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Abstract The present paper introduces a new elastoplastic
beam model for reinforced concrete based on a higher-order
beam model previously developed [1]. Steel and concrete
are both defined as elastoplastic materials. The beam model
represents the concrete body whereas rebars are given a spe-
cific discretization. A Rankine criterion is used for concrete
in both tension and compression, and a closed-form solution
for the local projection of the trial stress on the yield surface
is formulated. Steel rebars are modelled with 1D bar ele-
ments and added to the global stiffness of the concrete beam
model. The kinematics of the higher-order beam model is
enriched by a systematic method with displacement modes.
This extension of the kinematics leads to local accuracy and
yields results comparable to 3D computations. The present
reinforced concrete model is validated through a set of case
studies. Implemented within the software programs of the
company Strains Engineering, the objective is to develop a
fast computing and efficient model that can be directly used
by engineers.

Keywords Plasticity · Higher-order beam models ·
Reinforced concrete · Rankine criterion

1 Introduction

The company Strains Engineering develops practical and
time-efficient numerical tools for engineers.Within the frame-
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work of the development of a software for bridge analysis,
Strains Engineering elaborates new beam models for com-
mon construction materials such as steel and reinforced con-
crete and with the support of the Navier laboratory. The
reinforced concrete model presented in this paper is part of
these developments.

The development of a beammodel for reinforced concrete
is complex and faces three main issues. The first difficulty
arises in the definition of the constitutive behaviour. Many
models of various complexity have been proposed to describe
the global and local behaviour of concrete whereas theory
of plasticity is almost always used for the material definition
of steel. The second difficulty lies in the definition of the
kinematics and formulation of the beam model. The beam
element considered here should account for axial, shear and
bending responses and for their interactions. Finally, the me-
chanical connection between steel and concrete is singular
because of the material contrast and needs regularization.

The first important feature is the definition of the con-
crete constitutive behaviour. Indeed high stresses in concrete
lead to the apparitions of cracks in both tension and compres-
sion and has an impact on the strain-stress curve. First, we
observe softening which is comparable to a negative hard-
ening. Second it causes damage [2]. Three types of concrete
models can be distinguished: damage models, plastic models
and plastic-damage models. Damage models efficiently cap-
ture the stiffness degradation in the structure but they cannot
represent the irreversible deformations [3, 4, 5]. By contrast,
plastic models cannot capture the effect of microcracks on
the Young modulus but they are suitable for the descrip-
tion of the irreversible deformations they cause [6, 7, 8].
The majority of models therefore consider both damage and
plasticity. Most of them are developed with isotropic damage
law [9, 10]. Anisotropic damagemodels have been developed
but their numerical application is much more complex [11].
Numerical applicability of concrete models quickly suffers
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from complex constitutive behaviours. Indeed without regu-
larization techniques, the softening phase in the strain-stress
response leads to mesh-dependent solutions. Moreover, in
case of softening, both damage and plastic models can lead
to multiple discontinuous solutions.

The approach adopted in this paper to overcome this dif-
ficulty is the theory of plasticity without softening in order
to provide a simple and robust concrete model as a first step.
It is however important to mention that the present model
allows the introduction of more complex constitutive laws.
The Rankine yield criterion is chosen for both tension and
compression because of its simplicity and its usage in the
engineering community [12, 13]. A new closed-form pro-
jection of the trial stress on the yield surface offering fast
integrations of the local equilibrium equations is also pre-
sented. The aim of the present model is obviously not to
provide a representation of the micro-cracks in concrete, but
to yield accurate kinematic descriptions of loaded reinforced
concrete structures. Assuming that the degradation of the
stiffness in compression is not very important and that con-
crete strength in tension is very low, the use of a damage
parameter may be reasonably neglected. Based on the previ-
ous remarks on softening, the choice is made not to consider
negative hardening. The main limitation of this approach is
the infinite energy the beam can dissipate without restriction.
Consequently the present model adopts a fracture energy ap-
proach in order to limit the energy dissipation in tension.
Given the high strength of concrete in compression, the en-
ergy dissipation in compression will not be an issue in most
cases.

The second originality of this paper is the definition of
a kinematically accurate beam model. A most natural way
to define an elastoplastic beam model is to define the con-
stitutive law directly in terms of generalized variables. It
requires a preliminary analysis for the computation of the
linear and non-linear diagrams of stress-resultants: axial and
shear forces, bendingmoment and torque [14, 15, 16] or even
additional kinematic descriptors [17, 18, 19, 20]. If several
stress-resultants are considered, their linear and non-linear
interactions should therefore be also considered. By solving
the non-linear problem in terms of 1D generalized stress at
each longitudinal integration points, this approach prevents
costly local integrations and provides fast computations [21].
Stress-resultant models are frequently used to study the ulti-
mate load of frames [22] but have also been used for other
slender structures such as bridges [5]. However the compu-
tation of the stress-resultants interactions can turn out to be
tough. Bui and al. [23] choose not to explicitly consider the
interaction between shear and bending in their beam element
but to represent it through the assembly of two elements. The
main limitation of these models is their poor local accuracy
since they are limited by the beam theory assumptions and
use 1D plastic or damage description.

The common way to improve local accuracy is to use
multi-fibers beam models. The beam cross-section is dis-
cretized in layers for 2D-beams or in fibers for 3D-beams.
One of the first mention of multi-fibers model can be found
in the book of Owen and Hinton [24]. These models have
since widely been used for linear and non-linear analysis
of beam structures. Thanks to its cross-sectional discretiza-
tion, a multi-fibers model is suitable for describing non-
homogeneous structures such as reinforced concrete beam:
some fibers are associated with the concrete properties while
others are associated with steel properties thus representing
longitudinal rebars. Cross-sectional rebars cannot properly
be represented with multi-fibers model. However concrete
can be given a modified constitutive law considering the ef-
fect of confinement. This model is an intermediate solution
between the macroscopic approach of a single beam ele-
ment and the microscopic approach of a 3D finite element
solution. Indeed it provides a microscopic description of the
cross-sectional behaviour of the structure while benefiting
from the simplified kinematics.

The simplest kinematics is the Euler-Bernoulli kinemat-
ics [25, 26, 27] where each cross-section remains plane and
normal to the deformed longitudinal axis. It provides an
efficient and fast-computing model that accounts for axial
and bending effects. However the simple assumptions of the
Euler-Bernoulli beam model fails to take shear effects into
account. This model is therefore not relevant as soon as shear
effects are significant.

For this reason, many developments have been made us-
ing the Timoshenko beam model that assumes the cross-
section is not necessarily normal to the deformed longitudi-
nal axis. Consequently, it introduces a uniform shear strain
through the beam cross-section. Mazars et al. used this kine-
matics to develop a multi-fibers beam element accounting
for shear and torsion for two damage models [28]. As a re-
sult, the inclusion of shear effects in the fibers kinematics
provides far more accurate damage fields and leads to new
failure mechanisms. This approach has therefore been used
to study reinforced concrete frames for shear failure analy-
sis [23, 22, 29] or cyclic loading [30], and a careful analysis of
the numerical implementation was achieved [31, 32]. How-
ever the uniform shear strain introduced with Timoshenko
kinematics cannot satisfy the free boundary conditions on
the cross-section.

More generally, taking properly interaction between bend-
ing moments, shear forces, as well as torsion requires the
enrichment of the kinematics with warping functions and
was suggested for instance in [33, 34, 35]. However, when
material non-linearity such as plastic flow or damage is acti-
vated, stress redistribution occurs and the initial kinematics
may not remain relevant. In this direction, an elaborated
cross sectional analysis was suggested by [36, 37, 38]. This
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approach yields remarkably accurate results but is computa-
tionally costly.

In order to preserve local accuracy of the element and
to get a better description of macroscopic forces, the ap-
proach adopted in the present paper is to use a higher-order
elastoplastic beam model. First developed for elasticity in
[39], it has been extended to eigenstrains [40] before being
adapted to the case of elastoplasticity [1]. The kinematics is
enriched thanks to a systematic method with displacement
modes computed on the 2D cross-section of the structure.
These modes bring local accuracy and can easily describe
higher-order shear effects aswell as bending or torsion.When
required, the kinematics may be updated on the fly according
to inelastic strains which occurs in the 3D body [1].

The third issue in the definition of a reinforced concrete
beam model is the description of the mechanical connec-
tion between steel and concrete. In most reinforced concrete
beam models, the numerical description of rebars is often
dependent on the definition of the beam model like in the
multi-fibers models described previously. In the present ap-
proach, the higher-order beam model represents only the
concrete body. Steel rebars are therefore added as embedded
elements and considered as 1D bars following the kinemat-
ics of the higher-order beam. They aremeshed independently
from concrete which affords a wide range of reinforcement
layouts.

The organization of the paper is based on the three issues
devised previously. Section 2 is dedicated to the definition
of the concrete material: constitutive behaviour, yield cri-
terion and local projection algorithm on the yield surface
are presented. Section 3 provides a brief description of the
beam model. Steel is then similarly defined in Section 4 and
the kinematic connection between concrete and steel rebars
is presented. A validation procedure of the present model is
then carried out in Section 5. TheApplication to a rectangular
beam is achieved in Section 6 and a fracture-based approach
defining the domain of validity of the computed strain-stress
curves is introduced. We finally look at the influence of the
mesh refinement in Section 7.

2 A closed-form formulation of Rankine criterion for
concrete

This section introduces the Rankine yield criterion and de-
vises a closed-form projection of the trial stress on the yield
surface. This projection prevents from iterative algorithms
used for return mapping such as the closest point projection
algorithm and improves the time-efficiency of the model.

2.1 The Rankine yield criterion

Investigating the shape of the space of plastically-admissible
states for concrete materials, Kupfer carried out a series of
bi-axial tests [41]. This way, he identified the shape of the
yield surface in plane stress. While the limit of compres-
sion of concrete was identified as a certain value in uni-axial
stress, the limit was about 16% higher in bi-compression,
giving the shape of a square rounded in the bi-compression
zone. These experimental results are considered as a refer-
ence in civil engineering. However, civil engineers are more
likely to use a yield criterion were the compression and ten-
sion limits of concrete are constant in uni-axial, bi-axial,
or tri-axial compression. This assumption brings simplicity
in the analysis of the numerical results, particularly for the
identification of the inelastic zones. The Rankine criterion is
defined in principal stress as:

− 52 ≤ Σ1, Σ2, Σ3 ≤ 5C (1)

where 52 , 5C ≥ 0 are respectively the compression and ten-
sion yield limits of the material and Σ8 for 8 = 1..3 are the
three principal stresses. This criterion is dating from 1876,
and is represented by a cube in principal stress. An isotropic
hardening with a very low hardening modulus � is intro-
duced. This choice avoids potential strain localisation prob-
lems that can occur with perfect plasticity. Consequently, the
usual Rankine criterion defined in Equation (1) is modified
as follows:

− 52 − �? ≤ Σ1, Σ2, Σ3 ≤ 5C + �? (2)

where � is the hardening modulus and ? is a positive scalar
internal variable. The space of plastically-admissible states
associated to the criterion defined in Equation (2) is therefore
described by the 6 following inequalities:

51 = Σ1 − 5C − �? ≤ 0,
52 = Σ2 − 5C − �? ≤ 0,
53 = Σ3 − 5C − �? ≤ 0
54 = −Σ1 − 52 − �? ≤ 0,
55 = −Σ2 − 52 − �? ≤ 0,
56 = −Σ3 − 52 − �? ≤ 0

(3)

The Rankine criterion defined by inequalities of Equation (3)
must be considered in the framework of multisurface plastic-
ity. Multisurface plastic criteria are often used when it comes
to represent concrete behaviour (see [42, 43]). Considering
the stress 2 and a plastic variable ?, the space of plastically
admissible states Ef is defined in stress-space by:

Ef = {(2, ?) ∈ S × R+ | 58 (2, ?) ≤ 0,∀8 ∈ [1, ..., <]} , (4)

where S is the space of the 3D stresses. The definition of the
functions 58 fully characterizes Ef .
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The plastic strain 9p is computed from the definition
of the flow rule. The present flow rule is associative and
therefore expresses 9p from the yield criterion functions 58
as:

¤9p =
<∑
8=1
¤W8 m 58
m2

, (5)

where ¤W8 are non-negative scalars called consistency param-
eters. They must comply with the Kuhn-Tucker complemen-
tary conditions:

¤W8 ≥ 0, 58 (2, ?) ≤ 0, ¤W8 58 (2, ?) = 0, (6)

and the consistency requirement:

¤W8 ¤58 (2, ?) = 0 (7)

Note that, whereas the limit surface may not be differen-
tiable, each 58 may be chosen regular enough. Hence, as
W8 ≥ 0, Equation (5) reveals that the plastic flow is in the
sub-differential of the limit surface.

2.2 Closed-form projection on the yield surface

The method used for the local integration of the consti-
tutive equation is a classic return map algorithm: given
a strain increment Δ9, an elastic trial stress 2trial

=+1 is for-
mulated. If (2trial

=+1, ?=) ∈ Ef , the stress is plastically ad-
missible and (2=+1, ?=+1) = (2trial

=+1, ?=). If (2trial
=+1, ?=) ∉

Ef , (2=+1, ?=+1) is the closest point projection (see [44])
of(2trial

=+1, ?=) onto the boundary mEf in the norm induced
by the metric M defined by:

M =

(
Y 0
0 �

)
, (8)

where Y = I−1 is the linear elastic compliance matrix of
concrete which expression using Voigt notation is given by:

Y =
1
�

©­­«

1 −a −a 0 0 0
−a 1 −a 0 0 0
−a −a 1 0 0 0
0 0 0 2(1+a) 0 0
0 0 0 0 2(1+a) 0
0 0 0 0 0 2(1+a)

ª®®¬
(9)

Thus, (2=+1, ?=+1) is the state which satisfies the following
minimum principle:

(2=+1, ?=+1) = arg min
(2, ?) ∈ Ef

{
1
2



2trial
=+1 − 2



2
Y
+ 1

2
� (?= − ?)2

}
,

(10)

where ‖2‖Y =
√
2 : Y : 2. The Lagrangian associated with

this linearly constrained problem is expressed:

L(2, ?,ΔW8) =1
2



2trial
=+1 − 2



2
Y
+ 1

2
� (?= − ?)2

+
6∑
8=1
ΔW8 58 (2, ?),

(11)

and the corresponding Kuhn-Tucker optimality conditions
are:

mL
m2

����
=+1

= Y :
(
−2trial

=+1 + 2=+1
)
+

6∑
8=1
ΔW8

m 58

m2

����
=+1

= 0,

(12)

1
�

mL
m?

����
=+1

= ?=+1 − ?= −
6∑
8=1
ΔW8 = 0, (13)

58 (2=+1,?=+1) ≤ 0, ΔW8 ≥ 0, ΔW8 58 (2=+1, ?=+1) = 0.
(14)

Equations (14) are theKuhn-Tucker complementary con-
ditions. Given that Y is isotropic and 5 (2, ?) as well, it can
be shown that solving Equation (12) is equivalent to solving
its counterpart equation in principal stress, that is:

Ŷ ·
(
−�trial

=+1 + �=+1
)
+

6∑
8=1
ΔW8

m 58

m�

�����
=+1

= 0 (15)

where � = (Σ1, Σ2, Σ3)) are the principal stresses expressed
as a vector and

Ŷ =
1
�

( 1 −a −a
−a 1 −a
−a −a 1

)
. (16)

The derivatives of the second term are defined by:
(
m 58

m�

)
9

=
m 58

mΣ 9
. (17)

TheKuhn-Tucker optimality conditions defined by Equa-
tions (13), (14) and (15) are now considered. Assuming
that (�trial

=+1, ?=) ∉ Ef , 26 situations can be distinguished:
(�=+1, ?=+1) is on one of the 6 plans of the criterion, (�=+1, ?=+1)
is on one of the 12 edges of the criterion or (�=+1, ?=+1) is
on one of the 8 vertices of the criterion.

The 26 local minimum values of (�=+1, ?=+1) and their
associated consistency parameters ΔW8 are given in closed
form solutions. The solution of Equation (10) is therefore
the minimum of these 26 values. A simple change of basis
yields the expression 2=+1.

The 2D interpretation of the projection of (�trial
=+1, ?=)

onto the yield surface is shown in Figure 1 in the absence
of hardening (� = 0). Two cases are represented. In the first
case, the trial stress is in front of a plane and � is projected
on this plane. In the second case the trial stress is in front of
a corner and � is projected on this corner. The orthogonal-
ity represented in Figure 1 must be understood as the norm
induced by the metric M defined in Equation (8).

Once the projected state (2=+1, ?=+1) is obtained, the
plastic strain increment Δ9p can be directly computed from
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Σn

Σtrial
n+1

Σn+1 Σn+1

Σtrial
n+1

Σn

case 1
case 2

Eσ

Fig. 1 Orthogonal projection of the trial elastic stress on the yield
surface (2D)

the trial stress and its projection. Indeed, the trial stress is
expressed:

2trial
=+1 = 2= + I : Δ9 (18)

therefore the projected stress 2=+1 can be written:

2=+1 = 2= + I : (Δ9 − Δ9p) = 2trial
=+1 − I : Δ9p (19)

leading to the expression of the increment of plastic strain:

Δ9p = Y :
(
2trial
=+1 − 2=+1

)
(20)

2.3 Computation of the algorithmic elastoplastic tangent
stiffness tensor

We denote byCact the array containing the indices of the satu-
rated constraints, that is the constraints forwhich 58 (2=+1, ?=+1) =
0. Then, according to [44], the algorithmic tangent stiffness
tensor in the case of multi-surface plasticity is expressed as:

I
ep
=+1 = J=+1 −

∑
(8, 9) ∈ Cact

J=+1 : m2 58,=+1 ⊗ J=+1 : m2 5 9 ,=+1
m2 58,=+1 : J=+1 : m2 5 9 ,=+1

(21)

where J=+1 is defined as:

J=+1 =

Y +

∑
8 ∈ Cact

ΔW8m
2
22 58,=+1


−1

(22)

The derivatives m2 58,=+1 and m2
22 58,=+1 are necessary for the

computation of the tangent stiffness tensor. The criterion is
expressed in the principal stress space and its derivatives
according to the general stress are required. The chain rule
yields the following expression:

m 58

m2
=
m 58

m�
:
m�
m2

(23)

It can be shown that the second derivative has the following
expression:

m2 58

m22 =
m�
m2

:
m2 58

m�2 :
m�
m2
+ m 58
m�

:
m2�

m22 (24)

The first and second derivatives m� 58 and m2
�� 58 are easy to

obtain since the yield surface is analytically expressed in the
principal stress. In particular, m2

�� 58 = 0 for plans, leading to
the new relation:

m2 58

m22 =
m 58

m�
:
m2�

m22 (25)

We denote by n1, n2 and n3 the three eigenvectors of 2
corresponding to the 3 eigenvalues Σ8 . The term m2� is then
expressed:

(m2�); ?@A =
{ (n; ⊗ n;)@A if ; = ?

0 otherwise , (26)

and for deriving m2
22Σ we have:

mn;
mf@A

=

3∑
?=1, ?≠;

n; ⊗ n? + n? ⊗ n;

Σ; − Σ? · n; (27)

Equation (27) leads to the expression of m22�. The proof
of Equation (26) can be found for example in [45]. The
derivatives m2 58 and m2

22 58 are computedwith Equations (25)
to (27).

3 Definition of the beam model

The concrete body is numerically represented by a higher-
order beammodel, detailed in this section. The description of
steel rebars and their kinematic connection with the concrete
body is described in details in Section 4.

3.1 The AELD beam model

This paper is based on the elastoplastic beam model devel-
oped in [1] called theAsymptotic ExpansionLoadDecompo-
sition (AELD) beam model. This higher-order elastoplastic
beam model does not need any a priori knowledge on the
solution of the problem to extend its kinematics.

The displacement modes are computed by using the
asymptotic expansion method. This model was first intro-
duced for elastic beams loaded by external forces in [39] and
extended to the case of elastic beams loaded by eigenstrains
in [40] before its adaptation to elastoplasticity [1].

This higher-order elastoplastic beam model was pre-
sentedwith �2-plasticity. Its adaptation to the concrete elasto-
plastic behaviour presented in Section 2 is straightforward.
The main features of this model are briefly recalled.
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3.2 Description of the beam kinematics

We consider a beam occupying the prismatic domain Ω.
Considering a point (G1, G2, G3) ∈ Ω, its 3D displacement
u can be expressed in the following separate form between
in-section coordinates and longitudinal coordinates:

u(G1, G2, G3) =
=∑
8

û8 (G1, G2)
<∑
9

# 9 (G3)D̃8, 9 (28)

where û8 are 3D-displacement modes defining the kinemat-
ics, # 9 are the longitudinal interpolation functions and D̃8, 9
are the discrete degrees of freedom. The discrete degrees of
freedom vector is denoted by ũ. = and < are respectively the
number of displacement modes and the number of interpo-
lation functions.

The displacement modes û8 are defined on the 2D cross-
section of the beam. The displacement modes belong to 2
different categories of modes. Some modes only depend on
the geometry of the cross-section. The participation of the
loads applied on the structure is captured by other modes,
specific to the forces or the eigenstrains considered.

The computation of the modes specific to the geometry
and to the forces applied is presented in [39] and the elasto-
plastic model is presented in [1]. For boundary conditions
different from clamped extremities (including linear or sur-
facic supports) additional modes specific to the boundary
conditions are also added in the collection of modes. These
modes are used in the elastic and elastoplastic examples pre-
sented in Section 5. The boundary conditions are imposed
by considering the supports as external forces imposed on
the structure and the corresponding new degrees of freedom
are introduced. The method is presented in [46].

3.3 Numerical approximation

The modes are computed on a transverse mesh of the cross-
sectionS. The discretization used is the same as the one used
in [40] and [1]: the modes are computed by using Lagrange
quadratic triangle finite elements. Strain and stress are com-
puted and integrated at the 3 Gauss points of each triangle
element and the modes of displacement are computed at the
nodes of the transverse mesh. NURBS basis functions are
used for the longitudinal interpolation. The reasons motivat-
ing this choice and a study on NURBS shear locking are
presented in [40]. We also define a set of #B longitudinal
integration points for the integration of these interpolation
functions.

3.4 Local integration of the equilibrium equations

The local constitutive equations are integrated over thewhole
3D body. A 3D discretization is therefore necessary. This 3D

discretization is based on the transverse and longitudinal
meshes already defined: the local equations are integrated
on a set of cross-sections all transversely discretized with
the cross-sectional mesh described previously and placed at
the longitudinal positions of the #B longitudinal integration
points (Figure 2a). Assuming a generalized displacement in-
crement Δ ũ, the corresponding 3D strain increment Δ9 is
computed at the Gauss points of each one of the #B cross-
sections. This way, the beam is decomposed into sections
where the local equations are integrated and the states vari-
ables are computed.Anatural choice is to place these sections
at the positions of the longitudinal integration points of the
interpolation functions.

x1

x2

Ωc

x3

(a) Beam discretization with integration sections representing concrete

x3

x1

x2

Ωc

u1

u2

P1

P2

(b) Bar finite element representing the rebar

Fig. 2 Numerical modeling of the concrete body and the steel rebar

4 Modelling of steel rebars and kinematic connection
with concrete

4.1 Kinematic modelling and elastoplastic behaviour of
steel rebars

Steel rebars are often modelled in reinforced concrete mod-
els by using homogenization methods. Benefiting from the
small cross-sectional dimensions of a rebar compared to the
dimensions of the concrete beam and from the larger Young
modulus of steel compared to concrete, we can reasonably
consider rebars as 1D bar elements.

The young modulus of rebars is �st and the elastoplastic
tangent moduli is denoted by �epst . Steel rebars are consid-
ered to be elastoplastic material with an isotropic hardening
and 1D Von-Mises criterion. The isotropic hardening mod-
ulus of rebars is denoted by �st, and their yield limit 5 stH .
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4.2 Kinematic connection of steel and concrete

Concrete and steel have been assigned an elastoplastic be-
haviour. We now need to describe the kinematic relation be-
tween the two materials. The choice adopted in the present
paper is to connect steel to concrete by expressing explicitly
the degrees of freedom of rebars in terms of the degrees of
freedom of concrete.

The case of a single rebar embedded in a concrete body is
first considered. The concrete body is modelled by the beam
discretization as represented in Figure 2a, and the rebar is
modelled by a bar finite element as represented in Figure 2b.
The 3D displacement of any point x ∈ Ωc is expressed in
Equation (28). As a result, the displacement of the nodes
of the steel rebar %1 and %2 are expressed in terms of the
concrete degrees of freedom as follows:

u: =
=∑
8

ũ8 (G:U)
<∑
9

# 9 (G:3 )D̃8, 9 , (29)

where G:U and G:3 are the positions of the two nodes (: = 1, 2).
In other words, the steel rebars are driven by the degrees

of freedom of concrete and both global tangent stiffness ma-
trice of concrete [Qep,c] and of steel

[
Qep,st] are expressed

according to this kinematics.
This methods would not be efficient if the concrete body

were modelled by 3D elements as the rebar would create
load concentration on some nodes of the 3D mesh, resulting
in displacement singularities. In our beam model, displace-
ments are prescribed by the beam kinematics as expressed
by Equation (29). Therefore no singularities occurs unless it
is already present in a displacement mode.

This method enables the description of rebars with any
orientation in the 3D global axis system. Therefore, very
complex reinforcements can be described by the model.
Moreover, since the kinematics adopted for the model is
the kinematics of concrete, we avoid unwanted bond-slip is-
sues. It describes correctly the cohesion between rebars and
concrete aggregates, assuming that no cracking or debonding
occurs.

For the description of reinforcement schemes, rebars are
discretized into bar elements. The nodes numerically repre-
sent the structural embedding of steel in concrete. The total
number of bar elements of rebar 8 is denoted by =elem (8)
where 8 ∈ [1, =rebar] and =rebar is the total number of rebars.
The global tangent stiffness matrix can be decomposed on
each bar element of each rebar:

[Qep] = [Qep,c] +
=rebar∑
8=1

=elem (8)∑
9=1

[
Qep,st] 8, 9 (30)

It is important to note that the discretization of rebars is
totally independent from the discretization of the concrete
volume. The local integrations of equilibrium equations of

concrete and steel can therefore be processed in any order. A
mesh sensitivity study is carried out in Section 7.

5 Validation of the model

The model has been described in the previous sections with
the Rankine criterion. This criterion being not implemented
in 3D in classic finite elements softwares (Code_Aster,Abaqus...),
a comparison of a solution using the present model with a
reference solution using a different yield criterion would not
be relevant. Therefore we suggest to validate and evaluate
our model with a step-by-step procedure. First, the model
is tested on a case study in elasticity and compared with a
reference solution. This first step validates the inclusion of
rebars in the model presented in Section 4. Then, the global
elastoplastic model is validated by using a Von-Mises crite-
rion for both concrete and steel. This widely used criterion
affords an easy comparison with a solution computed with
another finite element software. For the final application in
the next section, the Von-Mises criterion will be replaced by
the Rankine criterion.

5.1 Reinforced T-beam in elasticity

In order to validate the integration of rebars in the elastoplas-
tic model, a first case study is conducted in linear elasticity.
The results are compared with a 3D reference model com-
puted with the finite element software Code_Aster.

5.1.1 Description of the case study

We consider a 10 m-long T-beam simply supported at each
end. The section of the T-beam studied is presented in Fig-
ure 3. The load is applied over the entire width of the table,
between the longitudinal positions G3 = 4.5mand G3 = 5.5m
as shown in Figure 4.

d = 0.1 m

d

d
e

e

e

e = 0.086 m
0.2

0.2

0.8

1.4

0.1

3.6

0.2

0.4

Fig. 3 Geometry of the T-beam section (dimensions in m)
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F

Fig. 4 Surfacesmodeling rebars asmembranes in the reference solution
and description of the load

The beam is reinforced with 2 × 3 longitudinal rebars
and 11 frames between G3 = 0 and G3 = !. The boundary
conditions and the longitudinal reinforcement are shown in
Figure 5. The left support is applied on the entire width of the
cross-section and between G3 = 0 m and G3 = 0.1 m where
it restrains the three global translations. The right support
is applied on the entire width of the cross-section between
G3 = 9.9 m and G3 = 10 m where it restrains the transverse
translations (DU = 0).

L = 10 m

1 mx3

x2

ui = 0 uα = 0

Fig. 5 Boundary conditions and reinforcement of the T-beam

� a

concrete 20 GPa 0.2
steel 200 GPa -

Table 1 Material properties of the linear elastic T-beam

The Young modulus � and the Poisson’s ration a of each
material are gathered in Table 1. The diameters of longitu-
dinal rebars and frames are respectively 16 mm and 10 mm.
All the distances indicated in Figure 3 are given with respect
to the central axis of rebars.

The beam is loaded by a force � = (×% with ( = 3.6 m2

and % = 50 kPa (Figure 4).

5.1.2 Reference solution

The reference solution is computed with the finite element
software Code_Aster. The concrete is modelled with 3D ele-

ments. The elements used here are tetrahedronwith quadratic
interpolation and 10 Gauss points (Tetra10).

1D bar elements should not be used in 2D and 3Dmodels
to represent steel rebars: 1D elements create load concentra-
tion on nodes of the 3Dmesh and lead to displacement singu-
larities. Consequently, rebars are modelled in the reference
solution with anisotropic membrane elements [47] where the
strong direction corresponds to the bar direction.Membranes
are defined by surfaces based on the 3D mesh and are conse-
quently meshed with triangles. The 2D interpolation of the
triangles is also quadratic (T6 elements).

Longitudinal rebars are modelled with two horizontal
membranes represented in blue in Figure 4 and the frames
are modelled with two vertical membranes represented in
red. Each membrane is characterized by a section per unit
length (in <2/<) and by the orientation of rebars.

The mesh characteristics for the reference solution are
presented in Table 2.

Sol. concrete longi. rebars frames
Ref. 146067 Tetra10 2136 T6 8908 T6
Beam 477 T6 × 81 21 bars 12 bars

Table 2 Mesh characteristics for the reference and beam solution

5.1.3 The beam solution

Only one cross-sectional mesh is used in the beam model.
For the present case study, the cross-section of the T-beam
is meshed with 477 quadratic triangles (Figure 6).

Fig. 6 Cross-sectional mesh of the T-beam for the beam solution

The longitudinal interpolation functions are third-order
NURBS and are defined by 21 knots evenly distributed along
the longitudinal axis of the beam. The NURBS are integrated
with Simpson’s method. To ensure an exact integration, 5
integration sections are considered between each knot and
the element is therefore locally integrated on 81 integration
section also evenly distributed along its axis. The kinematics
of the element is composed of 28 displacement modes: 12
specific to the geometry, 6 modes specific to the load applied
and 10 modes specific to the boundary conditions. Figure 7
presents the 6 Saint Venant displacement modes as well as
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the displacement modes related to the applied load up to its
fifth longitudinal gradient.

The longitudinal transverse frames are respectively dis-
cretized with 21 and 12 bars, the corresponding nodes are
detailed in Figures 3 and 5.

5.1.4 Results

Once the problem solved, the 3D displacement of the beam
solution can be easily reconstructed according toEquation 28.
The norm of the 3D displacement computed by the beam so-
lution and the reference solution are compared in Figure 8
(the same scale is adopted for both deformed structures and
the magnification factor is 500).

Beyond the consistency of the two solutions, the ability of
the beam solution to capture cross-sectional displacements
can be here underlined. Indeed, the lowering of the wings of
the T-beam is well described by the beam model thanks to
its higher-order kinematics.

An interesting feature of the solution adopted for the
modelling of rebars in the beam element is that it yields a
3D viewing of the rebars displacement as shown in Figure 9

In order to better estimate the validity of the beam so-
lution, the displacement and stress of rebars computed from
each solution are compared in Figures 10 and 11. Rebars
being not individually modelled in the 3D model, we use
results computed from the reference solution at the positions
corresponding to rebars defined in Figures 3 and 5. Hence
in Figure 10, the vertical displacement of two rebars (de-
nominated ST_0 and ST_1) are presented as function of the
longitudinal position. The beam solution shows consistent
results when compared to the reference solution. The values
computed from the beam solution are slightly higher in ab-
solute value: a maximum relative distance of 2.1% and 2.2%
is respectively observed for ST_0 and ST_1.

The axial stress of ST_0 and ST_1 are presented in Fig-
ure 11. The beam solution matches with the reference solu-
tion: the relative distance between the two solutions at mid-
span of the beam (G3 = 5 m) are respectively 1.7% and 1.6%
for ST_0 and ST_1. The stress computed from the reference
solutions shows oscillations close to the supports. These nu-
merical effects are related to the stiffness contrast between
steel and concrete are regularized by the beam model.

Finally, the components of stress in concrete computed
from the two solutions at mid-span of the beam (G3 = 5 m)
are compared. Only fUV and f33 are presented in Figure 12,
the shear stresses fU3 vanishing by symmetry.

5.2 Reinforced T-beam in elastoplasticity

Section 5.1 has shown the validity of the present reinforced
concrete model in elasticity. The model is now studied in

elastoplasticity with a Von-Mises criterion for both concrete
and steel.

5.2.1 Description of the case study

The case study is the same as the one described in Sec-
tion 5.1.1. Only the material properties are changed and pre-
sented in Table 3, where the yield stressf0 and the hardening
modulus � of each material are also given. A Von-Mises cri-
terion and an isotropic hardening is adopted for both steel
and concrete.

� a f0 �

concrete 20 GPa 0.2 10 MPa 2 GPa
steel 200 GPa - 300 MPa 20 GPa

Table 3 Material properties of the elastoplastic T-beam

The beam is loaded by a force � (C) = ( × %(C) with
( = 3.6 m2. % takes values between 0 and 700 kPa. The load
is discretized into 5 increments between 0 and 500 kPa and
into 10 increments between 500 kPa and 700 kPa.

5.2.2 Results

During this case study, the yield stress of concrete and the
yield stress of rebars are successively reached. This test pro-
vides therefore a good assessment of the accuracy of the
elastoplastic beam element presented here.

In order to better evaluate the elastoplastic response of
the structure computed from the beam solution, the verti-
cal displacement of rebars ST_0 and ST_1 are presented in
Figure 10. The response of both rebars matches very well
with the reference solution. A maximum relative distance of
7.5 10−3 and 7.1 10−3 is respectively observed for ST_0 and
ST_1 between both solutions.

The maximum vertical displacement at mid-span of the
beam is represented as function of the load applied in Fig-
ure 14. This displacement corresponds to the point located at
the middle bottom of the section. As shown in the figure, the
non-linearity of the elastoplastic behaviour is well captured
by the model. The yield stress of concrete is reached after the
second increment while the yield stress of steel is reached
after the fourth. At the last increment, the beam solution
shows a displacement 1.83% larger than the reference solu-
tion. This is consistent with the fact that the beam element
appears to be slightly less stiff than the reference solution
(see Figures 10 and 13). Differences between results may be
explained by the different modelling adopted for rebars in
each solution.

The stress in rebar ST_0 at G3 = 5 m is shown in Fig-
ure 15. Three stages are easily identifiable. Both materials
are first elastic and the stress progresses linearly in the rebar.
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Fig. 7 The 6 Saint Venant displacement modes (#3 longitudinal traction, "U Bending moments, "3 torsion warping, +U shear forces warping)
and the 6 modes specific to the applied load.

Fig. 8 Deformed shape computed from the beam solution (left) and from the reference solution (right) in elasticity

Fig. 9 3D viewing of the displacement of rebars (absolute displacement
in meters)

Once concrete has reached plastification, the stress increases
faster until the yield stress of steel is reached. The stress then
progresses beyond the yield stress according to the plastic
modulus. Since the ratio between the Youngmodulus of steel
and concrete is 10 and the concrete yield stress is 10MPa, the

concrete yield stress is reached when the stress is 100MPa in
steel. The yield stress of eachmaterial is numerically reached
between two increments as shown in Figure 15. A finer time
discretization should make the three different stages even
more distinct.

As long as rebars are elastic, the relative distance between
the two solutions is about 10−2. Once the steel yield stress
is reached a relative distance of 2.5 10−2 is observed. This
gap could be reduced by a finer discretization of rebars (see
Section 7).

Finally, the stresses atmid-span of the beam are presented
in Figure 16 at the last increment. The normal stress f33 is
the highest stress in value and the best described by the
beam solution when compared to the 3D model. The axial
stress f22 is the less satisfactory, but it is consistent with the
observation made in elasticity in Figure 12.
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ST_0

(a) Vertical displacement in rebar ST_0

ST_1

(b) Vertical displacement in rebar ST_1

Fig. 10 Vertical displacement computed from the beammodel in rebars
ST_0 and ST_1 and from the reference model

6 Application of the Rankine yield criterion to a
rectangular beam

The numerical behaviour of the present reinforced concrete
elastoplastic beam element has been validated in the previous
section. The Rankine yield criterion presented in Section 2
is now used instead of the Von-Mises criterion and applied
to a doubly clamped rectangular beam.

6.1 Description of the case study

We consider a rectangular beam for the present case study:
the cross-section of the beam is a rectangle of dimensions
0.4 m × 1.3 m (Figure 17). The beam is 10 m long and

ST_0

(a) Longitudinal traction in rebar ST_0

ST_1

(b) Longitudinal traction in rebar ST_1

Fig. 11 Longitudinal traction computed from the beammodel in rebars
ST_0 and ST_1 and from the reference model

clamped at both ends. As a consequence the reinforcement
is modified. The cross-sectional reinforcement of the section
is as follows : 3 longitudinal rebars are placed at the bottom
of the section all along the beam while 3 rebars are placed at
the top of the section between G3 = 0 m and G3 = 3.5 m and
their symmetric counterparts are placed between G3 = 6.5 m
and G3 = 10 m. This reinforcement is motivated by the sign
shift of the bending moment.

� a �

Concrete 20 GPa 0.2 2 Pa
Steel 200 GPa - 2 GPa

Table 4 Material properties of the rectangular beam
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(a) f11 computed from the beam solution (left) and from the reference solution (right) in kPa

(b) f22 computed from the beam solution (left) and from the reference solution (right) in kPa

(c) f33 computed from the beam solution (left) and from the reference solution (right) in kPa

(d) f12 computed from the beam solution (left) and from the reference solution (right) in kPa

Fig. 12 Stress computed at mid-span of the beam (G3 = 5 m) from the beam solution and the reference solution
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ST_0

(a) Vertical displacement in rebar ST_0

ST_1

(b) Vertical displacement in rebar ST_1

Fig. 13 Vertical displacement computed from the beammodel in rebars
ST_0 and ST_1 and from the reference model at the corresponding
positions at the last increment

The material properties of the reinforced beam are pre-
sented in Table 4. The plastic modulus of concrete is chosen
very low since it is only used to avoid potential strain localiza-
tion problems that can occur in perfect plasticity. The plastic
modulus of steel has been chosen lower than actual values in
order to emphasize the non-linearity of the global response of
the structure. The traction strength of concrete is 5C = 2MPa
and its compression yield strength is 52 = 40 MPa. Rebars
still follow aVon-Mises criterion with an isotropic hardening
and their yield stress is 300 MPa.

The load is decomposed into 30 identical increments of
�C = 0.1 MPa. The final load is therefore �30 = 3 MPa.

Fig. 14 Maximum vertical displacement at mid-span of the beam

ST_0

plastification of rebars

steel yield stress

concrete yield

plastification of concrete

Fig. 15 Stress in ST_0 at mid-span as function of the load applied

6.2 The beam solution

The cross-section is meshed with 102 quadratic triangular
elements. As for the previous case study, the interpolation
functions are third-order NURBS defined by 21 knots evenly
distributed along the beam axis. The local integration is
processed on 81 integration sections also evenly distributed
along the longitudinal axis. The kinematics is composed of
18 displacement modes: 12 modes specific to the geometry
and 6 modes specific to the applied load.

6.3 Results

The maximum vertical displacement (corresponding to the
point located at the middle bottom of the mid-span section)
is presented in Figure 18. The successive plastification of
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(a) f11 computed from the beam solution (left) and from the reference solution (right)

(b) f22 computed from the beam solution (left) and from the reference solution (right)

(c) f33 computed from the beam solution (left) and from the reference solution (right)

(d) f12 computed from the beam solution (left) and from the reference solution (right)

Fig. 16 Stress computed at mid-span of the beam (G3 = 5 m) from the beam solution and the reference solution
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F

(1) (2)

e = 0.086m
d = 0.1m

3.5m 4.5m 5.5m 6.5m
ee d d

e

e

Fig. 17 Longitudinal reinforcement, boundary conditions and cross-sectional reinforcement for G3 ∈ [0, 3.5] ∪ [6.5, 10] (1) and G3 ∈ [3.5, 6.5]
(2)

concrete and steel are identified during the computation and
indicated on the figure. Three stages can be distinguished:

1. Concrete and steel are elastic
2. Concrete is plastic and steel is elastic
3. Concrete and steel are plastic

The stage before the plastification of concrete is short but can
be identified in the figure. Once concrete has reached 5C , the
loads are transmitted to the clamped end mainly by rebars.

first plastification of concrete

first plastification of steel

cracking at mid-span

Fig. 18 Maximum vertical displacement computed from the beam
model

In Figure 19 is shown the stress computed in rebar ST_3
as function of the load applied on the beam. The stress repre-
sented is computed close to the clamped end (G3 = 0.25 m)
where plastification first occurs. The three stages listed above
are clearly illustrated. Both materials are elastic until the
yield stress of concrete is reached. Since the ratio between
the respective Young modulus of steel and concrete is 10
and because the traction yield strength of concrete is 2 MPa,
stress in steel is 20MPa when 5C is reached in concrete. Once
concrete plastifies, the rebar remain elastic but concrete no

ST_3

cracking at mid-span

plastification of the rebar

plastification of concrete

steel yield stress

Fig. 19 Stress in rebar ST_3 closed to the clamped extremity (G3 =
0.25 m)

longer participates in the load transmission, leading to a new
linear stage with a more pronounced increase of the steel
stress. Eventually the stress in the rebar reaches the yield
stress (300 MPa). The evolution of the stress is then limited
due to the low plastic modulus adopted.

Figure 19 shows a satisfactory local response of the
model. The global response of the structure to the applied
load is illustrated in Figures 20 and 21. Principal stresses
of concrete are computed in the whole body and the com-
pression eigenvalue (the lowest eigenvalue) is represented
in Figure 20 and the traction eigenvalue (the highest eigen-
value) is represented in Figure 21. Both figures show the
same lateral face of the beam at the 6 successive time steps
{C5, C10, C15, C20, C25, C30}.

The minimum eigenvalues of the 6 time steps take values
between −41 MPa and 1 MPa, describing the distribution of
compression stresses in the structure. They describe clearly
the development of two struts in the structure from the load
application to the extremities. The compression limit is first
reached at the clamped end at C15 and then at the load applica-
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tion area at C20. The compression plastified area (in blue) then
expands and the compression increases in the two struts. This
load transmission was expected and highlights the ability of
the present beam model to represent 3D phenomena.

Themaximumeigenvalues take values between−0.2MPa
and 2.2 MPa, describing the distribution of tensile stresses
in the concrete body. The traction limit 5C is reached at time
step C5. This is consistent with Figures 18 and 19 where
the plastification of concrete seems to occur at C2. The three
expected areas in traction are distinctly described. These
traction eigenvalues are complementary and consistent with
compression eigenvalues observed in Figure 20. The empty
areas correspond to eigenvalues out of scale.

t5

t10

t15

t20

t25

t30

x2

x3

Fig. 20 Evolution of minimum stress eigenvalues in the concrete body
(in kPa)

Finally the normal stress computed at mid-span of the
beam (G3 = 5 m) is presented in Figure 22. The lower half of
the section reaches traction limit at time step C5. Compression
then gradually expands in the upper half until the limit be-
tween traction and compression zones reaches at time step C30
the vertical coordinate G2 = G4 such that f33 (G2 > G4) = 5C

and f33 (G2 < G4) = − 52 .
By showing the expected response of the structure, this

case study confirms the relevance of the present reinforced
concrete elasotplastic beam model. Figures 20 and 21 show
that the introduction of the Rankine yield criterion as de-
scribed in Section 2 leads to a convincing 3D global response
of the beam. Moreover, it illustrates the great ability of this
beammodel to describe 3Dphenomena such as the formation
of the struts exhibited here.

t5

t10

t15

t20

t25

t30

x2

x3

Fig. 21 Evolution of maximum stress eigenvalues in the concrete body
(in kPa)

t5 t10 t15 t20 t25 t30

Fig. 22 Evolution of the normal stress f33 (kPa) in the mid-span cross-
section (G3 = 5 m)

6.4 Validity of the elastoplastic model

Themain limitation of an elastoplastic approach is the infinite
energy it can dissipate after yield stress is reached. Concrete
is known to be a brittle material in tension and it cannot
sustain high strains. Based on the results presented in the
previous section, we suggest a fracture mechanics approach.
Considering the traction eigenvalues presented in Figure 21,
we identify in Figure 23 the concrete volume+crack in traction
under the load application as the area most likely to suffer
from cracking. The energy needed to open a vertical crack in
the middle of this area is compared to the energy dissipated
in +crack. This fracture mechanism approach has been used
for instance in [48] for the study of peeling off in a reinforced
concrete beam submitted to three points bending. It presents
the advantage to be not dependent on the mesh provided the
solution is converged. Indeed, as long as the volume +crack is
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prescribed and there is no strain localisation, the converged
solution is unique.

h
Vcrack

x3

x2

Fig. 23 Definition of the potential cracked area

Based on Figure 22, we consider a crack opening ofwidth
1 = 0.4 m and height ℎ = 0.8 m (approximately 60% of the
height of the cross-section). The energy needed to open this
crack is thus:

�crack = � 5 × 1 × ℎ (31)

where � 5 is the fracture energy. According to the norm
CEB-FIP [49], � 5 is defined as follows:

� 5 = � 50

(
52

10

)0.7
. (32)

� 50 is a reference fracture energy based on the size of the ag-
gregates in concrete. Considering an average size of 20 mm,
� 50 = 36 N.m/m2 and Equation (31) yields:

�crack = 30.4 N.m (33)

This energy must be compared to the energy dissipated in
+crack defined by:

�diss (C) =
∫ C

0

∫
Vcrack

2(g) : ¤9p (g)d+dg (34)

The time-discretization of Equation 34 then yields:

�diss (C=) =
=∑
:=1

[∫
Vcrack

2= : Δ9p=d+
]
. (35)

The computed dissipated energy is presented in Fig-
ure 24. As long as concrete is elastic, no energy is dissipated
since 9? = 0. Once concrete stress reaches 5C , the energy
increases linearly, reflecting a linear evolution of the plas-
tic strain increments (neglecting hardening of concrete, the
stress can be considered as constant). The energy drastically
increases as soon as plastification in rebars is too important.
The energy needed to open the crack is reached at C25.

Time step C25 corresponding to the crack opening at mid-
span of the beam has been indicated in Figures 18 and 19. All
the time steps subsequent to C25 can therefore be considered
not valid.

Ecrack

Fig. 24 Energy dissipated in +crack as function of the load applied

7 Mesh sensitivity

7.1 Case study

The beam element and rebars have different and independent
meshes, as mentioned in Section 4.2. This section is dedi-
cated to the study of its mesh sensitivity. To this purpose,
we consider the three points bending case with the I-section
presented in Figure 25. This example is taken from the val-
idation document [50] of the documentation of the finite
element software Code_Aster.

30 cm

10 cm10 cm
5 cm

20 cm

5 cm

20 cm

12,5 cm

12,5 cm

8 cm 8 cm

10 cm

Fig. 25 Geometry and mesh of the I-section

Since we study the mesh sensitivity of the model, the
beam is purely elastic. Themechanical properties of the beam
are summarized in Table 5. The total sections of the upper
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and lower rebars are respectively 3.10−4 m2 and 4.10−4 m2.
The applied load is � = 10 kN. No transverse frames are con-
sidered here: the beam being elastic, it is free from collapse
in shear.

� a

concrete 21 GPa 0.2
steel 210 GPa -

Table 5 Material properties

7.2 The beam solution

The kinematics of the beam model is composed of 23 dis-
placement modes. The transverse mesh is fixed and com-
posed of 144 quadratic triangles, as shown in Figure 25.

The longitudinal mesh sensitivity of the beam element
is investigated by changing the number of knots defining
the interpolation functions mentioned in Section 3.3. The
number of knots =knot takes different values from 2 to 40.
Simultaneously, rebars mesh sensitivity is studied with dif-
ferent discretizations: rebars are successively meshed with
=node = 3 to =node = 15.

7.3 Results

The data observed is the maximum vertical displacement Dm
at mid-span of the beam. Results are presented in Figure 26
where the Euler solution is also represented and corresponds
to the following value of DEulerm :

DEulerm =
�!3

48(��)tot , (36)

where (��)tot = �� + �st�st. The numerical value is DEulerm =

2.2735 10−3 m. Because of the enriched kinematics of the
AELD beam model, it is less stiff than the Euler solution.

The more numerous the knots are, the less stiff the so-
lution is. Thus, for a given value of =node, the values of Dm
monotonically increase from =knot = 5 to =knot = 40. On
the opposite, the more numerous the nodes are, the stiffer
the element is. Thus, for a given value of =knot, each curve
monotonically decreases from =node = 3 to =node = 15. The
increase of the number of nodes in each rebar increases the
connectivity between the degrees of freedom of the beam
element, and consequently makes it stiffer.

Considering the value Dm (=knot = 40, =node = 15) as the
converged value, we define the relative error of each curve
to the converged value by:

41 (=knot) =
����Dm (=knot, 15) − Dm (40, 15)

Dm (40, 15)

���� (37)

Euler solution

Fig. 26 Maximum vertical displacement for different meshes refine-
ments

=knot 5 10 20
41 1.39 10−2 5.43 10−3 1.72 10−3

Table 6 relative error to the converged value Dm (40, 15)

The values of 41 for each curve are presented in Table 6
which shows that the relative error to the converged value is
lower than 1% for =knot = 10.

In order to determine the minimum number of nodes in
each rebar, the following relative error is defined:

42 (=knot, =node) =
����Dm (=knot, =node) − Dm (=knot, 15)

Dm (=knot, 15)

���� (38)

where Dm (=knot, 15) is considered as the reference for a given
value of =knot. The results are gathered in Table 7.

The number of nodes corresponding to the first value
of 42 lower than 1% is =node = 6 for each curve. For the
present study it can therefore be considered as a sufficient
discretization of rebars. This reference case study for mesh
sensitivity is a good predictor for the refinement to adopt,
even though a similar study should be carried out in plasticity
to be completely exhaustive.

7.4 Computational time

In terms of computational time, a full computation as the
ones presented in this paper takes about 10 minutes. But it
worth noticing that the program is not fully optimized yet
and that it could therefore still be significantly improved.
The computation of the modes is very fast: it never exceeds
a few seconds even when the model reaches 30 modes. The
two most time-consuming parts of the program are the com-
putation of the plastic strain on each integration point of
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=node 4 6 8 10 12 14
42 (5, =node) 2.12 10−2 6.24 10−3 2.76 10−3 1.31 10−3 5.80 10−4 1.45 10−4

42 (10, =node) 1.84 10−2 6.90 10−3 2.88 10−3 1.29 10−3 5.75 10−4 1.44 10−4

42 (20, =node) 1.93 10−2 6.88 10−3 3.15 10−3 1.58 10−3 5.73 10−4 1.43 10−4

42 (40, =node) 1.99 10−2 7.29 10−3 3.29 10−3 1.57 10−3 7.15 10−4 4.29 10−4

Table 7 relative error of each curve for its own converged value

every integration section and the assembly of the tangent
stiffness matrix. Indeed those two parts involve loops on all
the integration sections and every Gauss points of the 2D
cross-section. However those two pieces of the program are
very suitable for parallel computing which would drastically
improve the global computational performance.

The computational performance of the algorithm must
be interpreted and compared to a full 3D model by analyzing
the total number of degrees of freedom. The total number of
degrees of freedom of the model we present is the multipli-
cation of the number of knots of our longitudinal discretiza-
tion by the number of modes plus the number of nodes of
the reinforcement rebars. In the first example presented the
number of knots and modes are respectively about 21 and
28 and the number of nodes in the rebars is 320, giving a
total number of about 900 degrees of freedom. The mesh of
the full 3D computation used as a reference solution in the
paper is based on the characteristic size of the triangles used
for the mesh of the 2D cross-section of the beam solutions.
It results in a very refined mesh (146067 tetrahedrons). A
mesh more equivalent to our beam element could be made
of 477 triangles on a 2D cross-section extruded in 80 prisms
along the longitudinal axis, thus respecting the longitudinal
discretization used by our beam element for the integration
of the 3D plastic strains. This represents about 40 000 nodes
and therefore 120 000 degrees of freedom only for concrete.

8 Conclusion

This work introduces a new elastoplastic beam model for
reinforced concrete. Both concrete and steel are considered
as elastoplastic materials, however there is no limitation in
the choice of the constitutive behaviour of concrete and more
complex models with damage and softening could be con-
sidered with some adaptation. Concrete is associated with
a Rankine yield criterion and a closed-form projection of
trial stresses on the yield surface was introduced. The con-
crete body is modelled by a kinematically refined elastoplas-
tic higher-order beam model. Steel is associated with a 1D
Von-Mises criterion. Rebars are individually modelled by
1D bar elements fully embedded in the concrete body, which
presents the advantage of enabling various layouts of rebars.
The model was validated through a step-by-step procedure.

The example considered highlights the ability of the
present beam model to represent complex 3D phenomena.

This ability is provided by the enriched kinematics of the
higher-order model considered. The actual failure of the
beam is estimated by a fracture mechanics approach. Based
on the stress distribution in the concrete, the areasmore likely
to crack are identified. The energy dissipated in these areas
are compared to the fracture energy of concrete. Once the
fracture energy is reached, the subsequent computations are
considered not significant. This method is a post processing
and needs a local knowledge of the stress. It could therefore
be improved by implementing a systematic detection of the
fracture mechanisms.

The present work is a first approach for modelling re-
inforced concrete with a rather simple constitutive law. The
introduction of more complex constitutive law such as dam-
age is under investigation. This will allow comparison with
experimental data on reinforced concrete beams.
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