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Abstract

Spontaneous liquid transport has a wide variety of applications, including fog har-

vesting, microfluidics, and water-oil separation. Understanding of the droplet move-

ment dynamics on structured surfaces is essential for enhancing the transport perfor-

mance. In this work, we develop a theoretical model describing the movement process

of droplets on surfaces with prescribed wedge shapes. Agreement is observed between

the predictions from the model and experimental results. Through theoretical analy-

sis and quantitative comparison between the transport performance of different wedge

shapes, we identify the factors affecting the movement process and provide guidelines

for wedge shape optimisation for spontaneous droplet transport.
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Introduction

Spontaneous directional transport of liquid has many applications, such as fog harvesting [1–9],

water-oil separation [10–12], and microfluidic devices [13–16]. One ubiquitous phenomenon of

liquid transport without external energy input is the capillary rise driven by surface ten-

sion [17–21]. Efforts have been made to achieve spontaneous droplet motion by introducing

a capillary pressure gradient on solid surfaces. This can be achieved by creating a wet-

tability gradient through chemical or thermal treatment [22–25], roughness gradient through

varying the spacial roughness ratio [8,26–30], or surface structural gradient [2,3,31–37]. It has also

been shown that spontaneous motion can be achieved between nonparallel [38–40] or flexible

plates [41] . Besides, Chen et al. [42] demonstrated the continuous unidirectional liquid spread-

ing on the peristome surface of Nepenthes alata, which inspired many surface designs for

liquid transport [43–45]. Among these different approaches to induce spontaneous liquid mo-

tion, surfaces with wedge-shaped pattern with width gradient turn out to be effective and

relatively simple to manufacture [1,46–49]. Motion on these wedge-shaped surfaces is driven

by the interfacial tension due to the droplet confinement and deformation near the tip to

drive the droplet, i.e., a non-zero net capillary force acting along the three-phase contact

line of the droplet. From an energy perspective, the existence of a free Gibbs energy gra-

dient leads to the self-propelled motion of the droplet. Alheshibri et al. [46] illustrated the

unidirectional spreading phenomena of water droplets on heterogeneous hydrophobized Cu

and hydrophilic Al surfaces and analyzed the criteria for liquid transport using the force

balance. Through simulation and experiments, Tan et al. [50] investigated the enhancement

of water collection using wedge-shaped gradient surfaces. Zheng et al. [48] developed a gov-

erning equation describing the droplet motion on wedge-shaped surfaces. However, there are

still several challenges remaining, including the enhancement of velocity and/or distance of

the transportation, and precise control of the movement [35].

In this work, a theoretical model is developed to describe the droplet movement on sur-

faces with arbitrary wedge shapes. Different with previous works where the straight edges
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are considered, [46,48,50] the proposed model is applicable to wedges with edges described by

a given profile function y = y(x). Experiments were conducted to compare with model

predictions. Then, based on the model, we make a quantitative comparison of liquid trans-

port performance on surfaces with different shapes. Finally, through theoretical analysis, we

identify the factors affecting the distance of the transportation and provide guidelines for

wedge shape design for optimised spontaneous liquid transport.

Theoretical model

The governing equation for droplet motion on the surface with curved-wedge pattern de-

scribed by a known profile function y = y(x), as shown in Fig. 1, can be derived through

Newton’s second law:

ρV
d2x

dt2
= Fc − (Fv + Fh + Fg), (1)

where Fc is the actuation force from the interfacial tension, acting along the edges as indicated

by orange curves in Fig. 1. Fv is the resisting force from viscous dissipation, Fh is the force

due to the presence of contact angle hysteresis, and Fg represents the force from gravity.

The driving capillary force, Fc, can be calculated through integrating the capillary pressure
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Figure 1: Top view schematic for droplet motion on the wedges with the edge described by
profile function y = y(x). The direction of droplet motion is indicated by the blue arrow.
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along the edges:

Fc = −4γ sin β

∫ π
2

+β

φ

RB
cos θedge

sin (θ − β)
dθ, (2)

where γ is the interfacial tension between liquid and air, β is the half opening angle, RB

is the base radius of the droplet, θedge is the contact angle along the edge due to the sharp

edge effect [51], which can be determined by individually depositing droplet on circular plates

with a series of radii [48]. For a given wedge shape, the droplet volume must be large enough

for the droplet to be in contact with the edges in order to initiate the movement. Therefore,

given the local minimum wedge width 2ym and contact angle θ, in the limiting case of no

contact angle hysteresis, the base diameter of the droplet needs to be larger than the wedge

width, i.e., 2RB > 2ym, where RB = 3

√
3V sin θ

(2+cos θ)(1−cos θ)2π
, or, the droplet volume needs to

satisfy V > y3m(2+cos θ)(1−cos θ)2π
3 sin θ

. It is assumed that the droplet shape remains approximately

spherical during the motion. This is true when the size of the droplet is smaller than the

capillary length, defined as lc =
√
γ/(∆ρg), where γ is the interfacial tension, ∆ρ denotes

the density difference, and g is the gravitational acceleration. For a water droplet placed

on a silicon wafer at room temperature, lc ≈ 2.7 mm, which corresponds to droplet volumes

being smaller than 7 µL. For a spherical droplet placed on a large smooth substrate, the

value of static contact angle along the triple line is between the values of the advancing

and receding contact angle. If the size of the substrate is gradually decreased, the apparent

contact angle will increase due to sharp edge pinning effect [51], eventually being larger than

the advancing contact angle. Therefore, the value of θedge can be determined geometrically,

which can be represented as a function of the volume of the droplet and the base radius RB

(or the width of the wedge). Fig. 2 shows cos θedge as a function of RB for droplets of volumes

V = [3, 4, 5] µL with a contact angle of θ = 115◦ (on smooth surface without wedge), and

the corresponding relationship can be linearly fitted: cos θedge = a1RB + a2.

Then, using the linearly-fitted expression for cos θedge, Eqn. 2 can be integrated and Fc
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Figure 2: The cosine of contact angle along the edge cos θedge as a function of RB for droplets
with volumes V = [3, 4, 5] µL (crosses, squares, and circles, respectively) and their corre-
sponding linear fitting (solid lines).

can be expressed as

Fc = 4γRB sin β sin (2ψ)

[
a1RB sin (2ψ)

8

(
sec2 ψ − csc2 ψ + 4 ln (tanψ)

)
− a2 cot (2ψ)

]
, (3)

with

ψ = (φ− β)/2 and φ = min

(
β + arcsin (

x0 sin β

RB

),
π

2
+ β

)
. (4)

For curved edges with given shape y(x), β varies with the location of base circle:

β = arctan

(
y(xF )− y(xB)

xF − xB

)
, (5)

where xF and xB are the x coordinates of intersections between y(x) and base circle at the

front and back, respectively (Fig. 1). The resisting force due to the presence of the contact

angle hysteresis, Fh, is calculated as:

Fh = kγ

(
y(xB) cos θR − y(xF ) cos θA

)
, (6)

where k is a parameter accounting on the geometrical effect of the droplet with a typical
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range of [1,π] [52]. Here, a k value of 1 will be used here for simplicity. The force due to

viscous dissipation is given by

Fv = ηA
v

d
, (7)

where η is the liquid viscosity, d is the thickness of the thin boundary layer, and A is the con-

tact area between the droplet and substrate (area enclosed by blue and orange lines in Fig.1.)

Eqn.7 indicates that the force due to viscosity increases as the droplet moves along the wedge

due to larger droplet-substrate contact area A, further slowing down the movement. [47,53]

Finally, the force due to gravity with an inclination angle θincline is Fg = ρV g sin θincline.

Here, θincline is defined as the angle between the surface and horizontal direction. Although

θincline = 0 in all our experiments, it is included here for generality. Therefore, given a wedge

shape with profile function y = y(x), after obtaining all the forces, the description of droplet

movement can be obtained by numerically solving Eqn. 1.

Experiments and results

Surfaces with different patterns were manufactured by cryo-etching a silicon (Si) wafer using

a standard photoresist to dig a 98 µm-deep frame featuring the borders of the wedges. The

designed wedges can be described by the profile functions y = 0.009775x2+0.01534x−0.03014

(in mm, will be referred as the curved wedge) and y = tan(3◦)x+0.2661 (in mm, the straight

wedge). The shapes of the wedges are indicated by the red-solid lines (curved wedge) and

blue-dashed lines (straight wedge) in Fig. 3(C), respectively. The Si wedges were coated

by a self-assembled monolayer of octadecyltrichlorosilane (OTS) according to the method

published by Brzoska et al. [54]. Si wafers were thoroughly cleaned by successive sonication

in ethanol and acetone, then blown with dry high purity nitrogen, then exposed to CO2 snow

jet to remove particulates, then plasma-treated in air for 30 s. Next, the cleaned Si wafers

were immersed in OTS solutions in toluene (3 mM) for 15 min under dry conditions (RH

< 10%). Finally, the coated surfaces were sonicated in pure toluene to remove physisorbed
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Figure 3: (A) Photograph of the top view of the curved wedge. (B) 3D schematic of a
moving droplet on the curved wedge. (C) Straight (blue-dashed line) and curved (red-solid
line) wedges described by the profile function y = tan(3◦)x + 0.2661 and y = 0.009775x2 +
0.01534x − 0.03014, respectively (x and y are in mm). (D) Snapshots of a video during
movement of a 4-µL droplet on the curved wedge. The colour is added to show the droplete
advancement at different times.
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layers of OTS. The coated surfaces exhibited advancing angle θA and receding angle θR

of 115◦ ± 1◦ and 97◦ ± 1◦ on a smooth surface measured by goniometer (KSV Cam 200),

respectively. A photograph and a schematic showing the top view and side view of curve

wedge are shown in Fig. 3(A) and Fig. 3(B), respectively. Droplets with volumes of 3 µL, 4

µL, and 5 µL were formed using a precise syringe and placed onto the structured surface with

different initial locations. The movement of droplets were recorded with a time interval of

0.016 s, and subsequent data analysis was carried out in MATLAB. A 4-µm droplet moving

on the curved wedge is shown in Fig. 3(D). Four videos showing the movement of droplets

of 3, 4, and 5 µL with 3 different starting locations for both curved and straight wedges are

attached in Supporting Information.
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Figure 4: Motion of water droplets on the curved wedge during the first 0.2 s starting at
different initial locations x0 = [4.7, 5.6, 6.4] mm for droplet volumes V = [3, 4, 5] µL. Scatter
points show the experimental results (three repeated experiments are marked with different
symbols for each x0 location), and solid lines represent predictions from the model.

Fig. 4 shows the locations of droplets with volumes V = [3, 4, 5] µL (with 0.8% relative

error) as a function of time on curved wedge during the first 0.2 second. Scatter points shows

the results from the experiments with initial droplet location x0 = [4.7, 5.6, 6.4] mm (±0.1

mm). For each experimental condition, scatter shapes represent results retrieved from three

different repetitions. It is found that the droplets experience fast movement during the first

0.1 second. Similar values of final location xfinal can be observed for droplets with the same
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volume. The final location is further away with increasing droplet size. In order to check

the validity of the model, the boundary thickness d needs to be determined experimentally.

However, due to low viscosity of water and limited substrate size, it is difficult for droplets

to reach constant speed on the surface at a certain tilting angles. Therefore, using one set of

experimental data with droplet size of 3 µL and x0 = 4.7 mm, d can be fitted by minimizing

the residuals between data from model and experiments, which are found to be 4×10−6 m.

This value was then used in the model to produce the fits shown as solid lines in Fig. 4,

which shows good agreements between model prediction and experimental results. For 4-

µL and 5-µL droplets, one can notice slight underestimation of droplet velocity, especially

for small initial location x0, and the underestimation is more significant in larger droplets.

We attribute this phenomenon to the effect of inertia: upon detachment of droplet from the

needle, it is observed in the experiments that the droplets are squeezed and bounce on impact

with the surface, leading to larger contact line length along the wedge, and consequently

larger driving force Fc. We anticipate the effect of bouncing is more significant (1) for larger

droplets, (2) during early stage of droplet motion, and (3) for wedges with smaller opening

angle, where Fc is more sensitive to the contact line length.
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Figure 5: Final droplet location as a function of volumes for straight (blue-squares) and
curved (red-circles) wedges. The final location is recorded after more than 10 seconds of
initial droplet motion, where no further movement can be detected. Solid lines are predictions
from the model. Error bars represent standard deviation.
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On straight wedges, the model underestimates the velocity during the early stage of

movement associated with droplet bouncing effect, and fails to provide satisfactory predic-

tions for droplet motion. This may attribute to, as discussed previously, the smaller local

opening angle on the straight wedge (constant 6◦) compared with the curved wedge (varies

from 11◦ to 20◦ during droplet movement). However, as shown in Fig. 5, good agreement on

the final location xfinal can be observed for both curved and straight wedges, where the error-

bars represent the standard deviation. A systematic study on the evaluation of gravitational

effect on spontaneous droplet motion can be conducted through incorporating established

theory, [55] which however is beyond the scope of current work.

Tailored design for droplet transport

In this section, surfaces with different wedge shape designs are compared quantitatively based

on the proposed model. Then, we analyze the droplet motion from an energy perspective,

deriving the equation for calculating maximum traveled distance within a prescribed time

and identifying factors that influence the movement process. Finally, we summarize the

results and provide design guidelines for droplet transport on surfaces with wedge-shaped

patterns.

Three distinct wedge shapes with profile functions y1 = 0.0375x0.823 (concave), y2 =

0.075x1.00 (straight, opening angle α = 8◦), and y3 = 0.150x1.177 (convex), are shown in

Fig. 6(A). The corresponding driving force Fc for droplets with volumes 3 µL and 4 µL

as a function of x are shown in Fig. 6(B). The previously determined d was used for the

calculations. Although the wedge shapes are visually similar, it is observed that the forces

due to capillary pressure are significantly different, where concave wedge has the maximum

initial Fc, whereas Fc of convex wedge decreases more slowly. We can also conclude that Fc

increases with increasing droplet volume for a given wedge shape due to more edge contact

length. Fig. 6(C,D) show the corresponding location and velocity as a function of time. Note
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Figure 6: (A) Shapes of convex (black), straight (blue), and concave (red) wedge shapes and
their corresponding profile functions. (B) The corresponding driving force Fc as a function
of location on different surfaces. Solid and dashed lines represent the forces for 3 µL and 4
µL droplets, respectively. (C) and (D) Location and velocity as a function of time.
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that during the experiments, it was found that there exists a minimum value for the initial

location x0 depending on the droplet volume and width of the wedge, smaller than which

the droplet cannot be placed stably onto the wedge. However, for simplicity, we assume the

droplets can be placed at an initial location x0 = 2 mm. It can be seen that droplets on the

convex wedge travel furthest. One can also notice that the terminal location xf increases as

the volume of droplets becomes larger, consistent with the experiments.

In order for a droplet to move “spontaneously”, it needs to be placed at an initial state

with high free Gibbs energy Ginitial. After the motion, G decreases by ∆G, ending at Gfinal.

The amount of change in Gibbs energy ∆G is the total available actuation energy for droplet

movement, which is the energy input Einput as

Einput = ∆G = Ginitial −Gfinal. (8)

The Gibbs free energy G from the interfacial energetic terms can be calculated by

G = γSLASL + γSGASG + γLGALG, (9)

where the subscripts, LS, LG, and SG, stand for liquid-solid, liquid-gas, and solid-gas,

respectively. γ is the interfacial tension. With the total surface area of the droplet Adrop =

ALS + ALG and the total surface area of wedge, Awedge = ASL + ASG, by applying Young’s

equation:

G = G∗ − γLGALS(1 + cos θ), (10)

where G∗ = AwedgeγSG + γLGAdrop, and θ is the equilibrium contact angle. If we assume the

total surface area of the droplet, Adrop, remains constant during the movement, then G∗ can

be treated as a constant, and the total energy input Einput can be simplified as

Einput = γLG(ALS,final − ALS,initial)(1 + cos θ), (11)
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where ALS,final and ALS,initial are the final and initial contact area between droplet and the

substrate, respectively, indicated by the area enclosed by blue and orange lines in Fig. 1.

Eqn. 11 implies that in order to increase the available Einput, apart from choosing liquids

with larger surface tension, we can decrease ALS,initial by placing the droplet near the wedge

tip or reducing the initial local opening angle, and increase ALS,final by increasing the final

local opening angle.

During the movement process from initial position x0 to final position xf , Einput is dissi-

pated due to viscosity, forces from contact angle hysteresis, or converted into gravitational

energy. Therefore, the energy budget can be written as

Einput =

∫ xf

x0

[
Fv(x,

dx

dt
) + Fh(x) + Fg

]
dx. (12)

Eqn. 12 shows that the energies dissipated due to viscosity and contact angle hysteresis,

and gravity (for θincline ≥ 0) all increases monotonically with total traveled distance ∆x,

independent of the movement velocity. Therefore, in order to more “efficiently” use the

available energy and achieve further traveled distance within a prescribed time t0, the term

Ev needs to be minimized. As the viscous force is a linear function of velocity v, the

optimal movement strategy is to keep a constant speed v = L/t0 (see Appendix). Thus, the

theoretical maximum traveled distance Lmax,t0 can be calculated by solving

∆xmax,t0 =
Einput

Fv + Fh + Fg
=
γ(1 + cos θ)(ALS,final − ALS,initial)

Fv + Fh + Fg
, (13)

In the case of unlimited time, or t0 →∞, the wedge should have a shape, based on Eqn. 3,

such that the Fc is slightly larger than Fh+Fg, so the droplet moves with infinitesimal velocity,

minimizing Ev ≈ 0 and achieving maximum traveled distance. Eqn. 13 also explains why

a convex wedge is better in terms of droplet transportation as shown in Fig. 6(C). On the

one hand, a convex wedge geometrically has smaller ALS,initial and larger ALS,final, resulting

in larger Einput. A smaller local opening angle near the tip (where both the droplet-edge
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contact length and the contact angles are large) and larger local opening angle further away

suit the need for maintaining a constant velocity.
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Figure 7: Total traveled distance ∆x for straight (blue-dot line) as a function of opening
angle α. The ∆x for the convex wedge (black-dashed line) is added for comparison. The inset
shows the wedge shapes for curved (black-dashed line) and straight wedges for α = [5◦, 8◦].
The solid-red line marks the initial location of the droplet.

Fig. 7 shows the comparison of the performances of straight wedges with different opening

angles (α ∈ [3◦, 12◦]) and convex wedge with a profile function y = 0.15x1.2 for total traveled

distance ∆x. The droplet has a volume of 4 µL with an initial location x0 = 1 mm and

wedge width of 0.3 mm for all cases. It is observed that there is a non-monotonic relationship

between the opening angle and ∆x. The driving force Fc for a straight wedge with α = 3◦

is so small and the droplet stops early. As α increases, Fc increases, resulting in larger ∆x,

reaching a maximum at around α = 7◦, after which ∆x decreases due to smaller contact

length between droplet and edge. The black-dashed line in Fig. 7 indicates that the ∆x for

the convex wedge is greater than all straight wedge shapes, showing a clear improvement

due to the change of wedge geometry. The inset in Fig. 7 shows the comparison of shapes of

convex wedge (black-dashed line) and straight wedges (blue-solid lines) with α = [5◦, 8◦]. It

should be pointed out that the optimum shape of wedge does not necessarily satisfy a power

law profile function, and the exact profile needs to be determined by solving Eqs. 13 and

3 with consideration of all resisting forces, especially the wedge-shape-dependent force from
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contact angle hysteresis.

Therefore, for given set material properties, i.e., contact angles, liquid viscosity, contact

angle hysteresis, the transport distance of spontaneous droplet motion on structured sur-

faces can be enhanced through increasing both the available actuation energy (Eqn. 11) and

efficiency of energy usage (Eqs. 12 and 13). On the other hand, if one aims for achieving a

high transport velocity during a short distance, it has been demonstrated that droplet move-

ments with larger wedge local opening angle (concentrated energy release) and smaller size of

droplet (more relatively significant contributions from the capillary force) are faster [34,46,48].

Note that all these material parameters can be identified from experimental data, as demon-

strated in this work. In addition, other methods targeting the improvement of material

properties can be used to further enhance the liquid transport, in particular reducing the

contact angle hysteresis by surface coating.

Conclusion

A theoretical model for the description of spontaneous directional droplet motion on struc-

tured surfaces is developed, which is applicable for surfaces with arbitrary wedge shapes.

Experiments have also been conducted for validation purposes. Good agreements are ob-

served between the predictions from the model and experimental results. Through quantita-

tive comparison of droplet motion on surfaces with different shapes and theoretical analysis,

we found wedges with convex shapes have the potential of performing significantly better

than straight ones in terms of total traveled distance due to larger energy input and more

efficient energy usage. The theoretical framework developed here enables a tailored design

for achieving targeted modes of droplet motion. Our work deepens the understanding of

spontaneous liquid transport on surfaces with wedge-shaped gradient and provides insights

on surface design to enhance the effective transport distance. Further optimised designs are

warranted based on the proposed theoretical analyses.
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Supporting Information

Four videos are presented illustrating the motion of water droplets on curved and straight

wedges:

– video “curve 5ul” compares the motion of 5 ml droplets placed on the curved wedge

at three positions x0 away from the wedge tip;

– video “curve x0 4.7mm” compares the motion of droplets of volume 3, 4 and 5 ml

placed on the curved wedge at x0= 4.7 mm from the wedge tip;

– video “straight 5ul” compares the motion of 5 ml droplets placed on the straight wedge

at three positions x0 away from the wedge tip;

– video “straight x0 6.0mm” compares the motion of droplets of volume 3, 4 and 5 ml

placed on the straight wedge at x0= 6.0 mm from the wedge tip.

Appendix

Minimization of linearly velocity-dependent energy dissipation

To travel a distance L within time t0, assume the resistance force f = kv where k is a

constant. The total energy dissipation

E =

∫ L

0

fdx = k

∫ L

0

vdx. (14)
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Case 1: v = L
t0

= v̄, the total dissipated energy

E1 = kv̄L. (15)

Case 2: v = v̄+v∗(t), where v∗(t) is the velocity deviation from v̄. Since the total traveled

distance is still L:

L =

∫ t0

0

vdt =

∫ t0

0

(v̄ + v∗)dt = L+

∫ t0

0

v∗dt, (16)

we have ∫ t0

0

v∗dt = 0. (17)

Consider dx = vdt = (v̄ + v∗)dt, the dissipated energy

E2 = k

∫ L

0

vdx = kv̄L+ k

∫ t0

0

[v̄v∗ + (v∗)2]dt = kv̄L+ kv̄

∫ t0

0

v∗dt+ k

∫ t0

0

(v∗)2dt. (18)

From Eqn. 17, the second term on the right hand side becomes zero. Thus,

E2 = kv̄L+ k

∫ t0

0

(v∗)2dt ≥ kv̄L = E1. (19)

The above equation indicates velocity function for case 2 cannot be more efficient than case

1, and the equal sign holds only if v∗ = 0.
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