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Abstract 

In the present work, the development and the geometry of desiccation cracks are studied by using a 

finite element code including cohesive joint elements. The numerical results show that cracking occurs 

sequentially to form different crack families. The propagation of each crack at the onset suddenly 

reaches an ultimate depth. The cracks in each family appear simultaneously and reach an identical 

ultimate depth. From the numerical results and additional analytical analysis, empirical correlations 

are proposed to predict the spacing and crack depth as a function of suction applied on the top surface, 

the soil parameters and the desiccation rate. The proposed model shows that higher suction is required 

to initiate cracks at a higher value of soil tensile strength. In addition, there is a general trend of larger 

spacing and deeper cracks for a slower desiccation rate. Finally, empirical relations are evaluated by 

comparing with in situ experimental observation published previously. 
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correlation.  



 
 

Introduction 

The reduction of moisture content by evaporation causes soil desiccation cracking, which 

subsequently modifies soil mechanical and hydraulic properties. This phenomenon has therefore been 

intensively studied in various domains such as soil sciences, geotechnical engineering, materials 

sciences, etc. For instance, in geotechnical engineering, soil desiccation cracking is considered as one 

of the main causes inducing earth slopes instability (Baker 1981; Omidi et al. 1996; Yesiller et al. 

2000). One of the key questions in these studies was the geometry of the cracks, i.e., their spacing, 

depth and aperture (Perrier et al. 1995).  

 

Previous studies on desiccation cracking included generally qualitative observations of crack depth, 

spacing and mechanism of crack nucleation/propagation (Kodikara et al. 2002; Wang et al. 2018). 

These studies focused on the effect of various factors (i.e. layers thickness, drying rate, soil type, 

temperature, etc.) on the crack initiation and propagation (Kindle 1917; Corte and Higashi 1960; 

Nahlawi and Kodikara 2006; Tang et al. 2008; Peron et al. 2009; Costa et al. 2013; Sánchez et al. 

2014; Stirling 2014). Some works used experimental methods to investigate the effect of these factors 

on crack geometry ( Corte and Higashi 1960; Lau 1987; Bai et al. 2000; Nahlawi and Kodikara 2006; 

Ta 2009; Song et al. 2016; Tellenaar et al. 2017). However, few works studied quantitatively the 

desiccation crack spacing and its relationship with crack depth. 

 

The formation and propagation of desiccation cracks are hydro-mechanical processes. Predicting these 

processes by analytical or numerical approaches is very challenging. Linear Elastic Fracture 

Mechanics (LEFM) has been used to predict the propagation of a single crack from soil suction profile 

and properties (Lau 1987; Morris et al. 1991). This method was then combined with the stress relief 

approach to predict the crack spacing in sequential cracking (Lachenbruch 1961; Konrad and Ayad 

1997a). In the stress relief approach, the spacing associated with the development of the subsequent 

crack depends on the stress relief induced by the previous one. As a single crack propagates to a given 

depth, the stress field in its vicinity is disrupted and the stress asymptotically approaches the initial 



 
 

value at a distance away. Lachenbruch (1961) and Konrad and Ayad (1997a) suggested that the 

subsequent crack could occur at the location where the tensile stress equals to 90-95% of the soil 

tensile strength. During cracking processes different crack sets are generated which are called the 

primary cracks, secondary and tertiary cracks (Nahlawi and Kodikara 2006; Konrad and Ayad 1997b; 

Amarasiri et al. 2010; Peron et al. 2009). Only the primary cracks were investigated in the works of 

Lachenbruch (1961) and Konrad and Ayad (1997a).  

 

The energy balance approach, based on the energy released during the formation of a crack, was used 

by Peron et al. (2013) in order to predict the desiccation crack spacing. The overall energy of the 

system was completely released during the cracking process. The cracks were also assumed to 

penetrate to the whole depth of the soil specimen. This approach allowed estimating the number of 

blocks and thus the average crack spacing in a thin layer of soil but is not applicable to estimate the 

crack depth. Costa et al. (2018) used the both approaches above (stress relief and energy balance) to 

predict the approximate spacing-to-depth ratio of parallel cracks that form in long desiccating soil 

layers. 

 

The statistical nature of the cracking process has been investigated in some studies (Chertkov and 

Ravina 1998; Chertkov 2008). In these studies, a physically based probabilistic model was developed, 

using multiple cracking and fragmentation model available for rocks, to predict the crack network 

geometry (opening, cross-sectional area and volume) in swelling clay soils. However, the average 

crack spacing and connectedness were introduced in the model as specific functions of depth. 

 

Besides, various studies have shown that the formation of successive sets of cracks to form different 

families follows a dichotomy process: the subsequent cracks appear at the middle of two existing 

neighboring ones ( Konrad and Ayad 1997b; Nahlawi and Kodikara 2006; Amarasiri et al. 2010; 

Stirling 2014). The hierarchical pattern formation in desiccation cracking is investigated numerically 

by Hirobe and Oguni (2017). A theoretical attempt to explain this dichotomy process in the case of 



 
 

thermal cracking in asphalt pavements was presented by Timm et al. (2013) who proposed a model to 

predict the spacing of the successive crack families.    

 

In the present work, the crack initiation and propagation with the formation of successive sets of 

cracks are firstly investigated numerically by using a finite element code including cohesive joints. 

The spacing and depth of each crack family are investigated. The results allow determining empirical 

relations for predicting crack depth and spacing. Secondly, analytical approach is used to give a deeper 

insight in the mechanisms of crack geometry evolution. 

Governing equation 

The numerical simulation was performed by using the finite element code Porofis (Pouya 2015; Vo et 

al. 2017) designed for coupled hydro-mechanical processes in porous fissured materials. The hydraulic 

flow is ignored in this study and the pore pressure profiles are directly applied. The cohesive joints 

elements method is included in the code to model the initiation and the propagation of desiccation 

cracks. The governing equations related to mechanical behavior in cracked and unsaturated porous 

materials are summarized as follows. 

 

The soil matrix is assumed to be an isotropic elastic linear material. Normally, the soil modulus 

changes with water content and suction during drying. However, Vo et al. (2017) suggested that a 

constant value soil modulus would be adequate to predict the development of soil shrinkage, which is 

the main mechanism related to crack initiation. The relation between total stress, pore-fluid pressure 

and strain is expressed by the following equation: 

:C bp     (1) 

where   is the total stress, C is the elasticity tensor,   is the strain tensor, p is the pore-fluid pressure, 

b is Biot coefficient and  is the identity matrix.  



 
 

The cohesive damage crack law (Pouya and Bemani 2015) is used to describe the initiation and the 

propagation of cracks. The yield criterion is defined by a hyperbolic surface in the stress space, which 

corresponds to the following expression: 

2 2 2 2 2
coh( , ) tan 2 ( ) ( )n c nF d g d g d C          (2) 
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where ; n are the tangential and normal stresses of the joint, Ccoh is the cohesion of the intact 

(undamaged) joint,  is the friction angle, R is the tensile strength of the intact joint. 

 

The function g(d) in Eq.(2) is defined such that the tensile strength R of the intact joint element tends 

to zero for a totally damaged element ( ) (1 )(1 ln(1 ))g d d d    ,  

where d is the damage variable and β is a coefficient representing the material’s ductility. The 

evolution of the damage variable d affects both the crack stiffness and the yield surface. The cohesive 

damage crack behavior is represented by the following equation: 

(1 )n nn nd R u    (3) 

where n  is the normal stress on the matrix/crack interface surface; un is the normal component of the 

displacement discontinuity through the two crack’s walls, Rnn is the normal component of the joint 

stiffness. 

 

The damage law in the cohesive crack model (Pouya and Bemani 2015) induces a relation between d 

and un for a monotonic traction loading given by the following relation : 
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(4) 

with u0 = R/Rnn  is the elastic displacement limit. 

 

The crack aperture (e) changes with the deformation from the initial value e0  as follows (e0 = 10
-8

 m 

which is negligible): 



 
 

e = e0 + un (5) 

Reference case 

Numerical model 

The mesh of the reference case is shown in Figure 1. That consists of a clayey soil mass having 5-m 

length and 1-m depth including 80 cohesive joints distributed vertically through the whole depth. The 

vertical displacements are prescribed in the sample bottom while all other sides are free to move. The 

desiccation effect is simulated by applying the suction profile (suction versus depth) directly to the soil 

mass. This suction decreases exponentially from the maximal value on the top surface to the deeper 

part. The exponential function of the suction profile is represented by two parameters: the suction on 

the top surface st that increases with time and a constant  (m-1
) that represents the suction distribution 

with the depth y. The soil suction, s, can be then presented by the following expression: 

exp( )ts s y   (6) 

Figure 2a shows some examples of suction profile applied to the sample with   = 15 (m
-1

). That 

represents the drying process in the soil surface. Figure 2b presents the effect of  on the suction 

distribution for st = 0.05 MPa. This figure shows that the soil suction in depth is more important in the 

case of a smaller value of . Therefore, a high value of  presents the case of faster desiccation or a soil 

with a higher permeability. In the numerical simulation, st is set to change with increment of 510
-5

 

MPa. 

As mentioned above, a set of cohesive joints is placed explicitly in the mesh to model the initiation 

and the propagation of potential cracks. The desiccation cracking occurs mainly with the mode I by 

normal opening (Towner 1987a,b; Amarasiri et al. 2011) and this mode is also assumed in the present 

work. Thus, the main parameters of cohesive joint are normal stiffness (Rnn) and tensile strength (R). 

The initial parameters of cohesive joint are estimated so that their presence has no effect on the 

rigidity of the matrix. This means that the presence of cohesive joints does not influence the 

mechanical behavior of the matrix before crack initiation. Thus, the parameter Rnn has been estimated 

by homogenizing the matrix mechanical properties. The tensile strength R is taken to be equal to the 



 
 

soil tensile strength. The parameters Ccoh and  don’t affect the mode I crack propagation which is the 

case in the present work. However these parameters must satisfy the inequality Ccoh/tan > R for the 

hyperbolic surface.  

 presents the parameters for the soil studied (Konrad and Ayad 1997a), for the cohesive joints and the 

applied suction profile used in the reference case. In this case,   was kept constant and the suction at 

the top surface st was increased from 0 to 0.15 MPa to simulate the drying process.  

Numerical results 

The crack depth is calculated numerically as the distance from the top surface to the last damaged joint 

element in which damage variable is equal to 1. Figure 3 presents the crack depth observed at each 

cohesive joint versus st. When st is smaller than 0.024 MPa, the model presents only small vertical 

settlement and lateral shrinkage without cracking (see also Figure 4 showing the deformed shape 

including the horizontal stress and the corresponding st for difference steps). When st exceeds 0.024 

MPa, the first crack appears in the middle of the model (at X = 2.5 m) that divides the sample into two 

cells. This crack can be considered as the primary crack. The subsequent increase of st raises the soil 

tensile stress, mainly on the top surface. When st reaches 0.033 MPa, two more cracks appear at X = 

1.25 m and 3.75 m, exactly in the middle between the primary crack and the extreme boundaries of the 

sample. This scenario is repeated at st = 0.051 MPa and at st = 0.0975 MPa to initiate the 3
rd

 and the 4
th
 

crack families following the dichotomy process (the subsequent cracks are created in the middle of 

two neighboring existing cracks). In addition, it can be seen that the cracking occurs sequentially to 

form different crack families. However, the cracks initiate simultaneously at the same value of suction 

for each family. In Figure 3, the depth evolution of cracks shows also two phases. In the first phase, 

cracks initiate suddenly to reach ultimate depths (instable propagation) and then in the second phase, 

cracks propagate more slowly with the increasing of suction st (stable propagation). The ultimate crack 

depths for each family are similar. Additionally, this ultimate depth is higher for the cracks that appear 

earlier. The existence of an unstable or instantaneous crack propagation has been already observed by 

Sanchez et al. (2013) in laboratory tests where crack reached the ultimate depth in a short time. The 



 
 

sudden crack propagation is explained in fracture mechanics by energy cumulated during the 

shrinkage inside the soil mass before crack initiation (Konrad and Ayad 1997a). 

As mentioned above, there are 80 cohesive joints placed in the model, but there are only 15 opened 

cracks when st reaches 0.15 MPa. Further drying would create more cracks but the results would be 

influenced by the mesh refinement (the number of cohesive joints between the two existing crack 

should be adequately high to have a good prediction). The spacing between the cracks is considered as 

the distance between two neighboring opened cracks. From Figure 4, the spacing can be evaluated for 

different steps of desiccation. If the spacing between cracks is designated as D, the crack density is 

thus considered as 1/D. On Figure 5, the crack density is plotted versus st (the continuous line). The 

points on this curve represent the initiation of each crack family. These points are then fitted with a 

linear function that is represented by the discontinuous line. Besides, these results indicate that the 

crack density remains constant in some range of suction. The change of suction to initiate a new crack 

family is more important at a higher crack density.  

The average ultimate depths (L) for different crack families are plotted versus the crack spacing in 

Figure 6a. Note that L corresponds to the average crack length obtained after onset of cracking (see 

Figure 3); the increase of crack depth with increasing of suction is not considered. As mentioned 

above, larger crack spacing corresponds to a higher ultimate crack depth. In Figure 6b, the crack depth 

is plotted versus the square root of crack spacing that allows showing a good linear correlation 

between these two parameters.  

In order to better understand the crack geometry evolution, in Figure 7, the tensile stress on the top 

surface of the sample is plotted for different steps corresponding to the initiation of new crack 

families. When st = 0.024 MPa, the tensile stresses are minimal near the two lateral boundaries while 

the maximal tensile stress approaches the tensile strength R (0.0085 MPa) in the middle of the 

sample. The primary crack in the middle (X = 2.5 m) is then initiated with a small increase of suction 

(at st = 0.0255 MPa) because the stress criterion is reached. The apparition of this primary crack 

causes the stress decrease in the crack location and also in the vicinity of this crack (the path number 

1). For the zone far from this crack (i.e. two zones beside the lateral boundaries), the tensile stress 



 
 

remains quasi identical before and after the formation the first crack. The tensile stress reduces to zero 

on the crack line. This latter divides the sample into two parts and the maximum tensile stresses are 

observed at the middle of each part. When st increases up to 0.0315 MPa (the path number 2), the 

tensile stresses in the middle of the two parts approaches again the tensile strength R (0.0085 MPa). 

With st = 0.033 MPa, the secondary cracks (at X = 1.25 m and 3.75 m) are initiated according to the 

stress criterion. The tensile stresses are then decreased after the apparition of these cracks (the path 

number 3) and the process is repeated during desiccation. The initiation of tertiary and quaternary 

cracks can then be explained in the same manner.  

Parametric study 

Figure 8 shows the crack density evolution during desiccation with different values of γ; the other 

parameters are identical to those shown in Table 1. As the reference case, the points representing crack 

initiation can be fitted by a linear function for each case. The results show that, for the same crack 

density, the cracking occurs at a higher suction for a smaller γ. Interestingly, the first crack appears at 

a suction of about 0.02 MPa for all values of γ.  

The average ultimate crack depth (L) for each crack family is plotted versus its square root of spacing 

for different values of γ in Figure 9. The correlation between crack depth and the square root of 

spacing can be equally fitted by linear functions for all values of γ. The results show that, for the same 

crack spacing, the ultimate depth is higher for a lower γ. 

To investigate the effect of R on the relationship between crack density and st, simulations have been 

done with various values of R (γ equals to 15 m
-1

 and the others parameters are identical to those 

shown in Table 1). The obtained results are shown in Figure 10. These results evidence that higher st is 

required to reach the same crack density with a higher R. Actually, cracking occurs when the tensile 

stress reaches the tensile strength. Higher tensile strength requires higher tensile stress, and this latter 

is closely related to st. 

 

Empirical correlation and analytical analysis 

Empirical correlation for crack density  



 
 

From the results shown in Figure 8 and Figure 10, the following empirical correlation can be proposed 

to predict the crack density: 

01
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(7) 

where:  

- s0  is the suction initiating the first crack in the case where the length of the soil mass is 

infinitely long. In the present work, as the soil mass has a length of 5 m, the first crack 

corresponds already to 1/D = 0.4 (m
-1

).  

- k(γ) is a parameter depending on the desiccation rate (function of γ) 

From the Eq.(7) , the crack spacing can be determined as follows: 
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(8) 

From Figure 8, s0 can be determined by extrapolating these curves to the horizontal axis x. Besides, 

this suction can be determined from the analysis of stress field in the soil surface before cracking by 

considering the soil behavior as elastic and isotropic. Actually, before cracking, the following total 

stress field in the sample can be determined from the boundary conditions and the momentum 

equations (Vo 2017): 
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(9) 

where λ,  are the Lamé coefficients of soil which can be determined from the elastic modulus E and 

Poisson ratio ν. 

 

Cracking occurs when the tensile stress reaches the tensile strength R. Under evaporation, soil suction 

is maximal on the top surface and the cracks are always initiated from this surface. The suction s0 on 

this surface (y = 0 in the Eq. (9)) is determined as follows: 
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By replacing 
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 in Eq. (10), the s0 can be then determined: 
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(11) 

Eq. (11) indicates that a higher tensile strength R leads to a higher crack initiation value s0. It is in 

agreement with the trend of the curves presented in Figure 10. Besides, Eq. (11) shows that s0 is 

independent of γ, which seems to be in agreement with the results shown in Figure 8.  By replacing b = 

1 and ν = 0.3 (usually used in soil mechanics), s0 can be analytically estimated from R by using Eq. 

(11). Figure 11 shows s0 versus R for both empirical correlation and analytical methods. It is 

interesting to note that these two independent methods, the empirical correlation one by extrapolation 

of the results shown in Figure 8 and Figure 10 and the analytical one by using Eq. (11), give similar 

values for s0. Actually, the analytical method corresponds to the case where the length of the soil mass 

is infinitely high. Which is also in agreement with the definition of s0 in the empirical correlation 

method (equation 7). 

 

Besides, from field observation, Konrad and Ayad (1997b) showed that the suction at the surface was 

about 0.02 MPa at the initiation of cracks for soil having tensile strength equals 0.01 MPa. By 

replacing R = 0.01 MPa in Eq. (11), the suction s0 can be analytically estimated at 0.018 MPa. This 

value is very close to the value measured by Konrad and Ayad (1997b). A good agreement between 

the three methods (analytical, numerical and experimental) in the calculation of s0 allows validating 

the assumptions used in the empiric correlation. 

In Eq. (7), k(γ) is a function representing the effect of the drying rate on crack density and spacing. 

From the results shown in Figure 8 the value of k corresponding to each value of γ is plotted (see 

Figure 12). From this figure, k(γ) can be determined approximately by the following equation: 

k = 4γ (12) 

By replacing Eq. (12) in Eq. (7), the crack density can be estimated: 
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(13) 

Then, the crack spacing can be deducted from the empirical correlation in Eq. (13) as follows: 
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(14) 

Empirical correlation for crack depth 

Figure 9 indicates that for each value of γ, a linear function can express with a good precision the 

correlation between the crack ultimate depth and the square root of crack spacing. This correlation also 

depends on γ. The following empirical correlation can be proposed to estimate the ultimate depth L 

according to the numerical results presented in Figure 9: 

( )L f D  (15) 

where f(γ) is a function representing the effect of desiccation rate on the cracking geometry. From the 

results shown in the Figure 9, the value of f for each case of γ was determined and plotted in the Figure 

13.  f(γ) can be then estimated from γ by the following equation: 

1
0.507 0.0403f


   

(16) 

By replacing Eq.(16)  in Eq. (15), the crack ultimate depth can be estimated as follows: 

1
0.507 0.0403  DL



 
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 
  

(17) 

Eq. (17) allows estimating the ultimate depth of crack by knowing the spacing D between cracks and 

the suction distribution through the constant γ. In addition, if the crack spacing can be calculated 

approximately from Eq. (14), the crack depth can also be calculated as a function of suction, tensile 

strength and desiccation rate. The proposed correlation in Eq. (17) indicates that with the same γ, a 

smaller D corresponds to a smaller L. This means that the ultimate depth decreases from the primary to 

secondary and tertiary cracks when the spacing decreases (Figure 3).  In addition, when a crack family 

is considered (with a same spacing D), a lower drying rate γ gives a higher ultimate depth.  

 

Comparison with in situ observations 



 
 

Konrad and Ayad (1997b) investigated the desiccation of a sensitive clay by field experimental 

observation.  An excavation with three different levels was exposed to continuous evaporation during 

35 days in order to observe the formation of desiccation cracks. Desiccation of the intact Saint- Alban 

clay (2 m below the top surface) under restrained conditions, at an average evaporation rate of 0.18 

mm/h produced visible primary cracks after 17 h with an average spacing of 0.20 – 0.24 m and a depth 

of 0.05 – 0.07 m at the onset. Close to crack initiation, the suction on the surface was measured at 

about 20 kPa. These field data of intact clay were also used by Ayad et al. (1997) to evaluate the 

performance of the model CRACK enabling the prediction of depth and spacing of primary 

desiccation cracks (Konrad and Ayad 1997a). The ultimate depth crack was determined by the LEFM 

approach while the spacing was proposed by using the stress relief approach. For this field study, 

model suggested that the ultimate crack depth ranged from 0.08 to 0.11 m. In addition, from an opened 

crack, another crack can initiate when the total horizontal stress reaches about 80-88% of the tensile 

strength value. Other researchers (Lachenbruch 1961; Kodikara and Choi 2006) have also noted that 

secondary cracks appear at a tensile stress 5%-10% less than the tensile strength. Note that in the 

present work, the secondary cracks appear at a tensile stress equal to the tensile strength (Figure 7). 

Actually, in the present work, because of the dichotomy process, the subsequent cracks are created in 

the middle of the two neighboring existing cracks, when the yield criterion is reached for the 

secondary cracks, the tangential stress of the joint equals zero. For this reason, the yield criterion is 

reached with the normal stress (tensile stress) equal to the tensile strength. For these other cases where 

the tangential stress exists, crack appear when the tensile stress is lower than the tensile strength (see 

equation 2). 

 

From Eq. (17), the coefficient γ can be determined as a function of depth (L) and spacing (D). In the 

study of Konrad and Ayad (1997b), L = 0.05 – 0.07 m and D = 0.20 – 0.24 for primary cracks. As a 

result, γ = 5×10
-4

 – 2×10
-3

 m
-1

. These values of γ and the suction on the surface at crack initiation can 

be introduced in Eq. (6) to determine the suction profile.  

 



 
 

Figure 14 shows the suction profiles at the crack initiation obtained by various methods: (i) field 

measurement provided by Konrad and Ayad (1997b) using tensiometers; (ii) estimation from moisture 

content data by Konrad and Ayad (1997b) (iii) theoretical profile calculated by Ayad et al. (1997) 

using the fictitious stress superposition concept;  (iv) Eq. (6) with γ = 5×10
-4

 – 2×10
-3

 m
-1

. It can be 

seen that the proposed model can fit very well the experimental data with γ = 5×10
-4

 or 6×10
-4

 m
-1

 and 

very close to the predicted model proposed by Ayad et al. (1997) with γ = 1×10
-3

 m
-1

. The good 

agreement between the field data and the proposed model allows validating the empirical correlation 

obtained from the numerical results in the present work. 

Discussions 

In the present work, the desiccation is simulated by applying a soil suction profile that varies in time. 

Actually, the suction distribution in depth results from the hydraulic diffusion and it can be influenced 

by soil properties (e.g. permeability and the desiccation rate). In some studies on desiccation cracking, 

a linear profile of suction were suggested (Lau 1987; Morris et al. 1991). However, this condition is 

rarely reached in practice and it is more common to observe a nonlinear distribution of suction in 

depth (Morris et al. 1991; Konrad and Ayad 1997b; Stirling 2014). An exponential suction profile was 

used in the present work based on previous studies. These suction profiles are represented by two 

parameters: the suction on the surface st and the constant γ.  The suction st increases during the 

desiccation while the constant γ represents indirectly the desiccation rate: a high value of γ 

corresponds to a higher desiccation rate. The agreement between the suction profiles calculated by the 

proposed model; the field data (Konrad and Ayad 1997b) and the model of Ayad et al. (1997) shown 

in the Figure 14 validates the choice of suction profile in the present work. 

 

Numerical simulation results (Figure 4) show that cracking occurs sequentially to form primary, 

secondary and tertiary cracks. In addition, for each crack family, the cracks appear simultaneously 

with an identical ultimate depth at the same suction level. The experimental observations performed 

by Peron et al. (2013) indicated a combination of two processes, “sequential infilling” or 

“simultaneous growing” in desiccation cracking since the cracks tend to appear either successively or 



 
 

simultaneously. The numerical results in Figure 4 present the process of breaking the intact soil into 

individual blocks to form different crack families. This breaking scenario was also found in numerical 

studies (Amarasiri et al. 2010; Stirling 2014; Sánchez et al. 2014), laboratory experiments (Nahlawi 

and Kodikara 2006) and in situ observation (Konrad and Ayad 1997b). The formation of successive 

sets of cracks follows a dichotomy process: the new set of cracks appears at the middle location of two 

neighboring exist cracks. This phenomenon is explained by tensile stress evolution shown in Figure 7. 

In addition, there are two major factors which control the crack initiation: stress distribution and flaw 

presence (Kodikara and Costa 2013). Based on the stress distribution, the cracks initiate always at the 

midpoint of soil mass without flaws (free sides) where the stress is probably maximal (Kodikara and 

Choi 2006; Peron et al. 2013; Kodikara and Costa 2013). The dichotomy process was assumed in the 

study on thermally-induced cracking (Timm et al. 2003; Leguillon et al. 2017). Timm et al. (2003), by 

studying thermally-induced cracking in pavement, explained that in the absence of material flaws, 

symmetry considerations suggest that the crack form at the midpoint, dividing the undamaged section 

into equal parts. With subsequent cooling, the cracking and subdividing of pavement section continue. 

Figure 5 shows that the crack density (crack spacing) remains constant in some ranges of suction in 

which the tensile stress between cracks recovers, reaches the strength and forms the subsequent cracks. 

The influence of suction evolution on the crack density (or crack spacing) is then taken into account in 

Eq.(7).  

 

Crack initiation is generally predicted using strength criterion. Following the numerical results 

presented in Figure 3, the propagation of cracks at the initiation moment occurs suddenly to reach an 

ultimate depth. In fact, once crack is initiated, the propagation depth is governed by energy criterion: 

the elastic energy released by cracking is equal to the energy needed for the formation of the crack 

surface which is characterized by material’s fracture toughness (Leguillon 2002; Leguillon et al. 

2016). The ultimate depth of an isolated crack was also predicted by LEFM (Lachenbruch 1961; 

Konrad and Ayad 1997a). The crack ultimate depth is likely identical for each family and decreases 

from the primary to the secondary and tertiary cracks (Figure 3 and Figure 9). 

 



 
 

The present work proposes empirical relations to predict the spacing and depth at the onset of 

desiccation cracks. These relations are essentially based on the numerical results and some theoretical 

analysis. The spacing between cracks was predicted in some research ( Lachenbruch 1961; Konrad  

and Ayad 1997a; Peron et al. 2013) for primary cracks. These researches have also shown that the 

spacing can be qualitatively affected by the soil layer thickness, the desiccation rate, soil properties, 

water content, drying/wetting cycle ( Kindle 1917; Nahlawi and Kodikara 2006; Peron et al. 2009; 

Stirling 2014; Sánchez et al. 2014;). In the present work, the thickness of soil mass is relatively high 

(compared to the depth of the zone affected by suction changes). For this reason, the results are 

independent of soil layer thickness. From the empirical correlation proposed in Eq.(7), crack spacing 

can be easily calculated from the actual suction on the surface st, the tensile strength R, Poisson ratio 

ν and the desiccation rate represented by γ. In this relation, s0 is the minimal suction on the surface 

from which cracks occur. This suction can be calculated analytically from stress field of soil surface 

before cracking. The good agreement of the values of s0 for different values of R calculated by 

analytical and the proposed model is presented in Figure 11. In addition, the proposed model (Eq. (14) 

and Eq. (17)) shows that the increase of tensile strength can influence to the spacing and crack depth. 

Besides, a larger spacing and deeper desiccation cracks can be obtained under a slow desiccation 

(smaller γ).  These observations are in agreement with some other studies (Kindle 1917; Corte and 

Higashi 1960; Morris et al. 1991; Konrad and Ayad 1997b; Ayad et al. 1997; Costa et al. 2013; 

Stirling 2014). 

 

In this paper, the initiation and propagation of desiccation cracks are investigated using the cohesive 

joints elements method. In the simulations, the hydraulic flow is neglected and the desiccation is 

simulated by directly applying the suction profile. In addition, the soil behavior is assumed linear 

elasticity. Despite these assumptions, the paper allows assessing the simultaneous crack initiation and 

the crack propagation. Crack geometry can be also predicted by the present method. In future works, 

the non-linearity of soil behavior in desiccation and the application can be considered. In additions, the 

proposed model can be applied to real-scale earthen structures. 

 



 
 

Conclusions 

The present work focuses on the initiation and the propagation of desiccation cracks by using a FEM 

code including cohesive joint elements. A suction profile, which varies in time, is imposed to simulate 

the hydraulic flow. The numerical results show that cracking occurs sequentially to form different 

crack families. Cracks appear simultaneously at the same suction level for each family. Geometrically, 

the formation of successive sets of cracks follows a dichotomy process: the subsequent set of cracks 

appears at the middle location of two neighboring existing cracks. The numerical simulation indicates 

also two main phases in the crack propagation: (i) sudden to reach an ultimate depth at the onset 

moment; (ii) and progressive once the crack is opened. The cracks in each family present the same 

ultimate depth, which decreases from the primary cracks to the subsequent families.  

 

Based on the numerical results, empirical correlations have been proposed to estimate crack spacing 

and depth from soil parameters (tensile strength, Poisson ratio, Biot coefficient), the desiccation rate 

(parameter γ) and the suction on the top surface (st). These correlations show that a higher suction is 

required to initiate crack in soil with a higher tensile strength. In addition, there is a general trend of 

larger spacing and deeper cracks for a slower desiccation.  
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Figure 1: Geometry and boundary conditions of reference case 

 

 

Figure 2: Examples of suction profile: (a) with different suctions on the surface and (b) with different 

values of  



 
 



 
 

 

 

 

 

Figure 3: Crack depth versus suction on the top surface 



 
 

 

 

 

 

Figure 4: Crack development with the suction evolution on the top surface 



 
 

 

 

 

 

 

 



 
 

Figure 5: Cracks density versus suction on the top surface 

 

 

 

 

 

 

 

 

 



 
 

Figure 6:  Ultimate depths for different cracks spacing: (a) versus the cracks spacing D and (b) versus 

D
0.5 



 
 



 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 7:  Tensile stress distribution on the top surface of the sample for various values of suction on 

the top surface 

 

 

 

 

 

 

 

 

 



 
 

Figure 8:  Cracks density versus suction on top surface for different values of γ 

 

 

 

 

 

 

 



 
 

 

Figure 9:  Ultimate crack depth versus the square root of cracks spacing for various values of γ 

 

 

 

 

 

 

 

 

 



 
 

Figure 10:  Cracks density versus suction on the top surface with different values of R 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 11:  The suction s0 versus R 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 12: k(γ) versus γ 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 13: Approximation of f(y) function 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 14: Suction profiles obtained by various methods 

 

  



 
 

 

Table caption: 

Table 1: Parameters of the reference case 

 

 



 
 

 

 


