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Disorder characterization of porous media and its effect on fluid displacement
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We investigate the effects of topological disorder and wettability on fluid displacement in porous
media. A modified disorder index Iv is proposed to characterize the disorder of porous media. By
changing Iv, different displacement patterns (stable displacement and fingering) under the same flow
condition and fluid property are obtained. We analytically demonstrate how increase in disorder
promotes fingering due to uneven distribution of local capillary pressure. It is shown that the
displacement efficiency for different wettability conditions and disorder well correlates with the
distribution of local capillary pressure. A power law relation between fluid-fluid interfacial length
and saturation of invading fluid is proposed by taking geometry into account, where the parameters
in power law relation can be predicted by the capillary index, Ic, unifying the effects of topological
disorder and wettability.

Keywords: Disorder, Fingering, Porous media, Inter-
faces, LBM, Displacement efficiency, Wettability.

I. INTRODUCTION

Displacement of multiphase fluids in porous media is
involved in many industrial and natural processes, such
as injection of CO2 into geological formations [1, 2], en-
hanced oil recovery [3, 4], remediation of contamination
in aquifer systems [5], and water infiltration into soil [6].
Studies have been conducted with a focus on impacts
of flow conditions and fluid properties on displacement
of multiphase flows [7, 8], and effects of gravity [9] and
wettability [10–12], while less attention has been paid on
correlating the pore-scale disorder of porous media with
the fluid displacement.

The displacement patterns, including capillary finger-
ing (CF), viscous fingering (VF), and stable displacement
(SD), are primarily controlled by capillary number, Ca,
and viscosity ratio, M , between the defending and in-
vading fluids [13–18]. When the invading fluid is more
viscous than the defending fluid, i.e., M < 1, the dis-
placement patterns tend to shift from SD to CF with the
decrease of Ca, indicating the dominance of the interfa-
cial tension. While in the case of M > 1, increase of Ca
modifies the flow toward VF. At the same time, wetta-
bility is also proven to play an important role: increasing
contact angle of invading fluid results in more efficient
displacement at all Ca [19–21], but when the contact an-
gle exceeds a critical value, the trend is reversed due to
corner flow [12].

Another important factor that influences fluids dis-
placement is disorder of the porous media. For flows
dominated by capillary effects (low Ca), increase in dis-
order promotes fingering, leading to a transition from
SD to CF [10, 22]. While for large Ca with M > 1,
high disorder modifies the viscous fingerings to become
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more chaotic instead of having ordered patterns in reg-
ular media [13]. When both capillary and viscous ef-
fects are important, Holtzman [23] found that increase
in disorder leads to higher interfacial area and lower dis-
placement efficiency due to trapping. Holtzman [23] also
offer subtle observations on effects of disorder by consid-
ering both capillary and viscous effects through scaling
analysis [23]. However, many pore-scale simulation mod-
els assume quasi-static displacement [15], thus not ca-
pable of properly simulating dynamic mechanisms which
are crucial even in slowly driven systems [21]. Despite
a recent improvement of pore-scale simulation on abil-
ity of capturing non-local nature of interface dynamics
[21], some processes during multiphase flow still remain
un-captured such as droplet fragmentation [24]. In addi-
tion, due to the complex interplay among fluids proper-
ties, flow conditions, and topological features, the study
of disorder effects on fluid displacement remain an active
area of research, and attracts increased attention in the
recent years with the help of development in microfluidics
and advances in computational methods.

Multiphase flow in porous media has been studied both
experimentally using micro-models [12, 15, 16, 25–27] and
numerically by a range of simulation methods. Pore-
Network (PN) models, though computationally efficient,
have limited predictive capability and accuracy due to
simplification of pore geometries and/or flow equations
[28–30]. Statistical models including Diffusion-Limited
Aggregation (DLA), anti-DLA, and Invasion Percolation
(IP) have been used to simulate VF, SD, and CF respec-
tively. However, these “specialized” models cannot cap-
ture transitions between different regimes [18, 31]. Grid-
based methods with interface tracking such as Volume of
Fluid (VOF) method and Level Set (LS) method have
been proposed to study multiphase flow in porous me-
dia [32–36]. However, they suffer from numerical insta-
bility at the interface when interfacial tension becomes
dominant for micro-droplets [37]. In addition, they have
only been applied to simple pore geometries due to rela-
tively high computational costs. The Lattice Boltzmann
method (LBM), as a meso-scale method, has been devel-
oped into a powerful tool for flow simulation in porous
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media [38–42]. Comparing to other numerical methods,
the LBM is particularly suitable for pore-scale simulation
of multiphase flows due to its ability of handling complex
geometries and also being able to be massively paral-
lelized. Therefore, it has been applied to study many
problems in fluid mechanics[43–45].

In this paper, we investigate the effects of disorder and
their coupling with wettability on fluid displacement in
porous media. In order to better describe multiphase
flow in porous media, a modified disorder index Iv is pro-
posed to characterize disordered geometry by reflecting
the degree of fluctuation of local porosity. Samples are
generated to have distinct values of Iv for numerical sim-
ulations using Lattice Boltzmann method. Through con-
trolling the disorder of geometry, we are able to produce
different displacement patterns (stable displacement and
fingering) under the same capillary number and viscos-
ity ratio, providing new insights towards the conventional
displacement phase diagram which is independent on sys-
tem geometry. We demonstrate how increase in disorder
collaborated with interfacial phenomena promote finger-
ing due to uneven distribution of local capillary pressure.
It is shown that for different wettability conditions and
disorder, the displacement efficiency well correlates with
the distribution of local capillary pressure. Finally, a
power-law relation between fluid-fluid interfacial length
and saturation of invading fluid is constructed. The pa-
rameters in power law relation can be predicted by the
capillary index, Ic, which combines the effects of topo-
logical disorder and wettability.

II. METHOD

A. Media generation and characterization

Our geometry is a rectangular domain filled with circu-
lar obstacles to simulate the solid phase in porous media
as as as shown in Fig. 1. The porosity of the medium,
defined as the ratio of void area to total area in the 2D
space, is controlled by varying the diameter of the obsta-
cles. These obstacles are initially regularly placed on a
triangular lattice.

To characterize the disorder of the medium, we use
similar idea from Laubie et al. [46] but a different calcu-
lation method: instead of using fixed square meshing in
their study of mechanical behavior of solid material (orig-
inally named as Id), a Voronoi diagram is constructed for
obtaining the local porosity, then a disorder index Iv can
be defined as the corrected standard deviation of local
porosity:

Iv =

√∑N
n=1(φn − φ̄)2

N − 1 , (1)

where N is the number of obstacles in the domain, φn is
the local porosity within the Voronoi cell, and φ̄ is the
overall porosity of the medium.

Disorder is introduced by Monte-Carlo iterative move-
ment of each obstacle with an apparent diameter Dapp =
λD with λ ∈ [1, Dmax/D], where D is the original di-
ameter of obstacle and Dmax is the maximum diameter
to achieve the maximum packing, e.g., ideally

√
3π
6 in

2D, and its value depends on the system dimension and
number of obstacles. Thus, λ = 1 corresponds to a fully
disordered system where no restriction is applied dur-
ing perturbation except that overlap is avoided, while
λ = Dmax/D corresponds to a regular system where no
obstacle is able to move since they are already in con-
tact with each other according to their apparent diame-
ter. Here, we focus on media with obstacles of same size.
Periodicity is ensured in both horizontal and vertical di-
rection for obstacle distribution and for the consequent
Voronoi diagram in the periodic boundary (Fig. 1). Dur-
ing each time-step, perturbation is applied to each parti-
cle, after which the disorder index Iv is calculated. This
process stops when Iv stabilizes around a certain value
for given λ (the fluctuations in Iv are generally smaller
than 5% at the end). Thus, Iv = 0 corresponds to a
perfectly ordered system, exhibiting no variation in local
porosity; whereas large values of Iv correspond to disor-
dered systems by reflecting fluctuation of local porosity
with respect to fully ordered one. We found that the
disorder index Iv has a monotonic correlation with λ: as
λ decreases, Iv increases and the system becomes more
disordered. It is also found that the achievable maxi-
mum value of Iv is dependent on the size of system do-
main, total number of obstacles, and the overall porosity.
With our choice of a simulation domain with a length
to width ratio W/H = 4, and a periodic domain with
x ∈ [0.1299, 3.9404] and y ∈ [0, 1] filled with 440 obsta-
cles having a diameter of 0.06 (corresponding to an over-
all porosity of 0.6735), Iv ∈ [0, 0.08]. Using this method,
5 geometries with distinct disorder have been generated
for simulation with Iv = [0, 0.020, 0.036, 0.047, 0.054]
(see Fig. 2). Generally, with increasing Iv, the medium
becomes more disordered and the variations in throat
sizes becomes larger.

It is necessary to elaborate on reasons to introduce
Iv instead of directly using λ as the disorder parameter
[10, 23, 25, 47]. Firstly, although a monotonic relation
has been observed between λ and Iv, from the definitions,
λ is a parameter for generating the geometry control-
ling the minimum distance between obstacles, while Iv is
the parameter for geometry characterization. Secondly,
at the start of perturbation, the disorder of geometry
can be quite different (usually in an increasing trend)
for the same λ, until a sufficient number of iterations
have passed. This is reflected by Iv having an increas-
ing tendency followed by fluctuation around a constant
value, without which it is hard to define how many itera-
tions are “sufficient”. Finally, due to the the construction
of Voronoi diagram for calculating Iv, each local poros-
ity is dependent on its proximity of adjacent obstacles.
Therefore, a large Iv not only reflects the uneven spacial
distribution of individual obstacles, but also implies the
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existence of dense clusters, which has strong influences
on regional trapping as we will show in our results.

B. Simulation method

Standard Lattice Boltzmann method with D2Q9 lat-
tice is used for our 2D numerical simulations, which in-
cludes streaming and collision steps as:

fi(x + ci∆t, t+ ∆t) = fi(x, t) + Ωi(x, t), (2)

where fi is the density distribution function in i-th direc-
tion. In this study, Bhatnagar-Gross-Krook (BGK) ap-
proach was preferred to Multi Relaxation Time (MRT)
one due to extra computational resources and complexity
required for the latter [42]. The BGK collision operator
is:

Ωi(x, t) = −fi − f
eq
i

τ
∆t, (3)

which relaxes the distribution function towards an equi-
librium feqi at a rate determined by the relaxation time
τ . The equilibrium distribution function is given by

feqi (x, t) = ωiρ

[
1 + u · ci

c2
s

+ (u · ci)2

2c4
s

− u · u

2c2
s

]
, (4)

where ωi is the weight for the ith direction. We use
Shan-Chen multi-component model originally proposed
by Shan and Chen [38], Shan and Doolen [39]. They
introduced an inter-particle force as:

FSC(σ)(x) = −ψ(σ)(x)
∑
σ̃ 6=σ

Gσ̃σ
∑
i

ωiψ
(σ̃)(x+ci∆t)ci∆t,

(5)
where ψ(σ) is the ”effective” density function for σ com-
ponent, and G is a simple scalar that controls the
strength of the interaction. To model immiscible flu-
ids, the interaction strength G must be positive, simu-
lating the repulsive force between different components.
By adopting different fictitious wall densities, contact an-
gles can be tuned [48]. Regularized boundary condition
proposed by Latt and Chopard [49] is adopted to achieve
second order accuracy. For more detailed information
about Lattice Boltzmann method, we refer to Mohamad
[50] and Kruger et al. [42]. We choose a mesh size of 800
x 3200 lu2 (lu: lattice unit) for the simulation area such
that at least 10 lattices are in between the smallest throat
to ensure the grid is fine enough [51]. Each time after the
generation of media, the minimum throat distance rmin
is determined. To ensure minimum number of lattices
Nmin along rmin, the number of lattices required in ver-
tical direction for the simulation domain is calculated as
Mv = Nmin

rmin
× H, and Mh = 4 ×Mv for horizontal di-

rection, where H is the height of the simulation domain
shown in Fig.1. Note that this method assumes rmin and
principal directions can be aligned. For example, with
Nmin = 10 and rmin = 0.02, the mesh needs to be (at

least) 500× 2000. Finer mesh is required as the topolog-
ical disorder increases(reduce in apparent diameter leads
to smaller possible rmin). After examining all possible
cases, we finally choose a mesh of 800 × 3200 to ensure
Nmin = 10 for all simulation cases. The kinematic vis-
cosities for both fluids are 0.1667 lu. The invading and
defending fluids have densities of 1 and 0.8 lu, respec-
tively, leading to a viscosity ratio M = 0.8. The interfa-
cial tension can be calculated using Young-Laplace equa-
tion, which is 0.2152 lu. The invading fluid is injected
from the left with a constant velocity of Vinj = 0.005 lu,
leading to a capillary number Ca = Vinjµdef

γ = 0.0031.
The pore scale Reynolds number is less than 10. The
outlet pressure at the right end is set to be a constant
of 0.2667 lu. Periodic boundary condition is applied at
top and bottom of the simulation area. Overall, 25 sim-
ulations are carried out for 5 different disorder (Iv = 0,
0.020, 0.036, 0.047, 0.054) and 5 different contact angle
(θ = 35◦, 62◦, 89◦, 109◦, 128◦).

III. RESULTS AND DISCUSSION

The displacement patterns for different wettability
conditions and topological disorder are shown in Fig. 3.
These are qualitative demonstration of effects of wetta-
bility and disorder on fluid displacement in porous media.
Note that these snapshots correspond to the final stage
of simulation, which is when the invading fluid reaches
the right end of the periodic boundary (see Fig. 1). Gen-
erally, stronger fingering and larger trapped area of de-
fending fluid are observed when the medium becomes
more disordered (increasing Iv) and more hydrophobic
(increasing θ), implying a less efficient displacement, con-
sistent with previous observations [9–12, 19–21, 23, 52].
Fig. 3 also demonstrates the “competition” between the
destabilizing effect due to uneven distribution of cap-
illary resistance and stabilizing effect from cooperative
pore filling events, which have a higher occurrence when
contact angle is small. To provide quantitative informa-
tion about these patterns, the normalized fluid-fluid in-
terfacial length, L∗ = interfacial length

width of geometry , is calculated and
plotted as a function of saturation of invading fluid S
for each time-step (Fig. 4). Note that in order to ex-
clude the boundary effect at outlet we conduct repre-
sentative volume analysis and found an area of interest
with LAOI = 3 well captures the displacement data, so
it is within this area (Fig. 1) our results are based on.
Fig. 4 shows that the rates at which interfacial length
increase are larger as the media become more disordered
(following the direction of black arrow) for all wettabil-
ity conditions. This dependence becomes stronger as the
contact angle increases, which again can be explained by
the stabilizing effect of wettability [21, 53]: trapping is
mitigated by cooperative pore filling, or overlap, during
displacement for disordered media (corresponding to the
4 collapsed curves for θ = 35◦). As the contact angle
increases, this “mitigating effect” is reduced such that
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FIG. 1. Our porous medium is composed of 440 circular obstacles with diameter d = 0.06, which are initially regularly placed
on a triangular lattice. The area enclosed by black dot-dash line is the simulated area with injection width H and longitudinal
length W , while our results and analysis are based on the area of interest (LAOI), which is enclosed by red solid line. Geometrical
periodicity in horizontal and vertical direction is ensured inside periodic boundary (purple-dashed line). The invading fluid is
injected from the left with a constant velocity Vinj. The pressure at the right end is set to be constant Pout. Periodic boundary
condition is imposed at top and bottom of the simulation area.

!"

!" = 0

!" = 0.020

!" = 0.036

!" = 0.047

!" = 0.054

FIG. 2. Generated porous media and corresponding throat size probability distribution. From top to bottom, Iv = 0, 0.020,
0.036, 0.047, 0.054.

more trapping events occur, leading to higher interfacial
length. Furthermore, we also quantify (a) the residual
saturation (Fig. 5A and Fig. 5C) and (b) the ratio of fi-
nal interfacial length to saturation (Fig. 5B and Fig. 5D)
as functions of Iv and θ: increase in Iv and θ leads to

decrease in displacement efficiency and increase in inter-
facial length per unit of saturation. These results again
demonstrate the combined impacts of topological disor-
der and wettability.

To analytically investigate how wettability and disor-
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FIG. 3. Displacement patterns (from data of invading fluid) for different disorder (left to right, Iv = 0, 0.020, 0.036,0.047,
0.054) and wettability (top to bottom, θ = 35◦, 62◦, 89◦, 109◦, 128◦). The color map represents the density of invading fluid
in lattice unit. Note that in LBM, the density fields of invading and defending fluids are stored in separate matrices. Here only
the matrix storing data of invading fluid is shown. The blue color (density of invading fluid being zero) stands for the location
of defending fluid, and the density fluctuation represents the pressure variation.
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FIG. 4. Normalized fluid-fluid interfacial length (L∗) as a function of saturation of invading fluid (S) for different wettability
and topological disorder. The black arrow indicates the direction of increasing disorder: Iv = 0, 0.020, 0.036,0.047, 0.054
corresponding to blue, orange, yellow, purple, and green curves respectively.

der cooperate together to influence fluid displacement,
we start with the equation that contain the physics of
fluid displacement in multiple throats as suggested by
Lenormand et al. [15]:

q = K1(P−Pc1)++K2(P−Pc2)++. . . =
N∑
n=1

Kn(P−Pcn
)+,

(6)
where q is is the total flow rate, N is total number of
throats, Kn is the hydraulic conductance at local pore
throat n, P is the pressure difference of invading and
defending fluids, and Pcn

is the local capillary pressure
providing resistance to the invasion of throat n. Locally,
as long as P is smaller than Pcn

, there is no displacement.
Then, the pressure difference between invading and de-
fending fluids increases as more invading fluid is injected,
resulting in P > Pcn

at throat n, leading to local throat
invasion. Thus, in absence of viscous fingering, it is the
uneven distribution of local capillary pressure that leads

to uneven invasion of pores and consequent trapping and
fingering, which ultimately affects the fluid-fluid interfa-
cial length and displacement efficiency. To calculate the
maximum allowable capillary pressure Pc,max before a
throat is invaded, we consider 3 basic pore-scale mecha-
nisms: “burst”, “touch”, and “overlap” [54]. Firstly, the
equation for capillary pressure Pc at throat n in porous
medium filled with circular obstacles of same diameter
can be calculated by:

Pcn = 2γ sin(α+ θ − 90◦)
hn − d cos(α) , (7)

where γ is the interfacial tension, h is the center-to-center
distance of obstacles, d is the diameter, and α is the filling
angle shown in Fig. 6A. Then, we define that the throat is
invaded if (i) the front of invading fluid comes in contact
with the next obstacle (touch), or (ii) α reaches αoverlap
corresponding to cooperative pore filling event (overlap),
assuming that obstacles are placed on triangular lattices
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FIG. 5. (A) Final saturation of invading fluid Sr (or displacement efficiency, which is the fraction of defending fluid that has
been displaced from the media at the end of the simulation) as a function of Iv and θ. (B) Final normalized interfacial length
L∗ over final saturation Sr as a function of Iv and θ. (C) and (D) Same data set as a function of contact angle θ for different
topological disorders. Black arrow indicates the direction of increasing values of Iv from 0 to 0.054.

(Fig. 6B). Thus, for given contact angle θ, the critical an-
gle αcrit can be calculated as αcrit = min(αtouch, αoverlap),
where αtouch is calculated based on θ and αoverlap =
90◦. Different characteristic front shape indicated by
αoverlap may be used by other researchers depending on
the porosity of the medium [21]. In our study it is found
αoverlap will not significantly impact the results and 90◦
is adopted. Finally, for every throat, the Pc,max can be
calculated as:

Pc,max = max(Pc), α ∈ [−90◦, αcrit], (8)

which is the maximum capillary pressure before the front
reaches any of the instability state at burst, touch, or
overlap. It is found that log-normal curves can well fit
most of the Pc,max distributions, and the probability dis-
tributions of Pc,max for different Iv and θ are plotted in
Fig. 7. It shows that as the medium becomes more dis-
ordered, the distribution of Pc,max spreads out. In the
meantime, increase in contact angle of invading fluid am-
plifies this effect, which further increases the variation in
Pc,max. Thus, the Pc,max distribution captures the in-
terplay among wettability and geometry of the system,
reflecting the resultant capillary resistance, which should
have close relationship with the displacement patterns.
To validate this hypothesis, the final saturation of invad-
ing fluid Sr, or displacement efficiency, is plotted against
the standard deviation of log(Pc,max) in Fig. 8 for all our

simulation cases. Collapses of curves for different wetta-
bility conditions and disorder can be observed, showing
a linear relationship with a correlation coefficient R =
-0.9261.

On the other hand, regarding the fluid-fluid interfacial
length, Liu et al. [55] found that the interfacial length L
and saturation of invading fluid S can be correlated with
a power-law relationship: L = kSβ , where k and β are
fitting parameters depending on the geometry. Here, we
propose a modified correlation between interfacial length
and saturation assuming a power law relation between
normalized interfacial length L∗ and “injection length”
vt:

L∗ = L

H
= k(vt)β = k(φ ·W · S)β , (9)

where, v is the injection velocity, t is time, H is the injec-
tion width (across which the invading fluid is injected),
φ is porosity, W is the domain longitudinal length, S is
saturation of invading fluid, k and β are parameters that
can be estimated based on capillary index Ic depending
on system disorder and wettability conditions, which is
defined as:

Ic = Iv,max − Iv
Iv,max − Iv,min

· cos(θmax)− cos(θ)
cos(θmax)− cos(θmin) , (10)

where Iv,max is the maximum disorder index depending
on overall porosity of the geometry and total number of
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FIG. 6. (A) Schematic figure for calculation of local capillary pressure as a function of center-to-center distance of particle h,
radius r, contact angle θ, and filling angle α (B) Schematic figure for calculation of αcrit, which is the maximum allowable α,
larger than which the local throat being considered (red dashed line) will be invaded.

FIG. 7. Probability distribution of local maximum capillary pressure for different disorder and wettability (histogram for Iv = 0
and probability density function for log-normal fitting of other values of Iv). Black dashed arrow indicates the direction of
increasing contact angle. Blue, orange, yellow, purple, and green colors correspond to θ = 35◦, 62◦, 89◦, 109◦, 128◦, respectively.

obstacles inside the system, being 0.08 for the current set-
ting. Iv,min = 0 is the disorder index for fully ordered sys-
tem. cos(θmax) and cos(θmin) are -1 and 1, corresponding
to θ = 180◦ and θ = 0◦ respectively. As we have discussed
previously that increase in contact angle and topological
disorder promotes fingering, therefore, Ic is a direct indi-
cator of the collaborative effect due to medium geometry
and wettability conditions. A small value of Ic implies
relatively large θ and Iv, which leads to less efficient dis-
placement, while larger values of Ic would correspond to
more stable displacement. We plot the parameters β and
ln(k) from Eqn(10) as function of Ic in Fig. 9A and found
that with Ic < 0.5, both β and ln(k) show a strong linear
relation with Ic, having R of -0.9467 and 0.9958 respec-
tively. For Ic ≥ 0.5, the displacement patterns are all
stable, resulting in small β and large ln(k), indicating
weak dependence of L∗ on Sr: L∗ is only composed of
the fluid front, being almost constant during the stable
displacement. In Fig. 9A, the black dashed line and a
value of 0 correspond to the theoretical values for ln(k)
and β for perfect stable displacement. Clearly, it can be
seen that Ic can also be used to classify displacement pat-
terns (9B). As shown in Fig. 3, 25 patterns are separated

into 3 regions by the dashed line (Ic = 0.5) and solid line
(Ic = 0.3) depending on the values of Ic. A smaller value
of Ic implies larger interfacial length per unit of satura-
tion. Note for the left-bottom displacement pattern in
Fig. 3, if zoom in and observe carefully, trapping event
actually occurs at every obstacle during which small bub-
bles are formed, leading to much larger interfacial length
between fluids than it appears to be. Overall, the pro-
posed power law relation (Eqn(9)) together with capillary
index Ic (Eqn.(10)) provide a rigorous method to capture
the quantitative relation between L∗ and Sr for different
disorder and wettability conditions, offering a reasonable
way to predict the value of interfacial length.

In the current study, in order to focus on the effects
of disorder and its coupling with wettability on fluid dis-
placement in porous media, the injecting velocity in all
simulations are the same, implying a constant capillary
number Ca. Although the influence of Ca is not inves-
tigated, based on numerous past works, since it is the
uneven distribution of capillary pressure that leads to
unstable displacement, a decrease in Ca would make all
the displacement patterns shown in Fig. 3 more unstable
since the capillary effect would become more significant.



8

0 0.1 0.2 0.3 0.4 0.5 0.6
std(ln(Pc,max))

0.7

0.75

0.8

0.85

0.9

0.95

1

S r

R = -0.9261

 = 35°
 = 62°
 = 89°
 = 109°
 = 128°

FIG. 8. Final saturation Sr as a function of standard deviation of logarithm maximum capillary pressure for different topological
disorder and wettability.

0 0.2 0.4 0.6 0.8 1
Ic

0

0.2

0.4

0.6

0.8

1

1.2

-5

-4

-3

-2

-1

0

ln
(k

)

A

R = -0.9467

R = 0.9958

stable displacement B

0.
1

0.1

0.
2

0.2

0.3
0.4
0.5
0.6
0.7
0.8

0 0.01 0.02 0.03 0.04 0.05
Iv

0

50

100

150

FIG. 9. (A) β (blue cross) and ln(k) (orange circle) in Eqn. (9) as a function of Ic. The blue dashed line and orange solid line
are the best fit lines for β and ln(k) respectively. Black dashed line indicates the theoretical value for ln(k) in perfect stable
displacement. (B) Contour plot of Ic as functions of topological disorder (Iv) and wettability (θ).

We also limit our attention to situations where Saffman-
Taylor instability, or viscous fingering, is not present by
setting the viscosity ratio M = 0.8.

IV. CONCLUSION

We systematically study the impact of topological dis-
order and its coupling with wettability on multiphase
flow in porous media via fluid-fluid displacement simula-
tion using Lattice Boltzmann method. It has been shown
that the disorder of porous media and wettability play a
significant role on the fluid-fluid displacement patterns.
In addition to the overall porosity of the medium, the
consideration of an appropriate “disorder index” is re-
quired to capture the effects of micro-structure on fluid
displacement. The modified disorder index Iv is able to
characterize geometries with different disorder by reflect-

ing the degree of fluctuation of local porosity based on
Voronoi diagram. Our results show larger contact an-
gle and increasing disorder promote fingering, leading to
larger fluid-fluid interfacial area and lower displacement
efficiency. To analytically investigate how wettability and
disorder collaboratively influence displacement, we cal-
culate the maximum allowable local capillary pressure
Pc,max based on three pore-scale mechanisms during dis-
placement: burst, touch, and overlap. It is found that
the standard deviation of log(Pc,max) strongly correlates
with the displacement efficiency for all wettability condi-
tions and disorder. We proposed a more general power
law relation and defined the capillary index Ic, which of-
fers a rigorous way to capture the quantitative relation
between L∗ and Sr for different disorder and wettability
conditions.

While in current work we only consider obstacles of
same size, for media with different sizes of grains, mod-
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ified Voronoi diagram can be adopted to generate the
disorder index by taking the varying radii into account.
We provide qualitative and quantitative insight into how
geometrical features and wettability conditions collabo-
ratively impact the fluid displacement, paving the way
for further study of disorder and wettability control on
multiphase flow in porous media.
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