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Abstract 

Cracks play an essential role in the degradation of the thermomechanical behavior of 
ceramic matrix composites. However, characterizing their complex 3D geometries 
within a complex microstructure is still a challenge. This paper presents a series of 
procedures, based on X-ray tomographic images, to evaluate the applied 3D strains, 
including their through-thickness gradients, and to detect and quantify the induced 
crack networks in ceramic matrix composites. Digital volume correlation and some 
dedicated image processing algorithms are employed. A novel method is proposed to 
estimate the opening, orientation and surface area of the detected cracks. The 
proposed procedures are applied to the images of a SiC/SiC composite tube that has 
been tested in situ under uniaxial tension with synchrotron X-ray computed 
tomography. 

Keywords: Ceramic matrix composites (CMCs); Damage mechanisms; X-ray 
computed tomography; Crack quantification 

 

NOTICE: This is a post-peer-review, pre-copyedit version of an article published in 
Experimental Mechanics. The final authenticated version is available online at: 
https://doi.org/10.1007/s11340-019-00557-5. 

  

                                                           
 Corresponding author, Email: chenyangpic@gmail.com 

https://doi.org/10.1007/s11340-019-00557-5


2 
 

1. Introduction  

Because of their outstanding physical and chemical properties at high temperatures 
in comparison with metals, silicon carbide (SiC) composite materials are studied as 
fuel cladding materials either for future advanced fission/fusion reactors [1] or, more 
recently, for the currently existing light water reactors [2]. SiC/SiC composites, 
manufactured by chemical vapor infiltration (CVI) process, exhibit nonlinear 
damageable mechanical behavior governed by microcracking within the material (see 
e.g. [3,4]). Optimal structural design of such ceramic matrix composites (CMCs) 
requires a good understanding of the relationships between the microstructure, the 
damage mechanisms and the macroscopic behavior. 

Due to their complex microstructures, it is necessary to investigate CMCs by 
collecting 3D, spatially resolved information. Acoustic emission and electric 
resistance are two commonly used techniques for this purpose [5–8]. However, they 
cannot provide explicit information about the growth path and the nature of local 
fractures. X-ray computed tomography (XRCT) has been proven to be a powerful tool 
for studying this category of materials [9–11], because it enables an explicit and 
direct observation of the 3D geometry and growth path of cracks, which are important 
for understanding the damage behavior of CMCs. Both qualitative and quantitative 
investigations of damage mechanisms have been conducted using in situ XRCT for 
unidirectional minicomposites loaded axially [12–14]. However, it is still a challenge to 
extend this method, even when applied to simple specimen geometry, to more 
realistic architectured textile composites because of the large size of the volumes to 
be considered. On the one hand, such volumes are required to encompass several 
unit cells of the quasi-periodic woven microstructure. On the other hand, they must 
resolve both its smaller features, such as micropores, and the induced complex crack 
networks, which may exhibit rather small openings. 

The Digital Volume Correlation (DVC) technique has already been coupled with in 
situ XRCT in order to quantify local or global deformation of CMCs under load (see 
e.g. [15,16]). The DVC-evaluated displacements can be used to measure the crack 
opening displacement (COD) [17]. The 3D strain field can also be a relevant indicator 
of damage [18]. However, this method is limited by the accuracy and spatial 
resolution of the DVC-evaluated displacement field, especially in the case of SiC/SiC 
composites, for which the image contrast of the microstructure is not sufficiently local 
nor uniformly distributed, because it mostly arises from residual micropores, 
elongated and aligned along the tow direction. Furthermore, extracting quantitative 
information about both the 3D microstructure and damage requires sophisticated 
image processing algorithms, the application of which may take much more time than 
the experiment itself. As a result, many applications of such approach are limited to 
brief qualitative observations of only a few regions of interest of limited size. 
However, an optimal use of the huge amount of numerical data provided by such in 
situ XRCT experiments, as well as of the long and thorough efforts developed to 
produce them, would of course imply quantitative processing of all available data. In 
addition, because of the natural statistical fluctuations of damage events within a 
microstructure, the imaging and associated analyses should be performed over 
sufficiently large domains to ensure statistical representativeness. 

Cracks in CMCs are numerous and usually organized in networks with complex 3D 
geometries, which spread over the complex porous microstructure of the composite. 
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Moreover, the opening of cracks is usually very small, typically below a few 
micrometers in the case of SiC/SiC composites [19]. Therefore, detecting them in the 
whole field of view is not straightforward and requires automated and sensitive 
procedures. For such small openings of cracks, artifacts commonly observed in 
tomographic images may hinder the crack detection and need to be treated carefully. 
Inherently, tomographic observations will never be able to capture all damage events 
in the material, and crack detection will be essentially limited by image resolution, or 
voxel size. Nevertheless, a subvoxel detectability, i.e. a capability to detect cracks 
with an opening below one voxel, can be expected by virtue of the information carried 
by the image gray levels [20]. 

The objective of this paper is to introduce a series of new procedures to fully analyze 
3D tomographic images, in order to (i) evaluate the overall strain of a tubular sample, 
including its through-thickness heterogeneity; (ii) detect complex crack networks; (iii) 
measure their local opening, orientation and surface area of cracks, and average 
them over representative domains. These procedures are here used to analyze the 
damage mechanisms in a SiC/SiC composite tube under in situ tensile load on a 
synchrotron XRCT platform. After a brief description of the studied material and the 
experimental setup in section 2, we present the post processing of the tomographic 
images in section 3. Finally, some results are illustrated in section 4. 

 

2. Material and Methods 

2.1. Material 

The studied material is a SiC/SiC composite tube based on 3rd generation SiC fibers 
(Hi-Nicalon type S) of 12 µm average diameter. The fibers have been coated with a 
30 nm pyrocarbon interphase and the fiber preform has been densified by SiC matrix, 
both using the Chemical Vapor Infiltration (CVI) process. The fiber architecture is 
composed of two layers of 2x2 2D braided tows (Fig.1.a), which are oriented at ±45° 
with respect to the tube axis. The inner surface of the tube has been ground after 
densification to be smooth, so as to simulate the real fuel cladding concept for the 
nuclear application. In order to improve the spatial resolution of tomographic images, 
the sample needs to be as small as possible, yet the tubular geometry should ideally 
be kept to avoid boundary effects induced by cut edges. Therefore, the tube 
dimension has been reduced to a regular (ground) internal diameter of 3.47 mm and 
a rough external diameter of ~4.90 mm, instead of 7.85 mm and ~9.6 mm 
respectively for the real industrial application. 

 

 2.2.  In situ  tomographic images 

The in situ tensile test has been performed at the French synchrotron facility SOLEIL 
on the PSICHE beamline [21]. The in-situ loading device uses an aluminum tube with 
an external diameter of 20 mm and a wall thickness of 2 mm to transfer the loading 
force from the uniaxial actuator to the sample (Fig.1.b and c). 

A polychromatic X-ray beam with a pink spectrum centered at 45 keV passes through 
the aluminum tube and the sample, and is captured by the detector system that is 
composed of a scintillator, a 45° mirror, a 2.5x optic lens and a Hamamatsu Orca 
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Flash4.0 camera, based on a 2048x2048 CMOS sensor with a pixel size of 6.5 µm. 
One rotation of 360° (6000 projections per rotation) has been performed for each 
scan. The image acquisitions have been carried out at one reference unloaded state 
and then at five uniaxial tension levels. In order to investigate a larger vertical field of 
view, two successive scans have been acquired for each loading level at different 
axial positions, with an overlap of 0.72 mm along the axial direction. 

 

 

Fig.1 (a) View of the outer surface of a 2D-braided SiC/SiC composite tube. (b) 
Experimental setup at the PSICHE beamline of SOLEIL Synchrotron. (c) Sketch of 
the loading device. 

 

The 3D images are reconstructed using the software PyHST2 [22], and converted 
into 8 bit unsigned integer format. Each reconstructed image has a dimension of 
2048x2048x1024 voxels, corresponding to 5.3x5.3x2.7 mm3 with a voxel size of 2.6 
µm. A cross-sectional slice is shown in Fig.2.a. Even though the voxel size is smaller 
than the fiber diameter (~12 µm), the fiber and the matrix can barely be distinguished 
because of their low density contrast: CVI SiC and Hi-Nicalon type S SiC fibers are 
both close to stoichiometric SiC. Macro- and micropores can however be clearly seen 
and distinguished. The image artifacts are highlighted by a gray-level profile across 
the tube thickness in Fig.2.b. They need to be carefully treated during the crack 
detection procedure. Fig.3 shows that both the fiber architecture and cracks can be 
observed in the 3D image. Extracting such rich information requires specific 
techniques that will be introduced in the next section. 
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(a) 

 

(b) 

Fig.2 Reconstructed image: (a) cross-sectional slice and a zoom; (b) Gray-level 
profile along the green line in the cross-sectional slice in (a). 

 

 

Fig.3 3D volume rendering of one of the two sequential volumes at the last loading 

step. 
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3. Image processing 

First of all, an in-house DVC software CMV3D [23] using local cross correlation is 
employed to evaluate the displacement fields. The spatial resolution of the latter is 
linked to the available local image contrast, essentially provided by micro and 
macropores. The DVC calculations are performed over the two sequential images 
separately (i.e. without being stitched). In order to minimize the computation time, an 
idealized tube geometry has been determined from the 3D images, and the 
correlation grids are defined in cylindrical coordinates only over the tube thickness 
region. Cubic correlation window with variable size has been used: 30 voxels per side 
for an initial attempt, increased to 50 voxels per side when the optimal correlation 
coefficient turns out to be larger than a threshold of 0.3. More details about the DVC 
procedure can be found in [24].  

Based on the DVC results, novel procedures are proposed to fully analyze the 
tomographic data. The average tensile, radial, circumferential and torsional strains of 
the composite tube, including their through-thickness heterogeneities will be 
evaluated from the displacement measurements resulting from the two separate DVC 
analyses of the volume sets. Cracks will be detected and quantified using a method 
making full use of image gray levels. 

 

3.1. Strain evaluation 

The contrast within the 3D images is provided by micro- and macropores. The 
micropores provide rather local features, but in a limited number. Moreover, they are 
very elongated and aligned along the direction of the tow they belong to. As a result, 
this kind of contrast is not very suitable for a precise and detailed evaluation of the 
local displacement field. Combined with the small deformability of the ceramic 
constituents, the local strains as deduced from the DVC-measured displacement field 
at the scale of the grid spacing, are very noisy. It must be emphasized that the 
displacement field in the present study is not sufficiently spatially resolved, nor 
accurate to evaluate crack openings from kinematic discontinuities evaluated this 
way, and an alternative idea for crack quantification will be proposed in section 3.3. 

Hence, we introduce here a method for measuring profiles throughout the tube 
thickness of the strains averaged over the tube length and circumference. Note first 
that the set of correlation points at the same radial position defines a radial 
(cylindrical) layer 𝐼. Their displacements are fitted to those of a uniformly deformed 
cylinder that can be arbitrarily translated along and rotated around the tube axis. The 

uniform deformation of a cylindrical layer 𝐼 is described by its axial strain 𝜀𝑧𝑧
𝐼  , radial 

displacement 𝑢𝑟
𝐼  and torsion angle per unit length 𝜆𝐼 with respect to the tube axis: 

(

𝑟0
𝜃0
𝑧0
)    →     (

𝑟
𝜃
𝑧
) = (

𝑟0 + 𝑢𝑟
𝐼

𝜃0 + 𝜆
𝐼 ⋅ 𝑧0 + 𝛽𝑧

𝐼

(1 + 𝜀𝑧𝑧
𝐼 ) ⋅ 𝑧0 + 𝑇𝑧

𝐼

) (1) 

where [𝑟0, 𝜃0, 𝑧0]
𝑡 and [𝑟, 𝜃, 𝑧]𝑡 respectively represent the position before and after the 

transformation of a material point, with respect to the tube-cylindrical coordinate 

system. 𝑇𝑧
𝐼 and 𝛽𝑧

𝐼 stand for the axial translation along and rotation around the tube 

axis of the considered layer 𝐼. 
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The initial and deformed positions are transformed from the tube-cylindrical to the 
image-Cartesian coordinates: 

(

𝑋0
𝐾

𝑌0
𝐾

𝑍0
𝐾

) = 𝑹𝟎
𝐾 ⋅ (

𝑟0 ⋅ cos 𝜃0
𝑟0 ⋅ sin 𝜃0

𝑧0

) + 𝑡0
𝐾  and  (

𝑋𝐾

𝑌𝐾

𝑍𝐾
) = 𝑹𝐾 ⋅ (

𝑟 ⋅ cos 𝜃
𝑟 ⋅ sin 𝜃

𝑧
) + 𝑡𝐾 (2) 

where the superscript ∗𝐾 (𝐾 = 1, 2) denotes the quantity ∗ in one of the two 

sequential images. 𝑹0
𝐾 and 𝑡0

𝐾 are the rotation matrix and translation vector 

describing the coordinate transformation (from tube to image coordinates) in the 
reference configuration. They can be determined when identifying the tube axis (see 
[24], Chapter 2.2.1), and are identical for the two sequential images at different axial 

positions (𝑹𝟎
1 = 𝑹𝟎

2;  𝑡0
1 = 𝑡0

2). Similarly, 𝑹𝐾 and 𝑡𝐾 describe the coordinate 

transformation in the deformed configuration. Yet, they are allowed to be different for 
the two sequential images, which makes it possible to take into account the potential 
difference in coordinate change between the two sequential volumes after 
mechanical transformation. In fact, this difference could arise if the sample is not 

exactly repositioned between the two scans. As a result, 𝑹𝐾 and 𝑡𝐾 are six 

parameters for each volume (3 rotation angles and 3 translation components) to be 
determined by the procedure of transformation fitting, together with the five 

parameters per radial layer (𝜀𝑧𝑧
𝐼 , 𝑢𝑟

𝐼 , 𝜆𝐼, 𝑇𝑧
𝐼 and 𝛽𝑧

𝐼).  

The fitting procedure is completed through a least-square minimization procedure 

(lsqcurvefit function in MATLAB) between the simulated displacement field 𝑢𝑠𝑖𝑚,𝐾 and 

the DVC-measured one 𝑢𝐷𝑉𝐶,𝐾: 

𝛼𝑜𝑝𝑡 = argmin
𝛼
∑∑∑‖𝑢𝑠𝑖𝑚,𝐾(𝑋𝑗

𝐼 , 𝛼) − 𝑢𝐷𝑉𝐶,𝐾(𝑋𝑗
𝐼)‖

𝑛

𝑗=1

𝑚

𝐼=1

2

𝐾=1

 (3) 

where 𝛼 = {{𝜀𝑧𝑧
𝐼 , 𝑢𝑟

𝐼 , 𝜆𝐼 , 𝛽𝑧
𝐼 , 𝑇𝑧

𝐼}𝐼=1,2,…,𝑚; {𝑹
𝐾, 𝑡𝐾}

𝐾=1,2
} represents the set of kinematic 

parameters to be determined; 𝑋𝑗
𝐼 stands for the 𝑗-th grid point in the 𝐼-th radial layer; 

𝑚 and 𝑛 denote the numbers of layers and of correlation points per layer, 

respectively. ‖∗‖ is ℓ2 norm. 

Finally, the strain tensor 𝜺 is calculated from the five kinematic parameters: 

𝜺 =

[
 
 
 
 
 𝑢𝑟,𝑟0

1

2
𝑟0(𝜆,𝑟0 𝑧0 + 𝛽𝑧,𝑟0)

1

2
(𝜀𝑧𝑧,𝑟0𝑧0 + 𝑇𝑧,𝑟0)

1

2
𝑟0(𝜆,𝑟0 𝑧0 + 𝛽𝑧,𝑟0)

𝑢𝑟
𝑟0

1

2
𝜆𝑟0

1

2
(𝜀𝑧𝑧,𝑟0𝑧0 + 𝑇𝑧,𝑟0)

1

2
𝜆𝑟0 𝜀𝑧𝑧 ]

 
 
 
 
 

 (4) 

The components are uniform for each layer, and those involving the radial derivative 
(∗,𝑟0) are evaluated by finite difference for two adjacent radial layers (𝐼 and 𝐼 + 1). 

Thus evaluated average strains at each radial position combines the DVC 
measurements of the two separate volume sets taken from two different vertical 
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positions. Their radial profiles provide an indicator of damage distribution throughout 
the tube thickness at a “semi-macroscopic” length scale. 

 

3.2. Crack detection 

A recently developed image subtraction technique [20,25] based on the DVC 
displacement field is used to detect cracks in the material. The image subtraction is 
performed within the reference configuration, where every image voxel at position 𝑋 

is initially associated with a reference gray level 𝑓(𝑋). A voxel-wise transformation 

field Φ between the reference and deformed images is continuously built throughout 
the whole image by interpolation of the coarse DVC measurements. Note that DVC 
measurements showing bad correlation values are excluded from the interpolation 
(e.g. the correlation subsets overlapping cracks). According to the voxel-wise 

transformation field, the reference voxel 𝑋 is then given a deformed gray level 

𝑔(Φ(𝑋)), which is deduced from the deformed image, making use of a tricubic gray 

level interpolation. The gray level function of the subtracted image 𝑟(𝑋) is obtained 

by 

𝑟(𝑋) =
1

2
[𝑔 (Φ(𝑋)) − 𝑓(𝑋) + 𝑟𝑚] (5) 

where 𝑟𝑚 is an offset ensuring the consistency of image format, e.g. 𝑟𝑚 = 255 for 8-
bit images. Details on this procedure can be found in [20] and in [24] (Chapter 2) for 
the parameters used for the present study. 

Image subtraction is performed at each loading step, separately for the two 
sequential images, and the resulting subtracted images are stitched into a single one 
by simple juxtaposition [24]. Within the subtracted image the contrast due to the 
composite microstructure is expected to be removed, and the remaining contrast 
should be attributed only to strong local kinematic fluctuations (cracks) that are not 
taken into account by the mesoscale low-pass interpolated transformation Φ(𝑋). 
However, in practice, image artifacts still remain (Fig.4.b), and they must be carefully 
dealt with to reduce their effects on further quantitative measurements. Specific 
procedures, whose details can be found in [24], are applied for this purpose. This 
artifact processing is overviewed in Fig.4.c-f. First, the radial fluctuation of brightness 
is reduced (Fig.4.c) by subtracting the background gray levels from the original 
image, with the background gray levels being calculated from the average along 
each circumference around the rotation axis. Thus, a unique gray-level threshold can 
be applied for binarization (Fig.4.d). Then, the over-contrasted solid-pore interfaces 
are located through a Sobel filter in the reference image and then deleted from the 
binary image (Fig.4.e). Finally, the ring artifacts are removed using a method similar 
to that proposed by [26], together with small objects of volume size below 20 voxels. 
The final result of crack detection is illustrated in Fig.4.f. 
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Fig.4 Overview of the procedures for crack detection: (a) deformed image, (b) 
subtracted image, (c) after reduction of radial brightness fluctuation, (d) after 
binarization, (e) after removal of over-contrasted solid-pore interfaces, (f) after ring 
removal. 

 

3.3. Crack quantification 

The crack detection procedure identifies the clusters of voxels that represent cracked 
volume. However, it is still not straightforward to deduce quantitative “surface” 
information, such as crack area, orientation or opening, from clusters of voxels. The 
purpose of the present section is to derive a complete methodology tackling this 
issue. First, it is introduced from a theoretical point of view in sections 3.3.1 and 
3.3.2. Then, we use it to evaluate the local position, extension, orientation and 
opening of the detected cracks. Finally, the evaluated quantities are integrated over 
the region of interest to derive global and averaged quantities.  

 

 

Fig.5 X-ray paths through a crack in a homogeneous material. 

(a) (b) (c) 

(d) (e) (f) 
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3.3.1. Preamble: quantification of cracks in homogeneous medium 

To introduce the quantification methodology, we first consider a simpler case of a 
homogeneous material that contains a network of cracks. We consider a particular 
crack in this network and an arbitrary linear path going from point 𝐴 to point 𝐵 
through the crack (see Fig.5). According to Beer-Lambert law, the attenuation of X-
ray along this path is given by 

−𝑙𝑛
𝑁𝐴
𝑁𝐵

= ∫ 𝜇(𝑋)d𝑋
𝐵

𝐴

 (6) 

where 𝑁𝐴 and 𝑁𝐵 quantify the fluxes of photons of an X-ray along the 𝐴𝐵⃗⃗⃗⃗  ⃗ direction 

before and after crossing the segment 𝐴𝐵, 𝜇(𝑋) is the attenuation coefficient at each 

position 𝑋. We assume the attenuations of the solid matrix and the void phase (air) 

are uniform and given by coefficients 𝜇𝑆 and 𝜇𝑉, respectively. Thus, the attenuation 

along the path 𝐴𝐵 can be written as: 

∫ 𝜇(𝑋)d𝑋
𝐵

𝐴

= (‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ − 𝑡) ⋅ 𝜇𝑆 + 𝑡 ⋅ 𝜇𝑉 (7) 

where 𝑡 is the path length of the X-ray through the crack. This quantity can then be 
expressed as follows 

𝑡 = ∫ (
𝜇(𝑋) − 𝜇𝑆
𝜇𝑉 − 𝜇𝑆

)d𝑋
𝐵

𝐴

 (8) 

We assume hereafter that cracks are essentially 2D objects in 3D space, so they can 

be characterized by a mean surface with a local normal 𝑛(𝑐) and local thickness Λ(𝑐) 

for any arbitrary position 𝑐 on the mean surface (see Fig.5). Let us now consider an 

X-ray propagating through 𝑐 and along 𝑛(𝑐). Eq.8 provides the local thickness of the 

crack, i.e. 𝑡 = Λ(𝑐). By definition, an ideal X-ray absorption tomographic image is a 

3D map of attenuation coefficient 𝜇(𝑋), so that any integration of this type will directly 

provide the thickness of the crack, as soon as the local normal direction is known and 
the path 𝑀0𝑀1 fully encompasses the crack. This integration requires no preliminary 
accurate segmentation of the crack domain, which ensures the efficiency of the 
proposed method. 

In a real tomographic image, we do not have the access to the local physical 
attenuation coefficient, but only an approximation obtained from the tomographic 
device. We recall some features of digital XRCT images. First, an XRCT image is a 
discrete representation of the continuous attenuation field, which is characterized by 
a voxel size and limited by spatial resolution of the setup. Second, it is composed of 
gray levels, which are usually assumed as an affine function of attenuation 
coefficients. Third, gray levels are affected by image noise. As a result, the gray level 

𝑓(𝑋𝑖) available for each voxel 𝑖 located at position 𝑋𝑖 in a tomographic image reads 

𝑓(𝑋𝑖)  = 𝑎 ⋅ ∫ [𝐾 (𝑦 − 𝑋𝑖) ⋅ 𝜇 (𝑦)] d𝑦
𝑉(𝑋𝑖)

+ 𝑏 + 𝑓𝑖
′ (9) 
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where 𝑎 and 𝑏 are the parameters of the affine function between attenuation 
coefficients and gray levels, 𝑓𝑖

′ is a random noise at voxel 𝑖, and the kernel 𝐾(𝑦) 

characterizes the spatial resolution of the imaging system. By means of some 
interpolation procedure, this discrete description can be extended to a continuous 

one 𝑓(𝑋) for every position 𝑋. By analogy to Eq.8, an estimate of Λ(𝑐) can be 

obtained from the continuous gray-level function 𝑓(𝑋):  

Λ(𝑐) ≈ ∫ (
𝑓(𝑋) − 𝑓𝑆
𝑓𝑉 − 𝑓𝑆

)𝑑𝑋
𝑀1

𝑀0

 (10) 

where 𝑓𝑆 and 𝑓𝑉 stand for the gray levels in solid and void, respectively. This estimate 
provides a weighted average of the crack thickness over a typical length linked to the 
image spatial resolution (see Appendix A). In practice, it can be obtained by a 
numerical integration along a sufficiently long path normal to the crack (longer than 
the spatial resolution of the image). This integration will be presented in section 3.3.4. 
Its subvoxel accuracy will be limited by the image noise with respect to the image 
contrast, i.e. 𝑓𝑖

′/(𝑓𝑉 − 𝑓𝑆), and by the approximation related to the gray level 

interpolation [20]. More details about the relation between Eq.8 and 10 are given in 

Appendix A. It should be noted that in Eq.8, µ(𝑋) equals either µ𝑉 or µ𝑆, whereas in 

Eq.10, 𝑓(𝑋) takes intermediate values between 𝑓𝑉  and 𝑓𝑆, because a real 

tomographic image provides a blurred vision of the real crack. The ratio (𝑓(𝑋) −
𝑓𝑆)/(𝑓𝑉 − 𝑓𝑆  ) can be interpreted as a local void volume fraction at position 𝑋 in the 

context of a diffuse description of cracks. 

 

3.3.2. Quantification from subtracted image 

The previous methodology enables us to quantify cracks in ideal homogeneous 
materials. Now we extend it to heterogeneous materials, in which cracks are detected 
from the comparison between reference and deformed images (see section 3.2).  

Let now 𝑓(𝑋) describe the continuous gray level distribution in the reference image of 

the undamaged solid and 𝑔(𝑥) describe the gray levels in the corresponding volume 

in the deformed image, in which a crack has appeared and could be detected with 
the subtraction methodology [20]. As previously, the crack is essentially a flat 
structure and can be given a normal direction, perpendicular to its mean surface. Let 
𝑚0𝑚1 be a segment crossing the crack along its normal direction in the deformed 
configuration (see Fig.6). The crack thickness is again denoted as Λ, and it is 
delimited by 𝑚𝑖 and 𝑚𝑓. According to the mesoscopic mechanical transformation Φ 

evaluated by DVC, which is locally affine, the corresponding segment 𝑀0𝑀1 and 
limits 𝑀𝑖 and 𝑀𝑓 can be defined in the reference configuration. The virtual crack, 

obtained by transforming the real one in the deformed configuration back to the 
reference image, is drawn in dashed line in Fig.6. 
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Fig.6 Schematic of a crack observed in the deformed configuration, which is 
transformed back to the undamaged reference configuration (dashed lines) 

 

For the sake of clarity, we consider the subtracted image in its simplest form: 

𝑟0(𝑋) = 𝑔 (Φ(𝑋)) − 𝑓(𝑋) (11) 

Apart from image noise, 𝑟0 is observed to be zero outside the detected crack. This 
would be exactly true if the transformation Φ is the true mechanical transformation, 
because of the classical assumption of conservation of gray level on which DVC 
relies. It is also true in the case when Φ is the mesoscopic approximation of the 
actual transformation based on a limited local image contrast. Indeed, in this case 
two situations are encountered in practice. Either there is some physical contrast in 
the images, provided for instance by micropores, and DVC makes use of it to locally 
map properly the reference and deformed images; or such contrast is not available, 
as is the zone made of pure dense SiC, and both images exhibit the same locally 
uniform gray level, so that the image difference will be zero even if the mapping is 

incorrect. As a consequence, the integral along 𝑀0𝑀1 can be written as 

∫ 𝑟0(𝑋) d𝑋
𝑀1

𝑀0

= ∫ [𝑔 (Φ(𝑋)) − 𝑓(𝑋) ] d𝑋
𝑀𝑓

𝑀𝑖

 (12) 

Consider now first that tomographic images are perfect, i.e. with infinitely small 
voxels or infinitely high spatial resolution. Then the gray levels of crack in the 
deformed image coincide with those of air and they are uniform, equal to 𝑓𝑉. We need 

to assume that the gray levels in the solid phase located along 𝑀𝑖𝑀𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (that will be 

replaced by void after cracking) in the reference image are also uniform along this 
little segment, equal to 𝑓(𝐶) with 𝐶 denoting a point at the mean surface of the crack 

transformed back to the reference configuration. Then, the integral becomes 

∫ 𝑟0(𝑋) d𝑋
𝑀1

𝑀0

= (𝑓𝑉 − 𝑓(𝐶))‖𝑀𝑖𝑀𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ (13) 

Let 𝜖𝑚𝑒𝑠 stands for the evaluated mesoscopic strain along 𝑀𝑖𝑀𝑓, identical to the one 

along 𝑀0𝑀1, then we have. 

‖𝑚𝑖𝑚𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ = Λ = (1 + 𝜖𝑚𝑒𝑠)‖𝑀𝑖𝑀𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ (14) 
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Combining Eq.13, and using the relations 𝑓(𝑋) = 𝑓(𝐶) for 𝑋 ∈ 𝑀𝑖𝑀𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑟0(𝑋) = 0 

for 𝑋 ∈ {𝑀0𝑀𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∪ 𝑀𝑓𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗}, the crack opening is given by   

Λ = (1 + 𝜖𝑚𝑒𝑠)∫ 𝑑0(𝑋) d𝑋,   with
𝑀1

𝑀0

 𝑑0(𝑋) =
𝑔 (Φ(𝑋)) − 𝑓(𝑋)

𝑓𝑉 − 𝑓(𝑋)
 (15) 

As will be discussed later in Section 3.4, the mesoscopic deformation 𝜖𝑚𝑒𝑠 in such 
ceramic material is usually small enough to be negligible. Then the crack opening 

can be estimated as Λ ≅ ∫ 𝑑0(𝑋) d𝑋
𝑀1

𝑀0
.  

Consider now the real tomographic images, which are blurred versions of the ideal 
ones (Eq.9). We can use the similar reasoning as in the case of a homogeneous 
material (Appendix A). Under the assumption that the segment 𝑀0𝑀1 is sufficiently 
large with respect to image resolution, Eq.15 provides a measurement of crack 
thickness Λ that is locally averaged according to image resolution, as explained in 

Appendix A. It should be noted that the coefficient (𝑓𝑉 − 𝑓(𝐶)) on the right-hand side 

of Eq.13 is not influenced by blurring, because of the uniformity of the gray level in air 
and the assumed local uniformity of the matrix around point 𝐶.  

Local crack thickness can thus be evaluated by integrals of the continuously 
interpolated subtracted experimental images along sufficiently long segments normal 
to the crack mean surface. Accuracy of this evaluation is essentially controlled by the 

ratio of the noise in subtracted images (which is equal to √2 times the noise in a 

single image) to the local matrix-void contrast (𝑓𝑉 − 𝑓(𝐶)). The practical 

implementation of this methodology requires first a voxel-wise computation of the 

local damage 𝑑0(𝑋), then an evaluation of the local normal directions of the cracks 

detected in section 3.2, finally the through-thickness integration of the continuously 
interpolated damage 𝑑0. Details of these procedures are provided in the next 
sections. 

 

3.3.3. Voxel-wise damage description 

Considering the practical definition of the subtracted image used to detect crack and 
defined in Eq.5, the reasoning exposed in section 3.3.2 applies and leads to the 
following expression of the local crack opening: 

Λ ≅ ∫ 𝑑(𝑋) 𝑑𝑋,   with
𝑀1

𝑀0

 𝑑(𝑋) =
2 ∙ 𝑟(𝑋) − 𝑟𝑚

𝑓𝑉 − 𝑓(𝑋)
 (16) 

where 𝑑(𝑋) is defined as a voxel-wise damage variable, which should be 

theoretically bounded by 0 and 1, with the two bounds being reached for non-cracked 
and fully cracked voxels, respectively. In practice, it is calculated for the crack voxels 
𝑋𝑐 resulting from the detection procedure only, leading to: 

𝑑(𝑋) = {
〈
2 ∙ 𝑟(𝑋) − 𝑟𝑚

𝑓𝑉 − 𝑓(𝑋)
〉   if 𝑋 = 𝑋𝑐

                   0              otherwise

 (17) 
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where the symbol 〈⋅〉 stands for truncating the values out of the range [0,1], so 

that 𝑑 ∈ [0,1]. In fact, image noises and artifacts lead to out-of-range values in a very 

limited number of voxels. The practical choice of the gray level 𝑓𝑉 in void will be 
discussed in section 3.4.  

In addition to this scalar quantity 𝑑(𝑋), for every crack voxel we define an orientation 

providing the local normal direction to the crack surface. It is calculated from the 
inertia tensor of a neighboring box centered at each considered crack voxel. The 
damage field 𝑑(𝑋) is used to weight the voxels in the neighboring box in this 

calculation. The eigenvector associated with the largest eigenvalue of this inertia 
tensor is defined as the normal vector 𝑁(𝑋𝑐) of the crack voxel. It provides an 

orientation angle 𝛾𝑟(𝑋𝑐) between the normal vector 𝑁(𝑋𝑐) and the radial axis 𝑒𝑟(𝑋𝑐) 

of the local coordinates (Fig.7.a). The size of the neighboring box is an important 
parameter to be optimized. It must be large enough to weaken the effect of 
discretization and noise, and small enough to provide sufficiently local characteristics. 
Accordingly, after some trials on the largest detected cracks, it is set to 11x11x11 
voxels in the present analysis. 

According to the orientation angle 𝛾𝑟 (Fig.7.b), we can define two sets of crack 
voxels: those with an angle larger than 𝜋/4 belong to circumferential cracks, and the 
others to in-plane cracks. Although the term “in-plane” is not rigorously correct for a 
tubular composite, we use it to describe the cracks that grow along the tube wall. 

(a)    (b)    

 

Fig.7 (a) Illustration of the characteristic angle 𝛾𝑟 for crack orientation. (b) The 500 

largest detected cracks colored according to their orientation angle 𝛾𝑟(𝑋𝑐), the green 

cylinder represents the internal free surface of the tube. 
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3.3.4. Local crack opening and orientation 

Now we propose a procedure for assembling the voxel-wise information into surface 
information, as illustrated in Fig.8. The first step consists in computing the integral of 
the discrete damage field through the crack thickness for every crack voxel and 
projecting it onto a mean crack surface. To do so, for each crack voxel 𝑋𝑐, we 

construct a discrete damage profile 𝑑(𝑋𝑐
ℎ) along the normal vector 𝑁(𝑋𝑐). The 

discretization points 𝑋𝑐
ℎ are defined by a 1-D discrete coordinate ℎ with respect to the 

related normal vector: 

𝑋𝑐
ℎ = 𝑋𝑐 + ℎ ⋅ 𝑁(𝑋𝑐) (18) 

In practice, ℎ is defined within the interval [−3, 3] (voxels) with an increment of one 
voxel, this interval being thicker than all detected cracks, and larger than image 
spatial resolution as required from the discussion in section 3.4. It should be noted 

that the profile value 𝑑(𝑋𝑐
ℎ) has been determined from a trilinear interpolation of the 

damage field 𝑑(𝑋). The projected position 𝑋𝑐
 𝑝

 of the crack voxel is then defined as 

the barycenter position 𝑋𝑐(ℎ
𝑚) of the damage profile 𝑑(𝑋𝑐

ℎ(ℎ)):  

𝑋𝑐
 𝑝 = 𝑋𝑐 + ℎ

𝑚 ⋅ 𝑁(𝑋𝑐)     with   ℎ
𝑚 =

 ∫ [𝑑(𝑋𝑐
ℎ(ℎ)) ⋅ ℎ] 𝑑ℎ

3

−3

∫ 𝑑(𝑋𝑐
ℎ(ℎ)) 𝑑ℎ

3

−3

 (19) 

Consistently with Eq.15, the local opening Λ is then evaluated for each projected 
position from the integration of the damage profile: 

Λ(𝑋𝑐
 𝑝) = ∫ 𝑑(𝑋𝑐

ℎ(ℎ)) 𝑑ℎ
3

−3

 (20) 

This operation is performed for all crack voxels, resulting in a large set of projected 

positions, each of them associated with a local opening Λ(𝑋𝑐
 𝑝) and local normal 

vector 𝑁(𝑋𝑐
𝑝) = 𝑁(𝑋𝑐). Let us emphasize that the above integrals are not simple 

summations over voxel values, but true continuous integrations based on 
interpolated gray levels as required by Eq.15. 

As illustrated in Fig.8.a, the second step consists in merging these spatially dispersed 
projected positions into a regular grid, in order to prepare for further surface 
integration. The initial image grid is used: the projected positions belonging to a same 
voxel are merged by averaging their locations, openings and normal vectors, leading 

to elementary projected position 𝑋𝑐
𝑝̃
, elementary opening Λ𝑐

𝑝̃
 and elementary normal 

vector 𝑁𝑐
𝑝̃
, respectively. The result is illustrated in Fig.8.b. It should be noted that 

these quantities are scalar or vectorial ones, not rounded to integer values.  
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(a) 

 

(b) 

Fig.8 (a) Illustration of crack quantification procedure. (b) Local elementary openings 
at the projected positions for a selected crack (video visualization can be found in the 
supplementary files). 
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3.3.5. Crack surface area and average opening 

The accuracy of the quantification result relies on the statistics of the measurements. 
Due to the error sources, as will be addressed in section 3.4, the proposed method is 
recommended to be used for large crack colonies instead of individual small cracks. 
Therefore, we propose to calculate total crack surface area and average crack 
opening as follows. 

For each voxel with an elementary projected position 𝑋𝑐
𝑝̃
 inside, an elementary crack 

area Δ𝑆 can be approximated as the intersection between the voxel and the plane 

defined by 𝑋𝑐
𝑝̃
 and the elementary normal vector 𝑁𝑐

𝑝̃
. Thus, it is possible to integrate 

these elementary quantities over an appropriate set of crack voxels, so that the total 

surface area 𝑆 and average opening Λ are evaluated: 

{
 

 𝑆 =∑ΔS      

Λ =
∑Λ𝑐

𝑝̃ ⋅ Δ𝑆

S

 (21) 

This set of voxels can be either all voxels in the sample or a set of connected crack 
voxels defining an individual crack, leading to “per-sample” or “per-crack” quantities, 
respectively. To further quantify the crack evolution at the scale of the sample, we 
define the crack surface density as 𝜌 = 𝑆/𝑉𝑠, where 𝑉𝑠 is the volume of the solid 
phase (non-pore phase) evaluated from a segmentation of the reference image. 

 

3.4. Discussions on error sources and applicability  

In this section, we address some sources of errors for the quantification procedure, 
and discuss its applicability to different situations.  

First, even though the crack detection procedure is able to identify the cracks with 
subvoxel opening [20,25], it still faces a detection threshold: cracks are not 
detectable below a minimum opening, which is of course first linked to the voxel size 
and then to the signal to noise ratios according to the statistical consideration 
developed in Appendix A. Errors linked to gray level interpolations might also be 
considered but are not addressed here for brevity. We refer to references [20,27] for 
these discussions. Altogether, both the detection threshold and the error in thickness 
quantification have been be evaluated to be about 0.1~0.2 voxel (0.3~0.5 µm) in the 
present study. Such a limitation is inherent to any image-based characterization 
method. It is therefore crucial to restrict the interpretation of the results to a limited 
range of length scale, or conversely, to choose the appropriate image resolution 
(voxel size) according to the length scale to be investigated. In particular, the 
detection threshold in the present study leaves the very slightly opening cracks out of 
the analysis, especially those at fiber-matrix interfaces. As a result, we state that the 
further analysis is valid only at mesoscopic length scale of the braided SiC/SiC 
composite tube. A more thorough characterization would require additional 
tomographic observations at smaller scales, at which the proposed image processing 
methods would still be applicable. 
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Secondly, the phase-contrast edge enhancement effect could invalidate the 
assumption about the linear relationship between gray-level and crack opening. 
However, we have chosen the value of 𝑓𝑉 according to the gray levels of the 
micropores that are also affected by the phase contrast. This choice could 
compensate the related interference to some extent, but a reliable improvement 
would be to establish a more precise relationship by taking into account the phase-
contrast effect more quantitatively. This is probably the major limitation of the current 
practical application of the presented general methodology.  

Thirdly, we have neglected the mesoscopic strain 𝜖𝑚𝑒𝑠 in Eq.15, which should be 
reasonable for quasi-brittle composite materials, yet cautions must be paid if the 
material under investigation is ductile or contains very fine contrasts in tomographic 
images. This is because cracks are identified within reference configuration from 
image subtraction. Non-zero gray values in subtracted image highlight the 
discontinuity (cracks) that has not been captured by DVC. We emphasis that the 
“poorly-corrected” correlation points are eliminated from the calculation of image 
subtraction, if the correlation criterion has been properly chosen. In fact, every voxel 
is associated with a transformation that is evaluated from interpolation over the 
neighboring “well-correlated” correlation points. This interpolated transformation is 
actually a measurement at the mesoscopic length scale, at which image contrast is 
enough for DVC calculation. In other words, the mesoscopic length scale used by 
image subtraction is linked to the correlation window size, which is 30~50 voxels in 
the present study. The typical maximum crack opening of the studied composite is a 
few micrometers, i.e. 1~2 voxels. According to the image subtraction procedure, the 
mesoscopic strain 𝜖𝑚𝑒𝑠 in Eq.15 can be roughly estimated as 𝜖𝑚𝑒𝑠 ≈ λ/(2𝐷), with λ 
the actual crack opening and 𝐷 the correlation window size. Therefore, 𝜖𝑚𝑒𝑠 is much 
less than one, and hence negligible. However, the influence of 𝜖𝑚𝑒𝑠 may become 
significant, when the crack opening is quite large (i.e. in ductile materials), or/and the 
correlation window is small (i.e. the microstructure provides fine image contrast). In 
the case of well-textured image with enough local contrasts for DVC, it would be 
more relevant to make direct use of DVC-measured displacement field to detect and 
quantify the cracks, as proposed by [28]. In fact, our method offers an alternative 
solution to crack detection and quantification in the case that image contrast is not 
local enough, which is commonly encountered for CMCs. 

Furthermore, as a common feature of many field-based measurements such as 
imaging and full-field strain measurements, the proposed quantification method 
provides a better accuracy for the evaluation of the average opening of large 
populations of cracks than the local opening of a small crack, because of statistical 
averaging of random noises and artifacts associated with independent 
measurements. This, however, does not prevent the application of the proposed 
method to a single crack, though caution must be paid regarding the reduced 
measurement accuracy. 

Concerning the effect of possible artifacts induced by image post-processing, we 
emphasis on the fact that the subtracted image has been directly used for the 
quantification of crack opening without any filtering. Filters have only been used to 
select the crack voxels in the segmented subtracted image to separate them from 
artifacts, so they have no effect on the subtracted image nor on the integration along 
the normal directions. Also, the sensitivity of the reconstruction parameters should 
have been reduced by the fact that 𝑓𝑉 and 𝑓𝑆 have been adapted to the actual 
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reconstructed image. Therefore, measurement biases related to image processing 
(including reconstruction) are believed to be minor compared to the other error 
sources outlined above. 

Let us finally mention that the term “crack opening” in this paper should be 
distinguished from the well-known crack opening displacement (COD), because the 
proposed method cannot properly decompose the three components of the 
discontinuity on the two sides of a crack. Indeed, the present gray-level based 
method provides an estimate of the normal component of a COD only, with the 
normal direction determined from the 3D geometry of the considered crack. 

 

4. Results and discussion 

Some results are selected in this section to demonstrate the capability of the 
proposed methods. The in-depth interpretations of the results on the material itself 
will be presented in a separate paper together with two other samples with different 
braiding angles [29]. 

4.1. Radial profiles of semi-macroscopic strains 

The overall strains are measured for each radial layer according to section 3.1. To 
validate the measurement method, the DVC-measured strains at the outer layer of 
the tube are compared to those continuously measured with extensometers during 
two macroscopic tensile tests (Fig.9.a). The observed differences within these 
reference curves for the hoop strain (𝜀𝜃𝜃) could be attributed to the limited precision 
of the transverse extensometer positioned on the rough surface of a small tube 
(diameter ~5 mm). Nevertheless, the DVC-measured strains are still in good 
agreement with the extensometry measurements, especially for the axial strain (𝜀𝑧𝑧). 
This indicates that (i) the measurement method, involving DVC and transformation 
fitting, provides a satisfactory accuracy, and (ii) the macroscopic behavior of the 
studied material is highly reproducible even under different loading systems.  

The four average strain components are presented in Fig.9.b at various radial 
positions for all five loading levels. The overall magnitudes of the three strains (𝜀𝑟𝑟, 
𝜀𝜃𝜃, 𝜀𝑧𝑧) increase monotonically with the tensile load. The axial strain is uniform 
throughout the tube thickness. Surprisingly, the radial strain profile exhibits positive, 
and non-uniform, values over the thickness, indicating a negative Poisson’s ratio. 
Furthermore, the absolute value of hoop strain decreases from the inner side to the 
outer side of the tube. In fact, these strain distributions are related to the opening of 
the in-plane cracks. These results will be discussed in detail in a separate paper [29] 
for conciseness in the present paper. 
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(a)                                                             (b) 

Fig.9 (a) Comparison between the strains measured on the outer layer by DVC and 
those measured with standard extensometer. (b) Radial profiles of overall strains 
measured by the transformation fitting method. 

 

4.2. Damage characterization  

In the radial direction, the microstructure is heterogeneous due to the braid 
architecture and can be indicated by the distribution of macropores (dashed line in 
Fig.10). The three highest peaks reveal the locations of the inner surface (~1.8 mm), 
the outer surface (~2.45 mm) and the braided layer interface (~2.15 mm), 
respectively. The two lower peaks correspond to the mid-parts of each braided layer 
where tows cross each other. 

 

Fig.10 Radial profiles of surface density of circumferential cracks (red) and in-plane 
cracks (blue) through the tube thickness at the last loading step. The profile of pore 
volume fraction is shown (dashed line) to indicate the woven fiber architecture 
throughout the tube thickness. Arrows indicate the crack populations that are 
discussed in the main text. 
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The through-thickness profiles of both circumferential and in-plane cracks (see 
section 3.3.3 for definition) are superimposed in Fig.10. Three populations (the three 
primary peaks in red in Fig.10) of circumferential cracks appear at the inner and outer 
free surfaces of the tube and at the boundary between two braided layers. The 
locations of these primary peaks are consistent with those of the macropores, which 
indicates that the detected circumferential cracks appear mostly in the zones where 
most peripheral matrix has been deposited during the CVI process. As for in-plane 
cracks (Fig.10.b), four primary peaks are highlighted and their positions are in 
agreement with the zones with few macropores, except the internal one (~1.8 mm), 
which could be linked to the matrix debonding from the polished tube inner surface, 
as confirmed in Fig.11 (pointed out by the dotted arrow). The cross-section in Fig.11 
suggests that the in-plane cracks seem to propagate through the micropores inside 
the tows but not along the tow boundaries. This observation is also in agreement with 
the relative positions of the peaks in Fig.10. It is useful to mention that the crack 
surface density at each radial position of the profile in Fig.10 has been evaluated 
within a thin circumferential cylinder with a thickness of 2 voxels, so there are about 
200~300 independent measurements through the tube thickness. 

 

 

Fig.11 Cross-sectional slice showing in-plane cracks appearing at different radial 
positions. Tow boundaries are marked by red lines. The dotted arrow indicates an 
example of matrix debonding. 

 

In the same manner, the through-thickness profile of the average crack opening of 
circumferential cracks is evaluated and plotted in Fig.12. The locations of larger 
openings (three peaks) are consistent with the three crack-rich zones. Overall, the 
outer surface of the tube exhibits larger crack opening. It is worth mentioning that the 
average opening measured at the outer surface by the current method (~2.5 µm) is 
very similar as the measurement in [19] (Fig.5 in the reference), where precise DIC 
measurement was used to quantify the displacement jumps at the surface cracks of a 
SiC/SiC tube. 



22 
 

 

Fig.12 Radial profile (solid line) of the average opening of circumferential cracks 
detected at the last loading step. The profile of pore volume fraction is shown 
(dashed line) to indicate the woven fiber architecture throughout the tube thickness. 

 

Fig.13 Evolution of average opening 𝛬 of in-plane cracks (solid line), compared with 

that of the average radial strain 𝜀𝑟𝑟 (red dashed line). 

 

Finally, as an attempt to correlate the detected damage to the macroscopic behavior, 
the evolution of the average opening of the detected in-plane cracks is compared to 
the average radial strain 𝜀𝑟𝑟 (Fig.13). The strain value is computed by averaging the 
measures at all radial positions from Fig.9.b. The evolution of the average opening of 
in-plane cracks and the average radial strain are nicely consistent. This suggests that 
the unusual positive radial strain could be mainly due to the opening of the in-plane 
cracks. 
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6. Conclusions 

In this paper, a series of methodologies are introduced, developed and applied to 
real tomographic images, which could thus be fully analyzed to detect and 
characterize damage in a braided composite tube. A semi-macroscopic method is 
used to measure the heterogeneous deformation through the tube thickness, and 
validated against surface extensometry measurement. After the DVC-based image 
subtraction and a careful processing of image artifacts, cracks with complex 
geometries are detected within the microstructure. A quantification method based on 
the physical meaning of the gray levels in absorption contrast tomography images is 
proposed to measure two geometric parameters of the detected cracks: opening and 
surface area. Although used here on the cracks detected from the subtraction of 
sequential in situ images, the proposed method is generic and is also applicable to 
objects that can be segmented from one single image of a homogeneous material, as 
discussed in section 3.3.1. Whilst improvements are still expectable for this method, it 
provides a new idea in characterizing the local and global geometries of 3D crack 
networks in CMCs using XRCT, which is more relevant than standard voxel counting 
methods. Some selected results are presented to illustrate the capability of the 
techniques proposed in this paper. The crack quantification method will be validated 
in the future on other materials with only a few large cracks inside. 
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Appendix A 

We provide here a detailed demonstration that links up the definition of crack 

thickness in Eq.8 and its diffuse evaluation in Eq.10. Substituting 𝑓(𝑋), 𝑓𝑆 and 𝑓𝑉 by 

the definition of Eq.9, the right-hand side of Eq.10 becomes 

∫ (
𝑓(𝑋) − 𝑓𝑆
𝑓𝑉 − 𝑓𝑆

)d𝑋
𝑀1

𝑀0

= ∫ ∫ 𝐾 (𝑦 − 𝑋)
𝜇 (𝑦) − µ𝑆

µ𝑉 − µ𝑆
d𝑦

𝑉(𝑋)

d𝑋
𝑀1

𝑀0

+∫ (
𝑓′(𝑋)

𝑓𝑉 − 𝑓𝑆
)d𝑋

𝑀1

𝑀0

 
(A.1) 

 Using the change of variable 𝐻 = 𝑦 − 𝑋 and applying Fubuni’s theorem, one obtains: 

∫ (
𝑓(𝑋) − 𝑓𝑆
𝑓𝑉 − 𝑓𝑆

)d𝑋
𝑀1

𝑀0

−∫ (
𝑓′(𝑋)

𝑓𝑉 − 𝑓𝑆
)d𝑋

𝑀1

𝑀0

= ∫ ∫ 𝐾(𝐻)
𝜇(𝑋 + 𝐻) − µ𝑆

µ𝑉 − µ𝑆
d𝐻

𝑉(𝑂)

d𝑋
𝑀1

𝑀0

 

(A.2) 
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                            = ∫ 𝐾(𝐻)∫
𝜇(𝑋 + 𝐻) − µ𝑆

µ𝑉 − µ𝑆
d𝑋

𝑀1

𝑀0

d𝐻
𝑉(𝑂)

 

     = ∫ 𝐾(𝐻) ⋅ Λ(𝑐 + 𝐻)d𝐻 
𝑉(𝑂)

 

where Λ(𝑐 + 𝐻) is the physical crack thickness quantified through an integration 

along a path normal to the crack mean surface and passing through the point 𝑐 + 𝐻 

(see the definition of Eq.8). Let us decompose the vector 𝐻 along its components 

parallel and normal to the crack mean surface, 𝐻 = 𝐻∥+𝐻⊥. It is clear that Λ(𝑐 + 𝐻) =

 Λ(𝑐 + 𝐻∥) , as long as the segment 𝑀0𝑀1, translated by the vector 𝐻⊥, is long 

enough to still fully encompass the crack. One finally obtains  

∫ (
𝑓(𝑋) − 𝑓𝑆
𝑓𝑉 − 𝑓𝑆

)d𝑋
𝑀1

𝑀0

=  Λ𝐾(𝑐) + ∫ (
𝑓′(𝑋)

𝑓𝑉 − 𝑓𝑆
)d𝑋

𝑀1

𝑀0

 
(A.3) 

where Λ𝐾(𝑐) = ∫ 𝐾(𝐻) ⋅ Λ(𝑐 + 𝐻∥) d𝐻
𝑉(𝑂)

 is a “smoothed” crack thickness. This 

quantity is calculated as a weighted average of the local thickness over the width 
determined by the spatial resolution of the tomography device, which is usually of the 
order of a few voxels. As long as the latter is small with respect to the typical 
curvature radius of the real crack and to the typical length of the spatial variations of 

its thickness, the approximation Λ(𝑐) ≈ Λ𝐾(𝑐) holds.  

We emphasize that this result does not require the crack thickness to be large with 

respect to the image spatial resolution. Indeed, the accuracy of the evaluation of Λ(𝑐) 
can even be significantly better than voxel size and image resolution, and it is 
essentially governed by the last term in Eq.A.3, which characterizes the signal-to-

noise ratio of the image. Assuming 𝑓′(𝑋) to be a white noise at voxel scale, with zero 

statistical expectation, standard deviation 𝜎𝑓, and correlation length equal to one 

voxel, it can be easily shown that ∫ (
𝑓(𝑋)−𝑓𝑆

𝑓𝑉−𝑓𝑆
)d𝑋

𝑀1

𝑀0
 is an unbiased evaluation of Λ𝐾(𝑐) 

and that its standard deviation is given by  

𝜎Λ
𝐾
=
𝜎𝑓√‖𝑀0𝑀1‖

|𝑓𝑉 − 𝑓𝑆|
 

(A.4) 

This relation suggests that for optimal results, the integration segment should not be 

taken too large, so that √‖𝑀0𝑀1‖ remains close to unity. The best option is to take it 

as close as possible to the diameter of the support of the kernel 𝐾(𝑦). Rigorously 

speaking, the herein presented analysis ignores the periodic spatial dependence of 

the kernel 𝐾, which is induced by gray level interpolation. A more detailed, rather 
technical, analysis would be possible, but without significant change on the result, 
hence it is not presented here for conciseness.  
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