Zhongzheng Wang 
  
Kapil Chauhan 
  
Jean-Michel Pereira 
  
Yixiang Gan 
email: yixiang.gan@sydney.edu.au
  
Disorder characterization of porous media and its effect on fluid displacement

Keywords: Disorder, Fingering, Porous media, Interfaces, LBM, Displacement efficiency, Wettability

We investigate the effects of topological disorder and wettability on fluid displacement in porous media. A modified disorder index Iv is proposed to characterize the disorder of porous media. By changing Iv, different displacement patterns (stable displacement and fingering) under the same flow condition and fluid property are obtained. We analytically demonstrate how increase in disorder promotes fingering due to uneven distribution of local capillary pressure. It is shown that the displacement efficiency for different wettability conditions and disorder well correlates with the distribution of local capillary pressure. A power law relation between fluid-fluid interfacial length and saturation of invading fluid is proposed by taking geometry into account, where the parameters in power law relation can be predicted by the capillary index, Ic, unifying the effects of topological disorder and wettability.

I. INTRODUCTION

Displacement of multiphase fluids in porous media is involved in many industrial and natural processes, such as injection of CO 2 into geological formations [START_REF] Michael | Lifetime of carbon capture and storage as a climate-change mitigation technology[END_REF][START_REF] Juerg | Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[END_REF], enhanced oil recovery [START_REF] Lake | Society of Petroleum Engineers (U.S.), Fundamentals of Enhanced Oil Recovery[END_REF][START_REF] Blunt | Carbon dioxide in enhanced oil recovery[END_REF], remediation of contamination in aquifer systems [START_REF] Nadim | Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview[END_REF], and water infiltration into soil [START_REF] Lipiec | Soil porosity and water infiltration as influenced by tillage methods[END_REF]. Studies have been conducted with a focus on impacts of flow conditions and fluid properties on displacement of multiphase flows [START_REF] Dong | Lattice boltzmann simulation of viscous fingering phenomenon of immiscible fluids displacement in a channel[END_REF][START_REF] Zhang | Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering[END_REF], and effects of gravity [START_REF] Liu | Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice boltzmann method[END_REF] and wettability [START_REF] Cieplak | Influence of contact angle on quasistatic fluid invasion of porous media[END_REF][START_REF] Dong | Simulation of the influence of surface wettability on viscous fingering phenomenon in porous media[END_REF][START_REF] Zhao | Wettability control on multiphase flow in patterned microfluidics[END_REF], while less attention has been paid on correlating the pore-scale disorder of porous media with the fluid displacement.

The displacement patterns, including capillary fingering (CF), viscous fingering (VF), and stable displacement (SD), are primarily controlled by capillary number, Ca, and viscosity ratio, M , between the defending and invading fluids [START_REF] Chen | Pore-scale viscous fingering in porous media[END_REF][START_REF] Homsy | Viscous fingering in porous media[END_REF][START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF][START_REF] Cottin | Drainage in two-dimensional porous media: From capillary fingering to viscous flow[END_REF][START_REF] Odier | Forced imbibition in porous media: A fourfold scenario[END_REF][START_REF] Yortsos | Phase diagram of fully developed drainage in porous media[END_REF]. When the invading fluid is more viscous than the defending fluid, i.e., M < 1, the displacement patterns tend to shift from SD to CF with the decrease of Ca, indicating the dominance of the interfacial tension. While in the case of M > 1, increase of Ca modifies the flow toward VF. At the same time, wettability is also proven to play an important role: increasing contact angle of invading fluid results in more efficient displacement at all Ca [START_REF] Jung | Wettability controls slow immiscible displacement through local interfacial instabilities[END_REF][START_REF] Trojer | Stabilizing fluid-fluid displacements in porous media through wettability alteration[END_REF][START_REF] Holtzman | Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling[END_REF], but when the contact angle exceeds a critical value, the trend is reversed due to corner flow [START_REF] Zhao | Wettability control on multiphase flow in patterned microfluidics[END_REF].

Another important factor that influences fluids displacement is disorder of the porous media. For flows dominated by capillary effects (low Ca), increase in disorder promotes fingering, leading to a transition from SD to CF [START_REF] Cieplak | Influence of contact angle on quasistatic fluid invasion of porous media[END_REF][START_REF] Liu | Lattice boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network[END_REF]. While for large Ca with M > 1, high disorder modifies the viscous fingerings to become more chaotic instead of having ordered patterns in regular media [START_REF] Chen | Pore-scale viscous fingering in porous media[END_REF]. When both capillary and viscous effects are important, Holtzman [START_REF] Holtzman | Effects of pore-scale disorder on fluid displacement in partially-wettable porous media[END_REF] found that increase in disorder leads to higher interfacial area and lower displacement efficiency due to trapping. Holtzman [START_REF] Holtzman | Effects of pore-scale disorder on fluid displacement in partially-wettable porous media[END_REF] also offer subtle observations on effects of disorder by considering both capillary and viscous effects through scaling analysis [START_REF] Holtzman | Effects of pore-scale disorder on fluid displacement in partially-wettable porous media[END_REF]. However, many pore-scale simulation models assume quasi-static displacement [START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF], thus not capable of properly simulating dynamic mechanisms which are crucial even in slowly driven systems [START_REF] Holtzman | Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling[END_REF]. Despite a recent improvement of pore-scale simulation on ability of capturing non-local nature of interface dynamics [START_REF] Holtzman | Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling[END_REF], some processes during multiphase flow still remain un-captured such as droplet fragmentation [START_REF] Pak | Droplet fragmentation: 3d imaging of a previously unidentified pore-scale process during multiphase flow in porous media[END_REF]. In addition, due to the complex interplay among fluids properties, flow conditions, and topological features, the study of disorder effects on fluid displacement remain an active area of research, and attracts increased attention in the recent years with the help of development in microfluidics and advances in computational methods.

Multiphase flow in porous media has been studied both experimentally using micro-models [START_REF] Zhao | Wettability control on multiphase flow in patterned microfluidics[END_REF][START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF][START_REF] Cottin | Drainage in two-dimensional porous media: From capillary fingering to viscous flow[END_REF][START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF][START_REF] Zhang | Liquid co2 displacement of water in a dual-permeability pore network micromodel[END_REF][START_REF] Xu | Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs[END_REF] and numerically by a range of simulation methods. Pore-Network (PN) models, though computationally efficient, have limited predictive capability and accuracy due to simplification of pore geometries and/or flow equations [START_REF] Chen | Pore-scale viscous fingering in porous media[END_REF][START_REF] Blunt | Relative permeabilities from two-and three-dimensional pore-scale network modelling[END_REF][START_REF] Al-Gharbi | Dynamic network modeling of two-phase drainage in porous media[END_REF]. Statistical models including Diffusion-Limited Aggregation (DLA), anti-DLA, and Invasion Percolation (IP) have been used to simulate VF, SD, and CF respectively. However, these "specialized" models cannot capture transitions between different regimes [START_REF] Yortsos | Phase diagram of fully developed drainage in porous media[END_REF][START_REF] Ferer | Crossover from capillary fingering to viscous fingering for immiscible unstable flow: Experiment and modeling[END_REF]. Gridbased methods with interface tracking such as Volume of Fluid (VOF) method and Level Set (LS) method have been proposed to study multiphase flow in porous media [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations[END_REF][START_REF] Huang | Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method[END_REF][START_REF] Raeini | Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method[END_REF][START_REF] Akhlaghi Amiri | Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium[END_REF][START_REF] Sajjad Rabbani | Suppressing viscous fingering in structured porous media[END_REF]. However, they suffer from numerical instability at the interface when interfacial tension becomes dominant for micro-droplets [START_REF] Shyy | Computational Fluid Dynamics with Moving Boundaries[END_REF]. In addition, they have only been applied to simple pore geometries due to relatively high computational costs. The Lattice Boltzmann method (LBM), as a meso-scale method, has been developed into a powerful tool for flow simulation in porous media [START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF][START_REF] Shan | Multicomponent lattice-boltzmann model with interparticle interaction[END_REF][START_REF] Guo | Lattice boltzmann model for incompressible flows through porous media[END_REF][START_REF] Akhlaghi Amiri | Pore-scale modeling of non-isothermal two phase flow in 2d porous media: Influences of viscosity, capillarity, wettability and heterogeneity[END_REF][START_REF] Kruger | LBM -the principles and methods[END_REF]. Comparing to other numerical methods, the LBM is particularly suitable for pore-scale simulation of multiphase flows due to its ability of handling complex geometries and also being able to be massively parallelized. Therefore, it has been applied to study many problems in fluid mechanics [START_REF] Diotallevi | Capillary filling using lattice boltzmann equations: The case of multi-phase flows[END_REF][START_REF] Chen | A critical review of the pseudopotential multiphase lattice boltzmann model: Methods and applications[END_REF][START_REF] Liu | Multiphase lattice boltzmann simulations for porous media applications[END_REF].

In this paper, we investigate the effects of disorder and their coupling with wettability on fluid displacement in porous media. In order to better describe multiphase flow in porous media, a modified disorder index I v is proposed to characterize disordered geometry by reflecting the degree of fluctuation of local porosity. Samples are generated to have distinct values of I v for numerical simulations using Lattice Boltzmann method. Through controlling the disorder of geometry, we are able to produce different displacement patterns (stable displacement and fingering) under the same capillary number and viscosity ratio, providing new insights towards the conventional displacement phase diagram which is independent on system geometry. We demonstrate how increase in disorder collaborated with interfacial phenomena promote fingering due to uneven distribution of local capillary pressure. It is shown that for different wettability conditions and disorder, the displacement efficiency well correlates with the distribution of local capillary pressure. Finally, a power-law relation between fluid-fluid interfacial length and saturation of invading fluid is constructed. The parameters in power law relation can be predicted by the capillary index, I c , which combines the effects of topological disorder and wettability.

II. METHOD

A. Media generation and characterization

Our geometry is a rectangular domain filled with circular obstacles to simulate the solid phase in porous media as as as shown in Fig. 1. The porosity of the medium, defined as the ratio of void area to total area in the 2D space, is controlled by varying the diameter of the obstacles. These obstacles are initially regularly placed on a triangular lattice.

To characterize the disorder of the medium, we use similar idea from Laubie et al. [START_REF] Laubie | Stress transmission and failure in disordered porous media[END_REF] but a different calculation method: instead of using fixed square meshing in their study of mechanical behavior of solid material (originally named as I d ), a Voronoi diagram is constructed for obtaining the local porosity, then a disorder index I v can be defined as the corrected standard deviation of local porosity:

I v = N n=1 (φ n -φ) 2 N -1 , ( 1 
)
where N is the number of obstacles in the domain, φ n is the local porosity within the Voronoi cell, and φ is the overall porosity of the medium.

Disorder is introduced by Monte-Carlo iterative movement of each obstacle with an apparent diameter D app = λD with λ ∈ [1, D max /D], where D is the original diameter of obstacle and D max is the maximum diameter to achieve the maximum packing, e.g., ideally √ 3π 6 in 2D, and its value depends on the system dimension and number of obstacles. Thus, λ = 1 corresponds to a fully disordered system where no restriction is applied during perturbation except that overlap is avoided, while λ = D max /D corresponds to a regular system where no obstacle is able to move since they are already in contact with each other according to their apparent diameter. Here, we focus on media with obstacles of same size. Periodicity is ensured in both horizontal and vertical direction for obstacle distribution and for the consequent Voronoi diagram in the periodic boundary (Fig. 1). During each time-step, perturbation is applied to each particle, after which the disorder index I v is calculated. This process stops when I v stabilizes around a certain value for given λ (the fluctuations in I v are generally smaller than 5% at the end). Thus, I v = 0 corresponds to a perfectly ordered system, exhibiting no variation in local porosity; whereas large values of I v correspond to disordered systems by reflecting fluctuation of local porosity with respect to fully ordered one. We found that the disorder index I v has a monotonic correlation with λ: as λ decreases, I v increases and the system becomes more disordered. It is also found that the achievable maximum value of I v is dependent on the size of system domain, total number of obstacles, and the overall porosity. With our choice of a simulation domain with a length to width ratio W/H = 4, and a periodic domain with x ∈ [0.1299, 3.9404] and y ∈ [0, 1] filled with 440 obstacles having a diameter of 0.06 (corresponding to an overall porosity of 0.6735), I v ∈ [0, 0.08]. Using this method, 5 geometries with distinct disorder have been generated for simulation with I v = [0, 0.020, 0.036, 0.047, 0.054] (see Fig. 2). Generally, with increasing I v , the medium becomes more disordered and the variations in throat sizes becomes larger.

It is necessary to elaborate on reasons to introduce I v instead of directly using λ as the disorder parameter [START_REF] Cieplak | Influence of contact angle on quasistatic fluid invasion of porous media[END_REF][START_REF] Holtzman | Effects of pore-scale disorder on fluid displacement in partially-wettable porous media[END_REF][START_REF] Holtzman | Crossover from fingering to fracturing in deformable disordered media[END_REF][START_REF] Borgman | Impact of spatially correlated pore-scale heterogeneity on drying porous media[END_REF]. Firstly, although a monotonic relation has been observed between λ and I v , from the definitions, λ is a parameter for generating the geometry controlling the minimum distance between obstacles, while I v is the parameter for geometry characterization. Secondly, at the start of perturbation, the disorder of geometry can be quite different (usually in an increasing trend) for the same λ, until a sufficient number of iterations have passed. This is reflected by I v having an increasing tendency followed by fluctuation around a constant value, without which it is hard to define how many iterations are "sufficient". Finally, due to the the construction of Voronoi diagram for calculating I v , each local porosity is dependent on its proximity of adjacent obstacles. Therefore, a large I v not only reflects the uneven spacial distribution of individual obstacles, but also implies the existence of dense clusters, which has strong influences on regional trapping as we will show in our results.

B. Simulation method

Standard Lattice Boltzmann method with D2Q9 lattice is used for our 2D numerical simulations, which includes streaming and collision steps as:

f i (x + c i ∆t, t + ∆t) = f i (x, t) + Ω i (x, t), ( 2 
)
where f i is the density distribution function in i-th direction. In this study, Bhatnagar-Gross-Krook (BGK) approach was preferred to Multi Relaxation Time (MRT) one due to extra computational resources and complexity required for the latter [START_REF] Kruger | LBM -the principles and methods[END_REF]. The BGK collision operator is:

Ω i (x, t) = - f i -f eq i τ ∆t, (3) 
which relaxes the distribution function towards an equilibrium f eq i at a rate determined by the relaxation time τ . The equilibrium distribution function is given by

f eq i (x, t) = ω i ρ 1 + u • c i c 2 s + (u • c i ) 2 2c 4 s - u • u 2c 2 s , (4) 
where ω i is the weight for the ith direction. We use Shan-Chen multi-component model originally proposed by Shan and Chen [START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF], Shan and Doolen [START_REF] Shan | Multicomponent lattice-boltzmann model with interparticle interaction[END_REF]. They introduced an inter-particle force as:

F SC(σ) (x) = -ψ (σ) (x) σ =σ G σσ i ω i ψ (σ) (x+c i ∆t)c i ∆t, (5) 
where ψ (σ) is the "effective" density function for σ component, and G is a simple scalar that controls the strength of the interaction. To model immiscible fluids, the interaction strength G must be positive, simulating the repulsive force between different components. By adopting different fictitious wall densities, contact angles can be tuned [START_REF] Huang | Proposed approximation for contact angles in shan-and-chen-type multicomponent multiphase lattice boltzmann models[END_REF]. Regularized boundary condition proposed by Latt and Chopard [START_REF] Latt | Lattice boltzmann method with regularized non-equilibrium distribution functions[END_REF] is adopted to achieve second order accuracy. For more detailed information about Lattice Boltzmann method, we refer to Mohamad [START_REF] Mohamad | LBM -fundamentals and engineering applications with computer codes[END_REF] and Kruger et al. [START_REF] Kruger | LBM -the principles and methods[END_REF]. We choose a mesh size of 800 x 3200 lu 2 (lu: lattice unit) for the simulation area such that at least 10 lattices are in between the smallest throat to ensure the grid is fine enough [START_REF] Raiskinmäki | Lattice-boltzmann simulation of capillary rise dynamics[END_REF]. Each time after the generation of media, the minimum throat distance r min is determined. To ensure minimum number of lattices N min along r min , the number of lattices required in vertical direction for the simulation domain is calculated as

M v = Nmin
rmin × H, and M h = 4 × M v for horizontal direction, where H is the height of the simulation domain shown in Fig. 1. Note that this method assumes r min and principal directions can be aligned. For example, with N min = 10 and r min = 0.02, the mesh needs to be (at least) 500 × 2000. Finer mesh is required as the topological disorder increases(reduce in apparent diameter leads to smaller possible r min ). After examining all possible cases, we finally choose a mesh of 800 × 3200 to ensure N min = 10 for all simulation cases. The kinematic viscosities for both fluids are 0.1667 lu. The invading and defending fluids have densities of 1 and 0.8 lu, respectively, leading to a viscosity ratio M = 0.8. The interfacial tension can be calculated using Young-Laplace equation, which is 0.2152 lu. The invading fluid is injected from the left with a constant velocity of V inj = 0.005 lu, leading to a capillary number Ca = Vinjµ def γ = 0.0031. The pore scale Reynolds number is less than 10. The outlet pressure at the right end is set to be a constant of 0.2667 lu. Periodic boundary condition is applied at top and bottom of the simulation area. Overall, 25 simulations are carried out for 5 different disorder (I v = 0, 0.020, 0.036, 0.047, 0.054) and 5 different contact angle (θ = 35 

III. RESULTS AND DISCUSSION

The displacement patterns for different wettability conditions and topological disorder are shown in Fig. 3. These are qualitative demonstration of effects of wettability and disorder on fluid displacement in porous media. Note that these snapshots correspond to the final stage of simulation, which is when the invading fluid reaches the right end of the periodic boundary (see Fig. 1). Generally, stronger fingering and larger trapped area of defending fluid are observed when the medium becomes more disordered (increasing I v ) and more hydrophobic (increasing θ), implying a less efficient displacement, consistent with previous observations [9-12, 19-21, 23, 52]. Fig. 3 also demonstrates the "competition" between the destabilizing effect due to uneven distribution of capillary resistance and stabilizing effect from cooperative pore filling events, which have a higher occurrence when contact angle is small. To provide quantitative information about these patterns, the normalized fluid-fluid interfacial length, L * = interfacial length width of geometry , is calculated and plotted as a function of saturation of invading fluid S for each time-step (Fig. 4). Note that in order to exclude the boundary effect at outlet we conduct representative volume analysis and found an area of interest with L AOI = 3 well captures the displacement data, so it is within this area (Fig. 1) our results are based on. Fig. 4 shows that the rates at which interfacial length increase are larger as the media become more disordered (following the direction of black arrow) for all wettability conditions. This dependence becomes stronger as the contact angle increases, which again can be explained by the stabilizing effect of wettability [START_REF] Holtzman | Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling[END_REF][START_REF] Trojer | Stabilizing fluid-fluid displacements in porous media through wettability alteration[END_REF]: trapping is mitigated by cooperative pore filling, or overlap, during displacement for disordered media (corresponding to the 4 collapsed curves for θ = 35 • ). As the contact angle increases, this "mitigating effect" is reduced such that more trapping events occur, leading to higher interfacial length. Furthermore, we also quantify (a) the residual saturation (Fig. 5A and Fig. 5C) and (b) the ratio of final interfacial length to saturation (Fig. 5B and Fig. 5D) as functions of I v and θ: increase in I v and θ leads to decrease in displacement efficiency and increase in interfacial length per unit of saturation. These results again demonstrate the combined impacts of topological disorder and wettability.

To analytically investigate how wettability and disor- der cooperate together to influence fluid displacement, we start with the equation that contain the physics of fluid displacement in multiple throats as suggested by Lenormand et al. [START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF]:

q = K 1 (P -P c1 ) + +K 2 (P -P c2 ) + +. . . = N n=1 K n (P -P cn ) + , ( 6 
)
where q is is the total flow rate, N is total number of throats, K n is the hydraulic conductance at local pore throat n, P is the pressure difference of invading and defending fluids, and P cn is the local capillary pressure providing resistance to the invasion of throat n. Locally, as long as P is smaller than P cn , there is no displacement. Then, the pressure difference between invading and defending fluids increases as more invading fluid is injected, resulting in P > P cn at throat n, leading to local throat invasion. Thus, in absence of viscous fingering, it is the uneven distribution of local capillary pressure that leads to uneven invasion of pores and consequent trapping and fingering, which ultimately affects the fluid-fluid interfacial length and displacement efficiency. To calculate the maximum allowable capillary pressure P c,max before a throat is invaded, we consider 3 basic pore-scale mechanisms: "burst", "touch", and "overlap" [START_REF] Cieplak | Dynamical transition in quasistatic fluid invasion in porous media[END_REF]. Firstly, the equation for capillary pressure P c at throat n in porous medium filled with circular obstacles of same diameter can be calculated by:

P cn = 2γ sin(α + θ -90 • ) h n -d cos(α) , ( 7 
)
where γ is the interfacial tension, h is the center-to-center distance of obstacles, d is the diameter, and α is the filling angle shown in Fig. 6A. Then, we define that the throat is invaded if (i) the front of invading fluid comes in contact with the next obstacle (touch), or (ii) α reaches α overlap corresponding to cooperative pore filling event (overlap), assuming that obstacles are placed on triangular lattices (Fig. 6B). Thus, for given contact angle θ, the critical angle α crit can be calculated as α crit = min(α touch , α overlap ), where α touch is calculated based on θ and α overlap = 90 • . Different characteristic front shape indicated by α overlap may be used by other researchers depending on the porosity of the medium [START_REF] Holtzman | Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling[END_REF]. In our study it is found α overlap will not significantly impact the results and 90 • is adopted. Finally, for every throat, the P c,max can be calculated as:

P c,max = max(P c ), α ∈ [-90 • , α crit ], (8) 
which is the maximum capillary pressure before the front reaches any of the instability state at burst, touch, or overlap. It is found that log-normal curves can well fit most of the P c,max distributions, and the probability distributions of P c,max for different I v and θ are plotted in Fig. 7. It shows that as the medium becomes more disordered, the distribution of P c,max spreads out. In the meantime, increase in contact angle of invading fluid amplifies this effect, which further increases the variation in P c,max . Thus, the P c,max distribution captures the interplay among wettability and geometry of the system, reflecting the resultant capillary resistance, which should have close relationship with the displacement patterns.

To validate this hypothesis, the final saturation of invading fluid S r , or displacement efficiency, is plotted against the standard deviation of log(P c,max ) in Fig. 8 for all our simulation cases. Collapses of curves for different wettability conditions and disorder can be observed, showing a linear relationship with a correlation coefficient R = -0.9261. On the other hand, regarding the fluid-fluid interfacial length, Liu et al. [START_REF] Liu | Pore-scale simulation of liquid co 2 displacement of water using a two-phase lat-tice boltzmann model[END_REF] found that the interfacial length L and saturation of invading fluid S can be correlated with a power-law relationship: L = kS β , where k and β are fitting parameters depending on the geometry. Here, we propose a modified correlation between interfacial length and saturation assuming a power law relation between normalized interfacial length L * and "injection length" vt:

L * = L H = k(vt) β = k(φ • W • S) β , ( 9 
)
where, v is the injection velocity, t is time, H is the injection width (across which the invading fluid is injected), φ is porosity, W is the domain longitudinal length, S is saturation of invading fluid, k and β are parameters that can be estimated based on capillary index I c depending on system disorder and wettability conditions, which is defined as:

I c = I v,max -I v I v,max -I v,min • cos(θ max ) -cos(θ) cos(θ max ) -cos(θ min ) , ( 10 
)
where I v,max is the maximum disorder index depending on overall porosity of the geometry and total number of 3, if zoom in and observe carefully, trapping event actually occurs at every obstacle during which small bubbles are formed, leading to much larger interfacial length between fluids than it appears to be. Overall, the proposed power law relation (Eqn( 9)) together with capillary index I c (Eqn.( 10)) provide a rigorous method to capture the quantitative relation between L * and S r for different disorder and wettability conditions, offering a reasonable way to predict the value of interfacial length.

In the current study, in order to focus on the effects of disorder and its coupling with wettability on fluid displacement in porous media, the injecting velocity in all simulations are the same, implying a constant capillary number Ca. Although the influence of Ca is not investigated, based on numerous past works, since it is the uneven distribution of capillary pressure that leads to unstable displacement, a decrease in Ca would make all the displacement patterns shown in Fig. 3 more unstable since the capillary effect would become more significant. We also limit our attention to situations where Saffman-Taylor instability, or viscous fingering, is not present by setting the viscosity ratio M = 0.8.

IV. CONCLUSION

We systematically study the impact of topological disorder and its coupling with wettability on multiphase flow in porous media via fluid-fluid displacement simulation using Lattice Boltzmann method. It has been shown that the disorder of porous media and wettability play a significant role on the fluid-fluid displacement patterns. In addition to the overall porosity of the medium, the consideration of an appropriate "disorder index" is required to capture the effects of micro-structure on fluid displacement. The modified disorder index I v is able to characterize geometries with different disorder by reflect-ing the degree of fluctuation of local porosity based on Voronoi diagram. Our results show larger contact angle and increasing disorder promote fingering, leading to larger fluid-fluid interfacial area and lower displacement efficiency. To analytically investigate how wettability and disorder collaboratively influence displacement, we calculate the maximum allowable local capillary pressure P c,max based on three pore-scale mechanisms during displacement: burst, touch, and overlap. It is found that the standard deviation of log(P c,max ) strongly correlates with the displacement efficiency for all wettability conditions and disorder. We proposed a more general power law relation and defined the capillary index I c , which offers a rigorous way to capture the quantitative relation between L * and S r for different disorder and wettability conditions.

While in current work we only consider obstacles of same size, for media with different sizes of grains, mod-ified Voronoi diagram can be adopted to generate the disorder index by taking the varying radii into account. We provide qualitative and quantitative insight into how geometrical features and wettability conditions collaboratively impact the fluid displacement, paving the way for further study of disorder and wettability control on multiphase flow in porous media.
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FIG. 1 .

 1 FIG.1. Our porous medium is composed of 440 circular obstacles with diameter d = 0.06, which are initially regularly placed on a triangular lattice. The area enclosed by black dot-dash line is the simulated area with injection width H and longitudinal length W , while our results and analysis are based on the area of interest (LAOI ), which is enclosed by red solid line. Geometrical periodicity in horizontal and vertical direction is ensured inside periodic boundary (purple-dashed line). The invading fluid is injected from the left with a constant velocity Vinj. The pressure at the right end is set to be constant Pout. Periodic boundary condition is imposed at top and bottom of the simulation area.
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 2 FIG.2. Generated porous media and corresponding throat size probability distribution. From top to bottom, Iv = 0, 0.020, 0.036, 0.047, 0.054.
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 34 FIG. 3. Displacement patterns (from data of invading fluid) for different disorder (left to right, Iv = 0, 0.020, 0.036,0.047, 0.054) and wettability (top to bottom, θ = 35 • , 62 • , 89 • , 109 • , 128 • ). The color map represents the density of invading fluid in lattice unit. Note that in LBM, the density fields of invading and defending fluids are stored in separate matrices. Here only the matrix storing data of invading fluid is shown. The blue color (density of invading fluid being zero) stands for the location of defending fluid, and the density fluctuation represents the pressure variation.
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 5 FIG. 5. (A) Final saturation of invading fluid Sr (or displacement efficiency, which is the fraction of defending fluid that has been displaced from the media at the end of the simulation) as a function of Iv and θ. (B) Final normalized interfacial length L * over final saturation Sr as a function of Iv and θ. (C) and (D) Same data set as a function of contact angle θ for different topological disorders. Black arrow indicates the direction of increasing values of Iv from 0 to 0.054.

FIG. 6 .FIG. 7 .

 67 FIG. 6. (A) Schematic figure for calculation of local capillary pressure as a function of center-to-center distance of particle h, radius r, contact angle θ, and filling angle α (B) Schematic figure for calculation of αcrit, which is the maximum allowable α, larger than which the local throat being considered (red dashed line) will be invaded.
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 89 FIG. 9. (A) β (blue cross) and ln(k) (orange circle) in Eqn. (9) as a function of Ic. The blue dashed line and orange solid line are the best fit lines for β and ln(k) respectively. Black dashed line indicates the theoretical value for ln(k) in perfect stable displacement. (B) Contour plot of Ic as functions of topological disorder (Iv) and wettability (θ).

  • , 62 • , 89 • , 109 • , 128 • ).