessian matrix(
2gH3 + 6µH4Acc −2µH3A

3/4
cc

−2µH3A
3/4
cc 2µH2A

1/2
cc

)
–,

and (c) tr(FH(Y H)−
1
2 (FH)T )+tr

(
Y HY H

)
which is strictly convex in (FH ,Y H)

on A+
H as we already proved (for any dimension !) in Prop. 3.3.

Corollary 4.3. Consider the SVM system (79)

∂tq + ∇qFi(q)∂iq = B(q) (82)

with the smooth functionals Fi, B. For all state q0 ∈ A+
H , and for all per-

turbation q̃0 ∈ Hs(R2) in Sobolev space Hs with s > 2 such that q0 + q̃0 is
compactly supported in A+

H , there exists T > 0 and a unique classical solution
q ∈ C1([0, T )× R2) to (82) such that q(t = 0) = q0 + q̃0.

Furthermore, q − q0 ∈ C0([0, T ), Hs) ∩ C1([0, T ), Hs−1).
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Proof. The proof is the same as Cor. (3.2) in the general (non shallow) case.

To our knowledge, Cor. 4.3 is the first well-posedness result for the Cauchy
problem of a 2D viscoelastic Saint-Venant system with Maxwell fluids. More-
over, note that the structure of the 2D viscoelastic Saint-Venant system is sim-
ilar to the 3D full UCM system of Section 3.2. Then, damping can be similarly
expected on large time for E, in a similar non-standard way since E is different
from Ẽ yielding a convex extension of SVM. And numerical difficulties with
standard discretization can also be expected. However, note (71) simplifies to

E =
H

2

(
|U |2 + gH +

(
tr ΣH + Σzz − log(Acc|AH |)

))
(83)

here on using the incompressibility condition H|F h| = Ĥ.
Last, recalling that our full UCM formulation is a viscoelastic extension of

polyconvex elastodynamics, note that our 2D viscoelastic Saint-Venant system
is obtained from a different reduction procedure than e.g. shell and plate models
from (standard) elastodynamics. It uses non-standard boundary conditions for
elastodynamics (i.e. free-surface on top of the layer). It may thus be interesting
to study applications of the non-standard, apparently new, 2D reduction of
(standard) elastodynamics in the formal limit λ→∞ whenAH , Acc is constant.

4.3 Illustrative flow examples

To probe the viscoelastic Saint-Venant-Maxwell model (69) in a context, it is
useful to first imagine simple flows in idealized settings.

For instance, let us look for a 1D shear flow U ◦ΦH
t = ∂tΦ

H
t ,F

H ◦ΦH
t =

∇HΦH
t where ΦH

t (a) = a+X(t, b)ea is a solution to the Lagrangian description
(75) for t, a ∈ R, b > 0 using X(t, b = 0) = ∆XH(t), ∆X > 0, and ΦH

t (a) = a
if t ≤ 0. We denoted H(t) ≡ 1t>0 Heaviside step function.

Such a 1D solution with |FH | = 1 = H/Ĥ has already been considered using
various incompressible viscoelastic flow models, of course. AssumingAH(a) = I
if t ≤ 0, one gets with Aaa(t, b) = 1 + |∂bX|2, Aab(t, b) = −∂bX, Abb = 1:

AH =

∫ t

0

ds M ′(t− s)Aα,βea ⊗ eb M(τ) = e−τ/λ .

When ∇Hzb = 0 and k = 0, it naturally leads, for the displacement X(t, b), to
the same “Stokes first problem” as e.g. in K-BKZ theory

∂2
ttX(t, b) = Gε∂2

bbX(t, b) + Gε
∫ t

0

ds M ′(t− s)∂2
bbX(s, b) t, b > 0 .

Then, on recalling ∂2
bbX(t, b) = 0 = ∂tX(t, b) when t ≤ 0, we solve

∂tX(t, b) = Gε
∫ t

0

ds M(t− s)∂2
bbX(s, b) t, b > 0

using Laplace transform X̂(ω, b) =
∫∞

0
dt e−ωtX(t, b) [14, p.197] and obtain:

X(t, b = λ
√
Gεy) = ∆X

e−y + y

∫ t
λ

y

dre−r
I1

(√
r2 − y2

)
√
r2 − y2

H(t− b/
√
Gε)

(84)

24



Figure 1: Solution X/∆X of the Stokes first problem given by (84) as a function
of y = b/λ

√
Gε at t/λ ∈ {.1, .2 . . . .7} using numerical integration.

where I1 denotes the fist-order modified Bessel function of the first kind.
That is, to probe (69) in hydraulics, one could first try to apply the 1D

solution above e.g. to the flow generated in a shallow reservoir by sudden
longitudinal displacements of a flat wall, choosing

√
Gε > 0 as the front speed

and λ > 0 so that the amplitude decays like in Fig. 1 on small times. But
letting alone the assumptions about the dynamics, the assumed 1D kinematics
is a strong limitation for application to real flows. And the new systems proposed
in this work should definitely improve the latter limitation !

Now, to probe (69) in a more realistic multi-dimensional setting, one may
want to first compute simple multi-dimensional solutions possessing symmetries.
For instance, using cylindrical coordinates (R,Θ) and (r, θ) for both the material
and spatial frames, one may want to compute supposedly axisymmetric (also
called azimuthal or rotational) r = R, θ = Θ + ψ(t, R) shear waves [27]:

−R|∂tψ|2 = ∂RS
rR + (SrR − SθΘ − κSθR)/R (85)

∂2
ttψ = R∂RS

θR + 2SθR (86)

with κ(t, R) := R∂Rψ, SrR(t) uniform in space, and

SθR = κ−
∫ t

0

dse
s−t
λ κ , SθΘ =

∫ t

0

dse
s−t
λ κ2 − κ

∫ t

0

dse
s−t
λ κ .

But even if such axisymmetric solutions exist, they do not seem easily
constructed anyway. In practice, it is easier to numerically simulate multi-
dimensional shear waves with a generic discretization method. This will be the
subject of future specialized works. Recall indeed that standard discretization
methods need to be adapted, so as to generically simulate SVM on large times
with the dissipative inequality as a stability property for the discrete system
(indeed, the latter inequality does not correspond to the convex extension of
the symmetric-hyperbolic system).

25



5 Conclusion

In this work, we have derived new symmetric hyperbolic systems of conservation
laws to model viscoelastic flows with Upper-Convected Maxwell fluids, either 3D
compressible or 2D incompressible with hydrostatic pressure and a free surface.
The systems yield the first well-posedness results for causal multi-dimensional
viscoelastic motions satisfying the locality principle (i.e. information propagates
at finite-speed) as small-time smooth solutions to Cauchy initial-value problems.

The systems also suggest a promising route to unify models for solid and fluid
motions. Like K-BKZ theory for viscoelastic fluids with fading memory, they
extend standard symmetric-hyperbolic systems (polyconvex elastodynamics and
Saint-Venant shallow-water systems). However, they are formulated differently,
with the help of an additional material metric variable. Now, using the same
methodology, other viscoelastic models with a K-BKZ integro-differential for-
mulation could in fact be similarly formulated as systems of conservation laws.
Moreover, varying the relaxation limit of the additional material metric variable
should yield (symmetric-hyperbolic formulations of) many possible flow models
in between elastic solids and fluids, like elasto-plastic models. New rheological
extensions of the polyconvex elastodynamics and Saint-Venant shallow-water
systems will be studied in future works.

To precisey apply our new system, in hydraulics in particular, future works
shall also consider numerical simulations. Note then that standard discretization
methods shall first be adapted like e.g. in [13] to handle large-time motions,
since the physical energy functional that dissipates is not the strictly convex
functional yielding a strictly convex extension.

References

[1] S. Benzoni-Gavage and D. Serre. Multi-dimensional hyperbolic partial dif-
ferential equations. First order systems and applications. Oxford University
Press, 2007.

[2] B. Bernstein, E. A. Kearsley, and L. J. Zapas. A study of stress relaxation
with finite strain. Transactions of the Society of Rheology, 7(1):391–410,
1963.

[3] B. Bernstein, E. A. Kearsley, and L. J. Zapas. Thermodynamics of perfect
elastic fluids. Journal of Research of the National Bureau of Standards
Section B Mathematics and Mathematical Physics, 68B(3):103, 1964.

[4] Eugene C. Bingham. Fluidity and plasticity. Mcgraw-Hill Book Com-
pany,Inc., 1922.

[5] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager. Dynamics of
Polymeric Liquids, volume 1: Fluid Mechanics. John Wiley & Sons, New
York, 1987.

[6] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager. Dynamics
of Polymeric Liquids, volume 2: Kinetic Theory. John Wiley & Sons, New
York, 1987.

26



[7] Javier Bonet, Antonio J. Gil, and Rogelio Ortigosa. A computational frame-
work for polyconvex large strain elasticity. Comput. Methods Appl. Mech.
Engrg., 283:1061–1094, 2015.

[8] François Bouchut. Entropy satisfying flux vector splittings and kinetic BGK
models. Numerische Mathematik, 94:623–672, 2003. 10.1007/s00211-002-
0426-9.

[9] François Bouchut. Nonlinear stability of finite volume methods for hyper-
bolic conservation laws and well-balanced schemes for sources. Frontiers in
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