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Abstract 

Whereas size reduction that accompanies new technologies calls for more complex and more 

constrained shapes for foams to be used as seals, ribbons or surface coatings, little is known about the 

mechanics of foam systems characterized by a potentially small number of pores across their thickness 

and possessing parietal or free surface pore layers. Elastic stiffness and rupture stress have been 

measured for open-cell foam ribbons produced thanks to a method allowing to tune finely and 

independently several crucial parameters: ribbon thickness, pore size and solid volume fraction. Results 

reveal that the longitudinal elastic stiffness of foam ribbons increases significantly as the number of 

pores across the ribbon thickness decreases within the range 1-10. This increase is understood through 

the contribution of the parietal layers with respect to the bulk layers. Similarly, rupture stress of foam 

ribbons characterized by narrow pore size distributions increases as a function of the ratio pore 

size/ribbon thickness. All others things being equal, the rupture stress is smaller polydisperse samples 

compared to monodisperse samples. 

 

1. Introduction 
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Polymeric foams are widely used from years in many different fields thanks to their large specific 

surface area, low density, mechanical properties and thermal/acoustic insulation properties [1–4]. Size 

reduction that accompanies new technologies, e.g. microelectronics, calls for more complex and more 

constrained shapes for foams to be used as seals, ribbons or surface coatings. Actually, for damping 

purpose, thin foam layers need to be pasted on the surface of electronic elements, such as smartphone 

screens for example. Within those operating conditions, or during handing stages, such thin foam layers 

are likely to be subjected to strong compression, elongation or shear stresses, and they are expected to 

respond with appropriate damping and elastic properties at low or/and high strains. Although mechanics 

of bulk foam has been the subject of numerous studies, either through compression at both small and 

high strains [1,5–8] or through tension [9–12], mechanical properties of foam ribbons/coatings have not 

been studied so far. 

 

Among fundamental questions raised by such a specific shaping of foams are those related to the 

effect of the potentially small number of bubbles (or pores) across the foam thickness. Note that here 

thin slices cut in bulk foam are not referred to, but instead, foams possessing parietal or free surface 

bubble layers are considered, i.e. foams that have been produced specifically with small thickness. With 

respect to bulk foam, such foams are expected to possess wall-induced structural order, whose range 

depends on bubble size distribution. For example, wall-bounded monodisperses bubbles are known to 

exhibit crystal-like structures over significant number of layers further away from the wall [13–15]. Such 

an order induces significant deviation of mechanical properties with respect to random assemblies of 

monodisperse bubbles [16,17]. A second potential issue comes from the intrinsic structure of the 

parietal bubble layers [18]. The corresponding mechanical feature, if it exists, could contribute 

significantly to the overall mechanical response of wall-bounded foam.  Therefore, one question arises: 

what are the conditions, in terms of foam thickness and bubble size values, for the parietal contribution 

to be significant? 

 

As far as we know, a study of such effects has never been performed before. Here, we focus on 

the mechanical behavior measured for open-cell polymeric foam ribbons within tensile conditions. In 

order to decouple completely the effects of both pore size and ribbon thickness, a dedicated foaming 

method is used to produce systems with fixed values for pore size, ribbon thickness, gas volume fraction 

and elastic stiffness of the solid matrix. Small strain oscillatory experiments are performed to measure 

the elastic stiffness of foam ribbons. Then high strain measurements are performed until rupture. As it 
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will be shown in the following, the longitudinal tensile elasticity of foam ribbons exhibits a significant 

effect of the thickness-to-pore size ratio, regardless of the bubble size distribution, i.e. monodisperse or 

polydisperse. Such an effect is reasonably described by accounting for the contribution of the two 

parietal pore layers. 

2. Materials and methods 
 

2.1. Raw materials 

A polyurethane dispersion (PUD) is used. It is made by mixing an aqueous suspension of 1µm 

surfactant-stabilized polyurethane particles with a cross-linker. The average particle volume fraction is 

𝜑𝑃𝑈𝐷
0 ≈ 55 % (45% water). The density and the shear viscosity of the PUD are 1100 kg/m3 and 𝜇0 ≈ 

1 Pa.s (measured at low shear rate, i.e. 1 s-1) respectively. Surfactant used to stabilize the foam films is 

Tetradecyltrimethylammonium bromide (TTAB). It is used in aqueous solution at a concentration 10 g.L-1 

(approximately tenfold the critical micelle concentration). The surface tension of the foaming solution is 

𝛾 ≈ 0.04 N/m. 

Making the foam ribbons involves coating first solid substrates with thin layer of PUD foam and 

then removing the foam layer. Peeling off from the substrate without damage was found to be allowed 

only silicone coated plastic substrates.  

 

2.2. Production of well-controlled polymer foam ribbons from PU dispersion 

The production method has been published elsewhere [19]. The main steps are presented in Fig. 1 

and can be summarized as follows: 

(1) Precursor aqueous foam is produced from the TTAB solution and nitrogen by using 

microfluidics technics.  Such technics allow for monodisperse bubbles to be produced with targeted size 

𝐷𝑏 ranging between 200 µm and few millimeters. The typical production rate is 10 mL.min-1. Generated 

bubbles are continuously collected into a reservoir (vertical glass column) where the foam gas fraction 

was maintained to a constant value 𝜙0 = 0.920.02. Note that foam coarsening turns out to be 

prevented over the duration of the production step, so monodisperse precursor aqueous foams were 
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obtained. In addition, polydisperse foams were made out from 320 µm monodisperse bubbles (obtained 

as described above), by letting time for the coarsening process to act in the reservoir. 

 (2) After production of the required precursor foam volume, the latter is mixed (in-line mixing) 

with the polyurethane dispersion to obtain fresh PUD foam. The gas volume fraction within the resulting 

PUD foam (and so the solid volume fraction 𝜙𝑆 in the final solid foam ribbon) can be adjusted by tuning 

the ratio of flow rates for the precursor foam (𝑄𝑝𝑓 ) and the polyurethane dispersion (𝑄𝑃𝑈𝐷). It was 

shown in [19] that the final solid volume fraction 𝜙𝑆 can be related to the production parameters 

through: 𝜙𝑆 ≅ 0.6 × 𝑄𝑃𝑈𝐷 (𝑄𝑃𝑈𝐷 + 𝑄𝑝𝑓)⁄ , within the range 0.08 ≲ 𝜙𝑆 ≲ 0.3. 

 (3) Then the PUD foam is solidified by evaporating the water from the fresh foam in a climatic 

chamber during 12h at T = 20°C and relative humidity RH = 40%. Note that the structure of the foam 

appeared to be already set after 30 min in the chamber, but complete water removal requires more 

time, i.e. 12h. 

(4) The dried foam is then cured during 15 minutes at 150°C in order to activate the polymer cross-

linking. Such curing conditions result from compromise made between cross-linking of the polymer 

matrix and temperature-induced partial collapse of the foam structure. 

 

 

Figure 1: Sketch showing the main steps of the method used to produce solid polymer foams from aqueous polyurethane 

dispersion (PUD). (1) The precursor aqueous foam is made by using microfluidics. The bubble/pore size is set at this stage. (2) The 

precursor foam is mixed with the polyurethane dispersion. The PU content is set by volume flow rates of precursor foam and 

PUD. At this stage the shape of the ribbons is set by spreading the fresh PUD foam on a solid substrate. The thickness of the foam 

coating is set by the spreading velocity. (3) The fresh PUD foam is dried for 12h in a climatic chamber. (4) The dried PUD foam is 

cured at 150°C for 15 min in order to activate the cross-linker. The resulting open-cell solid foam coating has pore size 𝐷𝑝 equal 
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to bubble of the precursor foam, whereas thickness e and solid volume fraction 𝜙𝑠 have been set respectively at stages (2) and 

(3). Cutting and peeling off the foam coating allow foam ribbon samples (i.e. two free surfaces) to be obtained, such as the one 

presented to the right. 

 

2.3. Shaping of the PUD foam ribbons 

Foam shaping is made during step (2) described in the previous section (see also Fig. 1). A 

dedicated nozzle of width 30 mm is fed with the fresh PUD foam from the mixing device at a flow rate 

𝑄𝑝𝑓 + 𝑄𝑃𝑈𝐷 and it is allowed to slide onto a silicone-coated plastic liner moved at constant velocity 

thanks to a motorized translation stage (the stage velocity 𝑣 can be set between 0.1 mm.s-1 and to 40 

mm.s-1, with a precision of 0.01 mm.s-1). The thickness 𝑒 of the resulting foam layer was shown [19] to be 

tuned by adjusting the PUD foam flow rate (𝑄𝑝𝑓 + 𝑄𝑃𝑈𝐷) and/or the translation stage velocity (𝑣): 

𝑒 ≅ 50 × (𝑄𝑝𝑓 + 𝑄𝑃𝑈𝐷) 𝑣⁄ . Note that (i) although the gap of the nozzle was not found to set the foam 

thickness (as already said it is set mainly by 𝑣 for a given foam flow rate), foam layers with uniform 

thickness were obtained only for gaps ranging between 0.3 mm and 1.5 mm; (ii) for monodisperse 

samples, layered structures were obtained (as explained in detail in the following), so the observed 

variation for the thickness corresponds to the stair-step curve of the proposed relation. 

 

After a rest period of 24 hours, rectangular samples of surface area 𝑆 = 6.1 mm x 40 mm were cut 

in the foam coating by using a metallic punch form for die-cutting (Instron). Foam ribbon samples were 

obtained by removing (peeling off) those cuts from the liner. Ribbon thickness 𝑒 was measured by 

observation of their cross-section using optical microscopy (Zeiss SteREO Discovery V.8). Mass 𝑚 was 

measured for each sample using a precision scale, providing the sample’s density: 〈𝜌〉 = 𝑚 (𝑆 × 𝑒)⁄ . The 

solid volume fraction was deduced from the density of the PUD matrix 𝜌𝑆: 〈𝜙𝑆〉 = 〈𝜌〉 𝜌𝑆⁄ . 

2.4. Production PUD unfoamed ribbons 

Unfoamed PUD ribbons were produced from the PU dispersion by using a calibrated Mayer rod 

coater on liner. Resulting coating films were then dried at room temperature and cured in an oven at 

150°C during 15 min. Special attention was made for the resulting coating thickness to be of the same 

order of magnitude than the size of the foam network elements, i.e. between 50 and 100 µm. This is 

expected to ensure comparable curing conditions for both unfoamed coatings and foam coatings, and 

therefore comparable polymer cross-linking conditions. Moreover, as PU particles are densely packed 
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together during water evaporation (i.e. after the coating shaping step), any residual anisotropy effect 

from the initial stretching of the PU dispersion is not expected. After a rest period of 24 hours, 

rectangular samples were cut similarly to what was done with the foam coatings, i.e. using a metallic 

punch form for die-cutting. Ribbons were obtained by peeling off the cuts from the liner. Ribbon’s 

thickness was measured with a caliper before performing the mechanical test. With the same purpose, 

Scanning Electron Microscopy (Bruker quanta 400 FEI, tungsten filament, Pt coating 2nm) was used after 

the mechanical test. Density of the unfoamed ribbons was measured to be 𝜌𝑆 = 1.1 g/cm3.  

 

2.5. Pore morphology and foam structure 

Several samples of size close to 1 cm  1 cm were cut within the ribbons and were studied using 

Scanning Electron Microscopy (Bruker quanta 400 FEI, tungsten filament, Pt coating 2nm) and X-ray 

tomography (EasyTom RX Solutions). Thanks to the difference in X-ray absorption between PU and air, it 

was possible to reconstruct contrasted 3D images, i.e. stacks of slices parallel to the ribbon’s plane, 

where the pores were reasonably separated from the polymer matrix. The voxel size was close to 5µm. 

For each slice of height z and thickness equal to one voxel, the solid volume fraction 𝜙(𝑧) was 

determined by dividing the number of voxels corresponding to the polymer matrix are by the total 

number of voxel in the slice. The pores were identified by using the 3D Distance Transform Watershed 

from the MorphoLibJ plugin [20] in the open source software Fiji [21] (see [19] for more details) in order 

to measure the volume 𝑉𝑝 for each pore. The pore size distribution of our samples was therefore 

characterized from the equivalent diameter under the assumption of spherical pore shape (𝐷𝑝 =

√6𝑉𝑝/𝜋3 ).  
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Figure 2: Typical examples of foam ribbon samples made in this study. (a) SEM picture showing the top free surface, where the 

pores of the top layer are open (monodisperse sample, pore diameter: 330µm). (b)  SEM picture showing the pore layer that was 

initially in contact with the substrate as well as the bulk pores (monodisperse sample, pore diameter: 330µm). (c-e) 

monodisperse sample (𝑒 = 830 µm, 〈𝐷𝑝〉 = 330 µm, 〈𝜙𝑠〉 = 0.14): (c) Typical solid volume fraction profile 𝜙𝑠(𝑧) and pore position 

probability density measured across the ribbon’s thickness 𝑒. Dashed curves indicate areas for which solid fraction should be 

considered as an “apparent” value due to the “roughness” at the free top surface of the samples. (d) SEM picture showing a side 

view of the sample. (e) number weighted pore diameter distribution. The solid line represents a normal distribution with 

parameters 𝑚𝑛=330 and 𝜎𝑛=4.8 (respectively the mean and the standard deviation of the size distribution). (f-h) polydisperse 

sample (𝑒 = 2250 µm, 〈𝐷𝑝〉 = 350 µm, 〈𝜙𝑠〉= 0.13): (f) Typical solid volume fraction profile 𝜙𝑠(𝑧) and pore position probability 

density measured across the ribbon’s thickness 𝑒. (g) SEM picture showing a side view of the sample. (h) number weighted pore 

diameter distribution. The solid line represents a log-normal distribution with parameters 𝑚𝑙𝑛=5.65 and 𝜎𝑙𝑛=1 (respectively the 

mean and the standard deviation of the size’s natural logarithm). 

 

Typical examples for the structure of the foam ribbons are presented in Fig. 2. The so-called 

“monodisperse” samples are characterized by a narrow pore size distribution (Fig. 2e). They show 

triangular arrangement of pores at both their top and bottom surfaces (see Fig.2a,b) as well as layered 

arrangement of pores across their thickness (see Fig. 2b,d). This is confirmed by both density profiles and 

bubble positions (such as those presented in Fig. 2c) measured across ribbons’ thickness. This structure 

results from the combination of two effects: planar wall boundary effect and packing properties of 
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monodisperse assemblies of spheres. Note that such a structure was observed for samples counting up 

to six-seven pore sizes across their thickness, but thicker samples showed progressive loss of the layered 

structure, except for areas close to the two planar boundaries. As expected, polydisperse samples do not 

exhibit such a structure, which is shown in Figs 2f-h. Note that all the studied samples are open-cell 

foams (see [article 1] for more details about the size of the apertures connecting the pores). 

2.6. Mechanics  

Dynamical Mechanical Analyzer (DMA Q800 - TAinstrument) was used to measure the tensile 

elastic stiffness of both foam ribbons and solid PUD through oscillatory tension tests. Samples were 

placed between two tension jaws as a static force was applied in order to maintain a tension state 

corresponding to initial strain approximately equal to 0.2%. Sinusoidal deformations were then 

superimposed to the static deformation in order to measure the tensile elastic stiffness within different 

conditions: (1) different strain amplitudes were applied at fixed frequency (1Hz) and, (2) different 

frequencies were studied at constant strain amplitude (0.01%). High strain measurements were 

performed by using a tensile testing machine (Instron 3365) with a 50N force sensor and sample placed 

between two tension jaws. Samples were stretched at a constant strain rate equal to 1.25 × 10−3𝑠−1 

until rupture occurred. 

3. Small strain oscillatory tension 

Typical results for the storage (𝐸′) and loss (𝐸′′) moduli of PU samples are presented on Fig. 3. First 

of all, the mechanical behavior of both unfoamed ribbons and foam ribbons can be reasonably described 

as linear viscoelasticity due to  the linear regime observed for both 𝐸′  and 𝐸′′ at small strain (see Figs 

3a,c). We recall that within our solicitation conditions, a constant tension stress is applied as 

corresponding to a deformation equal to 0.2%, so deformations larger than this value cannot be studied 

(shaded range in Figs 3a,c) . In the following, reported values for 𝐸′ will correspond to a strain amplitude 

𝜀 = 0.01%. It can be seen that (i) 𝐸′ > 𝐸′′ for both unfoamed ribbon and foam ribbon, (ii) solicitation 

frequency has significant effect on those values: 𝐸′ is increased by 50% as frequency is increased by two 

decades (see Figs 3b,d), and (iii) values measured for foam ribbons 𝐸𝑟
′  are almost one order of magnitude 

smaller than values measured for unfoamed ribbons 𝐸𝑆
′ , because of the small amount of PU matrix in the 

foam. 
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Figure 3: Typical measured storage (𝐸′) and loss (𝐸′′) moduli for both unfoamed ribbons and foam ribbons. (a)  Unfoamed 

ribbons: effect of strain amplitude for a fixed frequency (1Hz).The elastic stiffness measured at small strain amplitude is 

represented by 𝐸𝑆
′. (b) Unfoamed ribbons: effect of frequency for fixed strain amplitude (0.01 %). The dotted lines correspond to 

the generalized Maxwell model (see main text for details) with parameters: 𝐸0 = 7.64 MPa, 𝐸1 = 2.33 MPa, 𝐸2 = 1.93 MPa, 𝐸3 = 

1.81 MPa, 𝐸4 = 2.52 MPa, 𝜏1 = 0.02 s, 𝜏2 = 0.12 s, 𝜏3 = 0.55 s, 𝜏4 = 3.37 s. (c) PU foam ribbon (𝜙𝑆 = 0.15, 𝑒 = 0.8 mm, 𝐷𝑝 = 

340 µm): effect of strain amplitude for a fixed frequency (1 Hz). The elastic stiffness measured at small strain amplitude is 

represented by 𝐸𝑟
′ . (d) PU foam ribbon (𝜙𝑆 = 0.15, 𝑒 = 0.8 mm, 𝐷𝑝 = 340 µm): effect of frequency for fixed strain amplitude 

(0.01 %). The dotted lines correspond to the generalized Maxwell model (see main text for details) with parameters: 𝐸0 = 

0.62 MPa, 𝐸1 = 0.25 MPa, 𝐸2 = 0.09 MPa, 𝐸3 = 0.08 MPa, 𝐸4 = 0.09 MPa, 𝜏1 = 0.013 s, 𝜏2 = 0.08 s, 𝜏3 = 0.29 s, 𝜏4 = 1.34 s. 

(e) Elastic stiffness measured at small strain amplitude for foam ribbons (𝑒 = 0.8 mm, 𝐷𝑝 = 340 µm) as a function of solid volume 

fraction 𝜙𝑆 and for several solicitation frequencies 𝑓 within the range 0.1-5 Hz. Solid lines are guides for the eye. 

(f) Dimensionless elastic stiffness for foam ribbons, i.e. data from Fig. 3e for 𝐸𝑟
′(𝜙𝑆, 𝑓) divided by 𝐸𝑆

′(𝑓), as a function of solid 

volume fraction 𝜙𝑆 and for several solicitation frequencies 𝑓 within the range 0.1-5 Hz. Solid line is a guide for the eye. 

 

Viscoelasticity is modeled by using the generalized Maxwell model with 𝑛 Maxwell elements in 

parallel with a spring [22]. Each Maxwell element 𝑖 has characteristic time 𝜏𝑖 = 𝜂𝑖 𝐸𝑖⁄ , where 𝐸𝑖  and 𝜂𝑖  

are respectively the elastic modulus and the viscosity. For oscillatory tension, storage and loss moduli are 

respectively given by relations: 𝐸′(𝜔) = 𝐸0 + ∑ 𝐸𝑖
𝑛
𝑖=1

𝜔²𝜏𝑖²

1+𝜔²𝜏𝑖²
  and 𝐸′′(𝜔) = ∑ 𝐸𝑖

𝑛
𝑖=1

𝜔𝜏𝑖

1+𝜔²𝜏𝑖²
 with 

𝜔 = 2𝜋𝑓 the pulsation. Figs 3b,d show that good agreement can be found within the investigated 

frequency range by using four characteristic times 𝜏𝑖. The latter were found to be very close for both 

unfoamed ribbons and foam ribbons, whatever the thickness and the gas volume fraction of the foam 

ribbons, which means that viscoelasticity observed for foam ribbons can be understood mainly by the 

viscoelastic properties of the PU matrix. Therefore, it turns out to be appropriate to make dimensionless 

the measured elastic modulus for foam ribbons 𝐸𝑟
′ (𝑓) at frequency 𝑓 by dividing by the value measured 
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for the unfoamed ribbons 𝐸𝑆
′(𝑓), i.e. �̃� = 𝐸𝑟

′ (𝑓) 𝐸𝑆
′(𝑓)⁄ . Such a procedure is presented in Fig. 3 for foam 

ribbons characterized by different solid volume fractions 𝜙𝑆: the effect of the solicitation frequency 

observed in Fig. 3e for 𝐸𝑟
′ (𝑓) is removed when considering instead �̃� (see Fig. 3f). In the following, 

effects of parameters  𝜙𝑆, 𝐷𝑝 and 𝑒 will be analyzed through the variation of �̃� = 𝐸𝑟
′ (1𝐻𝑧) 𝐸𝑆

′(1𝐻𝑧)⁄ . 

Fig. 4 shows measured �̃� values for both monodisperse and polydisperse foam ribbons as a 

function of solid volume fraction 𝜙𝑆. Effect of ribbon thickness is presented in Fig. 4a for a fixed pore size 

value. Whatever the solid volume fraction, �̃� decreases as a function of ribbon thickness. As expected, �̃� 

increases as a function of 𝜙𝑆, whatever the ribbon thickness. Such strengthening of foam with the 

amount of solid is usually describes by power laws [1], i.e. �̃� = 𝑎𝜙𝑆
𝑏. Such power law curve has been 

fitted to our data, providing almost constant values for the exponent: 𝑏 ≅ 1.3-1.5. Those values differ 

significantly from the classical Gibson & Ashby behavior for open-cell foam, which is described by 𝑏 = 2. 

The effect of ribbon thickness-to-pore size ratio is presented in Fig. 4b. It is revealed that pore size also 

has significant effect on �̃�. This is a crucial difference with respect to bulk foam elasticity [1]. Results for 

the effect of thickness of polydisperse foam ribbons are presented in Fig. 4c. Similarly to previous 

observations with monodisperse samples, �̃� is found to increase as a function of 𝜙𝑆 but to decrease as a 

function of ribbon thickness. 
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Figure 4: Dimensionless tensile stiffness measured for foam ribbons as a function of solid volume fraction, for different pore sizes 
𝐷𝑝 and ribbon thickness 𝑒 (as indicated in the figures). (a) Monodisperse foam: Effect of ribbon thickness for a fixed pore size. 

Solid lines correspond to fitted power laws, i.e. �̃� = 𝑎𝜙𝑆
𝑏, with 𝑎 = 1.08 and 𝑏 = 1.46 for 𝑒 = 0.3 mm, 𝑎 = 0.74 and 𝑏 = 1.28 for 𝑒 = 

0.8 mm, 𝑎 = 0.86 and 𝑏 = 1.48 for 𝑒 = 1.6 mm. (b) Monodisperse foam: Effect of pore size for a fixed ribbon thickness. Solid lines 
are guides for the eye. (c) Polydisperse foam: Effect of ribbon thickness. 

 

4. High strain mechanics 

Fig. 5a presents typical stress-strain curves obtained for stretching of foam ribbons up to rupture 

at stress 𝜎𝑟
∗. Note that rupture occurs for very large deformations, i.e. typically 500%. Moreover, the 

rupture stress increases while the rupture strain decreases as a function of solid volume fraction. Such a 

behavior is classically observed for bulk elastomeric foams [1]. Fig. 5b shows measured 𝜎𝑟
∗ values for 
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both monodisperse and polydisperse foams with same pore size (i.e. 𝐷𝑝 = 340 µm and 〈𝐷𝑝〉 = 350 µm 

respectively for monodisperse and polydisperse samples) but different ribbon thicknesses: thinner 

ribbons have higher 𝜎𝑟
∗ values. This is similar to the above-reported behavior for the elastic stiffness. We 

stress however that the thinnest polydisperse ribbons represent exception to that behavior due to 

anomalous stress-strain curves (not shown) and early rupture.    

 

 

Figure 5: Large strain deformations of foam ribbons. (a) Typical stress-strain curves obtained for foam ribbons with thickness 𝑒 = 

810  40 µm. The pore size is 𝐷𝑝 = 340 µm for monodisperse samples and 〈𝐷𝑝〉 = 350 µm for polydisperse samples. Note that 

rupture is observed for stress 𝜎𝑟
∗. (b) Rupture stress 𝜎𝑟

∗ as a function of 𝜙𝑆 for both monodisperse (𝐷𝑝 = 340 µm) and polydisperse 

(〈𝐷𝑝〉 = 350 µm) foam ribbons with different thicknesses (as indicated). Solid strait lines are guides for the eye. 

 

5. Discussion 

Results presented in the previous section have shown that, in addition to the effect related to the 

amount of solid matrix, mechanics of foam ribbons depends on both pore size and ribbon thickness. This 
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is the major difference with respect to classical bulk foam, so the following discussion aims to 

understand this behavior. 

Density profiles have shown that significant amount of solid matrix is contained within the two 

parietal layers. This property is related to the specific structure of parietal layers, i.e. size and 

orientations of the parietal struts. Therefore, a specific elastic modulus 𝐸𝑤 should be attributed to each 

parietal layer over a thickness 𝑒𝑤 . As a first attempt to model the reported behavior, a simple 

combination of 3 Hookean springs in parallel is assumed: 2 springs accounting for the two parietal layers 

and 1 spring for the core (bulk) material. Then the overall elastic modulus of the ribbons reads 

𝐸𝑟 = [2𝐸𝑤𝑒𝑤 + 𝐸𝑏𝑢𝑙𝑘(𝑒 − 2𝑒𝑤)] 𝑒⁄ , where 𝐸𝑏𝑢𝑙𝑘  is the elastic modulus of the bulk foam. By introducing 

the proportion of parietal layers 𝑥𝑤 = 2𝑒𝑤 𝑒⁄  and by dividing by 𝐸𝑏𝑢𝑙𝑘, the elastic modulus becomes: 

 

𝐸𝑟

𝐸𝑏𝑢𝑙𝑘
≈ 1 + 𝑥𝑤 (

𝐸𝑤

𝐸𝑏𝑢𝑙𝑘
− 1)     (eq. 1) 

 

In order to compare equation 1 with experimental data, one has to set values for 𝑒𝑤  (or equivalently 

𝑥𝑤), 𝐸𝑤 and 𝐸𝑏𝑢𝑙𝑘. Thickness 𝑒𝑤  is expected to be set by the pore size, so in the following 𝑥𝑤 = 〈𝐷𝑝〉 𝑒⁄  

is used. As already mentioned, the elastic modulus of bulk foam depends on solid volume fraction only, 

as described by power laws, e.g. �̃�𝑏𝑢𝑙𝑘 = 𝑎𝜙𝑠
𝑏. Our data are reasonably described by power laws with 

exponent 𝑏 ≅ 1.3-1.5. This exponent is smaller than the value corresponding to the classical behavior 

reported by Gibson & Ashby [1], i.e. 𝑏 ≅ 2. Such behavior is obtained for open-cell foam at low solid 

content, where the structure is made of solid struts of length ℓ~𝐷𝑝 and width 𝑡~𝐷𝑝𝜙𝑠
1 2⁄

. By assuming 

that foam deformation is associated to bending of those struts, one obtains that the reduced elastic 

modulus is �̃�𝑏𝑢𝑙𝑘  ~ 𝑡4 𝐷𝑝
4⁄ ~𝜙𝑠

2. However, assumptions made to derive such a relation are not justified at 

higher solid content, i.e. 𝜙𝑠 > 0.1. In particular, significant amount of solid is contained within the nodes 

connecting the struts, which is expected to lead to a different behavior. For example, the elastic modulus 

of realistic numerical foams has been shown to be described by �̃�𝑏𝑢𝑙𝑘 = 0.7Φ𝑠
1.45 for 𝜙𝑠 values within 

the range 0.05-0.2 [23]. Actually, the precise choice made for �̃�𝑏𝑢𝑙𝑘 is not crucial to highlight the 

contribution of parietal layers in the foam ribbons. In the following, we assume that �̃�𝑏𝑢𝑙𝑘 = 𝑎Φ𝑠
1.45 with 

𝑎 close to 0.7. For the sake of simplicity, we assume that parietal layers undergo the same type of 

geometrical evolution in terms of thickness and length of the struts as a function of 𝜙𝑠, i.e. �̃�𝑤(𝜙𝑠) =

𝑤𝜙𝑠
1.45, where 𝑤 is a coefficient to be obtained by comparison of equation 1 with our data. Such a 
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comparison is presented in Fig. 6, where 𝐸𝑟 𝐸𝑏𝑢𝑙𝑘⁄  is plotted against 1 𝑥𝑤⁄  (we stress that 𝐸𝑟 𝐸𝑏𝑢𝑙𝑘⁄ ≡

�̃� �̃�𝑏𝑢𝑙𝑘⁄  where experimental values for �̃� are shown in Fig. 4). Parameters 𝑎 = 0.62 and 𝑤 = 1.3 (i.e. 

𝑤 𝑎⁄ ≅ 2) have been fitted in order to make all the data (both monodisperse and polydisperse samples) 

collapse on the theoretical curve. This means that the reduced excess modulus (𝐸𝑟 − 𝐸𝑏𝑢𝑙𝑘) 𝐸𝑏𝑢𝑙𝑘⁄  

provided by parietal layers is approximately equal to 〈𝐷𝑝〉 𝑒⁄ . As a consequence, the elastic modulus of 

foam ribbons decreases from 𝐸𝑟 ≅ 2𝐸𝑏𝑢𝑙𝑘 for 〈𝐷𝑝〉 𝑒⁄ ≅ 1, down to 𝐸𝑟 ≅ 𝐸𝑏𝑢𝑙𝑘  for 〈𝐷𝑝〉 𝑒⁄ → 0.   

Rupture of foams ribbons is expected to be described with the same approach, i.e. 𝜎𝑟
∗ 𝜎𝑏𝑢𝑙𝑘

∗⁄ =

1 + 𝑥𝑤(𝑤 𝑎⁄ − 1). The inset in Fig. 6 shows that indeed good agreement can be found for monodisperse 

samples using 𝑤 𝑎⁄  = 2.1, 𝑥𝑤 = 〈𝐷𝑝〉 𝑒⁄  and 𝜎𝑏𝑢𝑙𝑘
∗ ≅ 3500𝜙𝑠

1.2. As already said, very thin polydisperse 

samples exhibit anomalous rupture behavior. Actually, Fig. 6 shows that polydisperse samples 

characterized by small 〈𝐷𝑝〉 𝑒⁄  values have rupture stress 𝜎𝑟
∗ smaller than 𝜎𝑏𝑢𝑙𝑘

∗ . This could be 

understood by the fact that within polydisperse systems, pores with size significantly larger than the 

mean pore size act as defects in thin ribbons, i.e. hole bridging the two parietal layers, and initiate early 

rupture. Consequently, narrow pore size distributions appear to be preferable for ribbons characterized 

by small 〈𝐷𝑝〉 𝑒⁄  values. 

 

Figure 6: Evolution of the elastic stiffness of foam ribbons 𝑬𝒓 as a function of the thickness-to-pore size ratio 𝟏 𝒙𝒘⁄ = 𝒆 〈𝑫𝒑〉⁄ . 

Presented data correspond to those of Fig. 4 (circles Fig. 4a, diamonds Fig. 4b). Solid fractions 𝝓𝒔 is indicated by the color scales. 

The solid line corresponds to the following relation: 𝑬𝒓 𝑬𝒃𝒖𝒍𝒌⁄ = 𝟏 + 𝟏. 𝟏 〈𝑫𝒑〉 𝒆⁄  with 𝑬𝒃𝒖𝒍𝒌 = 𝟎. 𝟔𝟐𝝓𝒔
𝟏.𝟒𝟓. Inset: Evolution of 

the rupture stress 𝝈𝒓
∗  of foam ribbons as a function of the thickness-to-pore size ratio 𝟏 𝒙𝒘⁄ = 𝒆 〈𝑫𝒑〉⁄ . Solid fractions 𝝓𝒔 is 

indicated by the color scales. The solid line corresponds to the following relation: 𝝈𝒓
∗ 𝝈𝒃𝒖𝒍𝒌

∗⁄ = 𝟏 + 𝟏. 𝟏 〈𝑫𝒑〉 𝒆⁄  with 𝝈𝒃𝒖𝒍𝒌
∗ =

𝟑𝟓𝟎𝟎𝝓𝒔
𝟏.𝟐. 
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6. Conclusion 
 

Elastic stiffness and rupture stress have been measured for foam ribbons. Our production method 

allowed to tune finely several crucial parameters: thickness, pore size and solid volume fraction. Results 

have shown that, in contrast to mechanics of bulk foam, mechanics of foam ribbons depends on pore 

size for fixed ribbon thickness. It was shown that the elastic stiffness is governed by the ratio of ribbon 

thickness-to-pore size. More precisely, the elastic stiffness increases as the size ratio decreases, and the 

relative strengthening reaches 100% when the size ratio is close to unity. This effect has been attributed 

the parietal layers, whose relative contribution increases as the size ratio decreases. Such a behavior has 

been observed for both monodisperse and polydisperse samples. For rupture stress, monodisperse 

samples follow the same behavior than for the elastic stiffness. On the other hand, polydisperse samples 

have shown anomalous early rupture behavior at small size ratio. It is suggested that pores with size 

significantly larger than the mean pore size act as defects in those thin ribbons. Consequently, narrow 

pore size distributions appear to be preferable for ribbons characterized by small size ratio. 

 

Data availability 

The raw/processed data required to reproduce these findings cannot be shared at this time due to 

technical or time limitations. 
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