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Abstract

Computation of elastic structures in contact is performed by means of a dual analysis com-
bining displacement-based and equilibrium-based finite elements. Contact conditions are
formulated in the framework of second-order cone programmaing (SOCP) and an efficient
interior point method (IPM) algorithm is presented for the resolution of the associated
optimization problems. The dual approach allows the user to assess the quality of conver-
gence and to efficiently calculate a discretization error estimator which includes a contact
error term. An efficient remeshing scheme, based on the local contributions of the ele-
ments to the global error, can then be used to efficiently improve the solution accuracy.
The whole process is illustrated on some examples and applied to a typical steel assembly.
Its efficiency, in particular concerning the IPM solver, is demonstrated in comparison with
the industrial finite element code Abaqus.
Keywords: contact elastostatics, equilibrium finite elements, error estimator, second
order cone programing, interior point method

1. Introduction

The study of large scale contact problems between elastic bodies has always been a main
interest of mechanical and structural engineers. Though the finite element method is well
established for simple 3D elastic continuum, the treatment of contact conditions between
bodies remains a problematic matter for inexperienced users. Contact between mechanical
parts exists in almost all engineering fields, specifically in structural analysis where the
verification of steel assemblies relies on determining the forces and displacements in the
assembly which, by definition, joins distinct parts of the structure, transferring forces
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through welds and bolts that mainly rely on frictional contact. Such situations present
a major difficulty for structural engineers as the modelling of a complex steel assembly
requires a great amount of computer-aided design time, whereas convergence of numerical
solvers may often be challenging to achieve for inexperienced users.

Resolution of finite-elements computations including strong material non-linearities
such as plasticity or contact therefore requires some expertise when aiming at obtain-
ing accurate estimates of quantities of interest such as contact pressures or gaps, while
trying to keep computational costs at a moderate level. In the present paper, we propose
an approach for computing structures with contact such as 3D steel assemblies by using a
solution algorithm which exhibits very robust convergence properties and does not require
any fine-tuning algorithmic parameters while still being very competitive in terms of com-
putational costs compared to classical approaches implemented in commercial software.

As for computational methods, contact problems are often solved using the penalty
approach in which penetration between the two bodies, i.e. negative gap and tensile sur-
face tractions are permitted, but penalized using a gap-element characterized by a large
stiffness value [1]. This method is easy to implement and transforms the problem into
a regularized unconstrained minimization problem, the drawback being that the system
becomes ill-conditioned for increasingly larger penalty factors. Besides, contact constraints
violation generally produces poor results, underestimating the system’s stresses, and thus
preventing engineers from performing a safe and optimized design. Another method con-
sists in enforcing the contact conditions using Lagrange multipliers thus transforming the
problem into a saddle point problem with simple inequality constraints [1]. Although
contact conditions will be strictly verified, this method proved slow convergence rates.
Augmented Lagrangian (AL) approaches emerged as an alternative [2, 3]: it couples the
Lagrange multipliers approach with the penalty approach while limiting the need to drive
the stiffness coefficient to infinity, thereby providing better results [4, 1, 5].

Strategies for solving the corresponding non-linear problem are numerous, including
fixed-point scheme or Uzawa algorithm [6, 7], generalized/semi-smooth Newton methods
[8, 9], primal-dual active sets [10], etc. Some of these methods have been shown to be
equivalent in some specific cases [11, 12]. Frictional contact can be written as second-
order cone complementarity conditions [13, 14, 15] but the non-associated character of the
Coulomb friction law makes the problem even more challenging, the problem becoming
a non-monotone complementarity problem. Linear complementarity solvers have been
proposed when adopting a facetized representation of the Coulomb cone [16, 17]. Bi-
potential approaches have also been studied along with dedicated numerical procedures
[18, 19].

In the present work, we will consider the case of associated friction law, departing from
the classic Coulomb friction. In such a situation, the complementarity problem becomes
a convex second-order cone problem for which very efficient interior-point algorithms have
been developed by the mathematical programming community [20, 21, 22, 23]. It is inter-
esting to note that interior-point methods (IPM) are becoming a state-of-the art numerical
procedure for other non-smooth mechanical problems such as limit load computations in
limit analysis [24, 25, 26, 27] or computation of viscoplastic fluid flows for which conven-
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tional methods such as AL approaches have quite slow convergence rates [28, 29]. Only
few attempts were made to solve contact problems using IPMs such as [30, 31] for mod-
elling granular contact dynamics. While, earlier attempts [32, 33] did not use the most
efficient forms of IPM methods, more recent implementations showed promising results in
non-smooth contact dynamics [34] or isogeometric [35] contexts.

As regards our choice of considering only associated friction for the present paper, we
point out that IPM rely on a convex conic optimization setting which does not hold in
the presence of classical Coulomb friction. However, since quasi-static computations are
considered here, we expect that the obtained solutions will be quite similar to a classical
Coulomb friction computation, as it will be later shown in the example section. Moreover,
some iterative strategies have already been proposed to tackle the case of non-associative
plasticity or friction using a series of associated computations [36, 37]. The associated
formulation of the IPM problems will therefore serve as a basis of a future extension to
non-associated behaviours.

In this paper, we aim at further establishing the potential of IPM for contact of complex
3D assemblies, especially concerning its convergence robustness and low iteration count
in regards of its use by inexperienced engineer. The proposed methodology can handle
large scale problems and complex assemblies in an efficient manner with a minimum user
intervention. We will also combine it with dual stress and displacement-based computations
to assess the solution quality with respect to discretization errors. In summary, the present
paper will include:

– the reformulation of associated frictional contact conditions as a pair of complemen-
tary dual cones to be used within the framework of second order cone programming
(SOCP) (section 2);

– the reformulation of the minimization problems and an error estimator including a
surface contact term relying on displacement and stress-based variational bounding
principles (section 3);

– finite elements discretization for each of the two approaches based on classic kinematic
elements [38] and on improved equilibrium elements [39, 40, 41, 42] (section 4);

– an adaptation of the IPM to take into account a quadratic objective function over
conic conditions with state-of-the-art improvements such as Mehrotra predictor-
corrector scheme [43] or self scaled cones [44] (section 5.1);

– the use of the error estimator in a global 3D remeshing scheme based on the dual
approach used in this paper (section 5.2).

The process of solving the minimization problems, calculating errors and remeshing,
is automatized and included in Strains’ software1 “DS-Steel” which specialises in steel

1https://strains.fr/
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assemblies calculations2. The numerical examples presented in this paper (section 6) are
produced using this process and by setting a target convergence value which is defined
using the dual approach. The results are then compared with respect to computations
made using Abaqus [45] to assess computational costs and the quality of results.

2. Reference problem and governing equations

2.1. Contact constitutive equations
Let us consider in this section the formulation of contact laws on the contact boundary

denoted by Γc described by a unit normal vector n pointing from the solid Ω1 to the solid
Ω2, and two tangential vectors t1, t2 (see figure 1). We will also use the following notation
x = xNn+ xT with xT the tangential component of any vector x.

Figure 1: Local coordinate system

In the case where the two deformable bodies Ω1 and Ω2 come in contact, kinematic
variables will involve the displacement discontinuity vector JuK = u2−u1, while the stress
vector T = σNn + σT is expressed on one of the two faces since equilibrium conditions
ensures equality between the two surfaces tractions on both sides of Γc. Since the faces are
not necessarily initially in contact, an initial gap vector g0 = g0n is introduced, the initial
gap having no tangential component while its normal component is positive g0 ≥ 0. This
choice is appropriate considering that we will restrict to infinitesimal transformations and
since contact will be implemented in a node-to-node fashion. As a consequence, meshes of
both contacting surfaces will be conforming. The current gap vector is then defined by:

g(u) =
(
gN
gT

)
=
(
g0 + JuNK

JuT K

)
(2.1)

2.1.1. Unilateral contact
Unilateral contact is enforced using Signorini’s conditions which express the non-penetration

and the non-apparition of tensile surface tractions between contact surfaces and the com-

2https://digital-structure.com/
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plementarity between normal stresses and the normal gap:
gN ≥ 0 (2.2a)
σN ≤ 0 (2.2b)
gN .σN = 0 (2.2c)

2.1.2. Frictional behaviour
Coulomb frictional model is used to model tangential behaviour of contact surfaces by

means of the friction coefficient µ. One distinguishes between stick and slip conditions
(expressed here in terms of a quasistatic displacement increment):

if
∥∥∥σT ∥∥∥ < −µσN then gT = 0 (2.3a)

if
∥∥∥σT ∥∥∥ = −µσN then gT = λ

σT∥∥∥σT ∥∥∥ with λ ≥ 0 (2.3b)

This law shows the dependency over a frictional yield value µσN and expresses the tangen-
tial slip as proportional to frictional stresses.

2.1.3. Contact complementarity conditions
When associated contact is assumed, the unilateral and frictional laws are both replaced

by the following combined law:
if
∥∥∥σT ∥∥∥ < −µσN then g = 0 (2.4a)

if
∥∥∥σT ∥∥∥ = −µσN then gT = λ

σT∥∥∥σT ∥∥∥ with λ = gN
µ

(2.4b)

which ensures that σN ≤ 0, gN ≥ 0 but also couples the normal and tangential gaps. The
previous condition can be expressed as the following two second-order cones (see figure 2):

(σN ,σT ) ∈ Kµ (2.5)
(gN , gT ) ∈ K−1/µ (2.6)

where Kα =
{

(x,y) ∈ R× R2
∣∣∣ ∥∥∥y∥∥∥+ αx ≤ 0

}
(2.7)

along with the following complementarity condition:

σNgN + σT · gT = 0 (2.8)

In the above, it can be observed that the cone K−1/µ = (Kµ)◦ = K◦µ where ?◦ refers to
the the polar cone. The pair (σN ,σT ) and (gN , gT ) therefore satisfies a complementarity
condition over dual cones. This remark is at the origin of the formulation of contact
problems as complementarity problems in the general (non-associated) case and second-
order cone programming in the present associated case. Let us remark that the use of
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associated friction implies that slip only occurs when there is a normal opening. This aspect
is indeed less realistic than a non-associated framework. However, the use of associated
friction is interesting in the context of convex optimization solvers and can serve as a basis
for iterative procedures when tackling the non-associated case which will be investigated
in future works, see more details in [46, 14]. Illustrative applications of section 6 will also
assess the difference between both models.

Figure 2: Geometry of the friction cones

2.2. Local governing equations
In the following, u denotes the displacement field, ε(u) = ∇Su the linearized strain

tensor, σ the Cauchy stress tensor and C the elastic stiffness tensor. Imposed displacements
and surface tractions will be respectively denoted by ud and td, and the body forces by b.
The normal vector n pointing outwards will be used to orient free faces and surfaces. For
contact conditions, the direction of the normal vector will be specified when needed.

Let Ω = Ω1 ∪ Ω2 be the total space occupied by the solids sharing a potential contact
surface Γc and let be Σσ an internal surface of potential stress discontinuities (see figure
3). The external boundary will be split into three distinct parts such as: Γ = Γu ∪ Γt ∪ Γc
and Γu ∩ Γt ∩ Γc = ∅ where:

– displacements u are imposed to ud on Γu = Γ1,u ∪ Γ2,u ;

– surface tractions t = σ · n are imposed to td on Γt = Γ1,t ∪ Γ2,t ;

– contact conditions between Ω1 and Ω2 are imposed on Γc. Generally the contact
surface is unknown but in the scope of this article and the small displacements
hypothesis, it is considered that the contact surface is known, predefined and does
not change.

The general governing equations for an elastic body are the following:
Equilibrium and static boundary conditions

Div(σ) + b = 0 in Ω (2.9)
JσK.n = 0 on Σσ (2.10)
σ.n = td on Γt (2.11)
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Figure 3: Reference model

Strain-displacement compatibility and kinematic boundary conditions

ε(u) =∇Su in Ω (2.12)
u = ud on Γu (2.13)

Elastic constitutive law
σ = C : ε(u) in Ω (2.14)

Contact constitutive laws between σ.n and g(u) on Γc as discussed in section 2.1.

2.2.1. Statically admissible stress field
A stress field σ ∈ S belonging to the set S of symmetric second-rank tensors is said

to be statically admissible (SA) with the body forces b in Ω and the imposed surfaces
tractions td on Γt if it satisfies the equilibrium equations with these data:

SA =

σ ∈ S

∣∣∣∣∣∣∣
Div(σ) + b = 0 in Ω
JσK.n = 0 through Σσ

σ.n = td on Γt

 (2.15)

2.2.2. Kinematically admissible displacement field
A displacement field u : Ω→ R3 is said to be kinematically admissible (KA) with the

imposed displacements ud on Γu if it is piecewise continuous and continuously differentiable
and such that u = ud on Γu:

KA =
{
u ∈ R3

∣∣∣ u = ud on Γu
}

(2.16)
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3. Primal and dual variational principles

The following variational principles can be derived using the constitutive error estimator
presented in appendix A:

e2
(u,σ) = e2

Ω(u,σ) + e2
Γc(u,σ) (3.1)

Finding an approximate solution consists of computing an optimal pair (uh,σh) of
displacements and stress fields such that the estimated error, and thus the real error, are
minimal over subsets of the space of K.A. displacements and S.A. stress fields, respectively
noted KAh ⊆ KA and SAh ⊆ SA:

(uh,σh) = arg min
u,σ

e2
(u,σ)

subject to (u,σ) ∈ KAh × SAh
(3.2)

Both functionals Πp and Πc are a sum of a positive definite quadratic function, some
linear terms and indicator functions of convex sets thus they are strictly convex. Since the
error functional is the sum of two functions of u and σ respectively, the above problem
can be transformed into two variational forms, namely a kinematic approach in which a
kinematically admissible field is obtained by minimizing the total potential energy (TPE)
Πp:

min
u

Πp(u) =
∫
Ω

1
2ε(u) : C : ε(u) dΩ +

∫
Γc

1K◦
µ(g(u)) dΓ

−
∫
Ω

b.u dΩ−
∫
Γt

td.u dΓ

s.t. u ∈ KAh
and a static approach in which a statically admissible field is obtained by minimizing the
total complementary energy (TCPE) Πc:

min
σ

Πc(σ) =
∫
Ω

1
2σ : C−1 : σ dΩ +

∫
Γc

1Kµ(σ.n) dΓ

−
∫

Γu

(σ.n).ud dΓ−
∫
Γc

(σ.n).(g0n) dΓ

s.t. σ ∈ SAh

Since the error becomes zero for the optimal solution, both energies are then opposite:
Πp(u∗) = −Πc(σ∗). As a result both minimisation problems (3.3) and (3.3) provide respec-
tively an upper bound and a lower bound of the real potential energy of the system (after
inverting the sign of the complementary energy):

− Πc(σh) ≤ −Πc(σ∗) = Πp(u∗) ≤ Πp(uh) (3.3)

These bounds provide the engineer the capacity to judge the quality of convergence regard-
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ing the mesh since one can evaluate the proximity of approximate solutions to the exact
solution. The relative difference between the upper and lower bound therefore represents
the above-introduced error estimator and serves as an excellent indicator of convergence
which can be defined as:

∆E = Πp(uh) + Πc(σh)

Πc(σh)
=
e2

(uh,σh)

Πc(σh)
(3.4)

where the value of the complementary energy has been arbitrarily chosen for normalization.

4. Finite-element discretization

4.1. Kinematic approach
Displacement-type elements are used in the finite element discretization of problem

(3.3). For the present case, 10-node quadratic tetrahedra will be used. Problem (3.3) can
then be expressed after assembling the global stiffness matrix K and nodal force vector f
as a conic minimization problem using the same formalism as in appendix B:

(TPE) min
û, ĝ

1
2û

TKû− fT û

s.t. û = ûd on Γu
ĝ = ĝ0 + JûK on Γc
ĝ ∈ K◦µ on Γc

(4.1)

in which the primal optimization variables are x = û and xI = ĝ, with û a vector
collecting all nodal degrees of freedom, and ĝ a vector of gaps at each node of the finite
element mesh faces belonging to a contact surface Γc. Contact constraints will hence be
enforced at all 6 nodes of each face with the possibility of adding additional contact points
within the face in order to prevent all penetration possible due to quadratic elements. The
node-to-node constraints will therefore tend to mimic a complete face-to-face constraint.
After introducing a proper change of variable, the contact condition ĝ ∈ K◦µ can be easily
transformed into a standard second-order cone constraint using a Lorentz cone i.e.:

K = Ln =
{

(x,y) ∈ R× Rn−1
∣∣∣ x ≥ ‖y‖2

}
= K∗ (4.2)

4.2. Static approach
4.2.1. Regular equilibrium elements

Finite element discretization of problem (3.3) can be done using simple equilibrium
tetrahedra. The simplest element can be obtained by considering a linear interpolation
of the stress tensor components σij over each element. 4-node linear tetrahedra with
discontinuous interpolation can be used for which continuity of the stress vector over the
element facets should be explicitly written (these faces will be denoted as the set Σσ) and
included as linear constraints of the corresponding optimization problem.
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Let i = 1, . . . , 4, be the node order index. The stress state of a point is defined by
six stress components, σiT = {σxx, σyy, σzz, σxy, σyz, σxz}. Let Ni(x) be the linear shape
function associated with each node. The element stress state is defined by the 24 stress
components of the nodes as σeT = {σ1T , . . . ,σ4T }.

We can write the stresses of an arbitrary point as:

σ = [IN1, . . . , IN4]σe = Nσe (4.3)

The element compliance matrix can then be calculated as follows:

F e =
∫

Ωe
NTC−1N dΩ (4.4)

using a 4 Gauss-points quadrature rule.
Using this equilibrium element and the typical definition for the normal projection

matrix operator PN on a facet of normal n and the divergence matrix operatorD, problem
(3.3) can be expressed after assembling the global matrices as a conic minimization problem
using the same formalism as appendix B:

(TPCE) min
σ̂, tc

1
2σ̂

TF σ̂ − (PN σ̂)Tud − tTc ĝ0

s.t. Dσ̂ + b = 0 in Ω
JPN σ̂K = 0 on Σσ

PN σ̂ = td on Γt
PN σ̂ = tc on Γc
tc ∈ Kµ on Γc

(4.5)

in which the primal optimization variables are x = σ̂ and xI = tc, with σ̂ a vector
collecting all nodal stresses, and tc a vector of contact surface tractions at each node of the
finite element mesh faces belonging to a contact surface Γc. Contact constraints will be
enforced at all 3 nodes of each face. Similarly, after introducing a proper change of variable,
the contact condition tc ∈ Kµ can be easily transformed into a standard second-order cone
constraint using a Lorentz cone.

After implementing this method, poor performance results were obtained mainly due
to the size of the problem and to linearly dependent conditions in the linear constraint
matrix collecting equilibrium and traction continuity conditions. This made the problem
ill-posed and caused troubles when computing the solution of the linear system equations
using a direct solver. The dependencies come from the divergence condition which can be
easily eliminated by integrating this condition in the definition of the finite element thus
using a 21 components equivalent stress vector rather than 24, but more importantly from
the traction continuity condition over the tetrahedra faces Σσ. In fact, it has been shown
in [47, 48, 42, 49, 40] that there exists some null eigenvalues in the compliance matrix in
addition to those due to the natural rigid body modes. They correspond to zero energy
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modes called spurious kinematic modes (SKM). Illustrations of the spurious modes can be
found in [48, 42]

4.2.2. Improved equilibrium elements
The statically admissible stress fields set SA(Ω) can be defined using an assumed stress

distribution inside the elements that verifies local equilibrium with body forces [42, 48,
47]. Thus the set SA(Ω) can be defined by a linear combination of a set of independent
functions:

σ = Ss+ σ0 (4.6)
where S are independent shape functions of degree p, all of them verifying equation (2.9).
The columns for S can be obtained either fromMorera [50] or Maxwell [51] stress potentials.
The nodal variables s are called the generalized stresses. σ0 is a particular solution for the
equilibrium equations, taken as equal to zero in absence of body forces. The expressions
for the polynomial functions S can be found in [41].

In order to verify the other strong equilibrium form for the surface traction given by
equation (2.10), the surface tractions must also be polynomial fields of degree p as follows:

t = Wp (4.7)

where p is a vector of generalized surface tractions and W a matrix containing the shape
functions of degree p. These discretization parameters are called connectors, since they
ensure reciprocity of the surface tractions between the faces of the tetrahedra. It is possible
to rewrite them in terms of the generalized stresses:

p = C̃s (4.8)

where C̃ is called the static connection matrix.
Generalized displacements q, which are the conjugate of the generalized surface trac-

tions p, can be obtained as follows:∫
Γu

tTud dΓ = pT
∫

Γu

W Tud dΓ = pTq (4.9)

Using these new elements, problem (4.5) can be rewritten as:

(TPCE) min
ŝ, q̂

1
2 ŝ

T F̃ ŝ− ŝT C̃T q̂ − ŝT C̃T q̂0

s.t. WC̃ŝ = td on Γt
C̃ŝ ∈ Kµ on Γc

(4.10)

with ŝ a vector collecting all generalized nodal stresses, q̂ a vector of generalized dis-
placements and q̂0 a vector of the equivalent generalized initial gap at each node of the
finite element mesh faces belonging to a contact surface Γc. In the following, we will adopt
the linear equilibrium element (p = 1). Contact constraints can therefore be enforced only
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at the 3 nodes of each face, ensuring by convexity that contact constraints will be veri-
fied on the whole face. Spurious kinematic modes of zero-energy are still present in this
element but have been eliminated by adopting the super-element method in which each
super-element is split into 4 sub-elements. Further details can be found in [42, 48].

A displacement field map can also be obtained from the generalized displacements q̂.
Since they consist of the 3 translations at the nodes of each face (i.e. 3 × 3 degrees of
freedom for each tetrahedron face therefore 36 in total for an element), the displacement
at the super-elements tetrahedra nodes can be obtained by averaging of the displacements
of the 3 converging faces at each node. However, one should note that this field does not
locally verify the kinematic compatibility conditions.

5. Interior-point method solution procedure and mesh adaptivity

5.1. General aspects for the primal-dual interior point method
Since both static and kinematic approaches result in a similar mathematical formulation

of second-order cone programs (see appendix B for more details), the general aspects of
the interior-point method (IPM) will be described for the following second-order cone
program:

min
x,xI

1
2x

TPx+ cTx+ cTI xI

s.t. Ax = b

AIx− xI = bI

xI ∈ K

(5.1)

where P is a symmetrical semi-definite positive matrix and where the following rank as-
sumptions are made:

rank(A) = p and rank
([
P AT

])
= n (5.2)

with p being the row dimension of A and n is the dimension of x.
The interior point method has been shown to be well suited for solving specific types of

convex programming such as linear programs (LP), second-order cone programs (SOCP)
and semi-definite programming (SDP) [20, 21, 22, 23].

The idea of an IPM is to find a solution to the Karush-Kuhn-Tucker (KKT) conditions
for problem (5.1) given by (B.7) by following the neighbourhood of a curve called the central
path given by (x(η),xI(η),λ(η),νI(η), sI(η)) and parametrized by a barrier parameter
η ≥ 0. This central path is no other than the unique solution to the following perturbation
of the KKT system [52, 21, 22].
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Find (x,xI ,λ,νI , sI) such that:

Px+ c+ATλ+AT
I νI = 0 (5.3a)

cI − νI − sI = 0 (5.3b)
Ax− b = 0 (5.3c)

AIx− xI − bI = 0 (5.3d)
xI ◦ sI = ηeI (5.3e)
xI ∈ K, sI ∈ K∗ (5.3f)

where in the case of Lorentz cones, e = (1,0) for each cone and the complementarity
slackness condition xTs = 0 is equivalent to:

x ◦ s =
{
x0s0 + xTs
x0s+ s0x

}
(5.4)

with x = (x0,x), the ? notation representing the tail of a vector ? i.e. the vector obtained
by removing the first element here noted x0. For η = 0, we obtain exactly the normal KKT
conditions (B.7).

The main property of the central path is that it defines a continuous set of strictly
feasible points which are well-centred, i.e. far from the boundary of the feasible region
except when reaching the optimum for η → 0 (see figure 4). This will allow for large descent
steps to be taken when minimizing the objective function from points the neighbourhood
of the central path.

optimal point

central pathobjective 
function

descent
step

step towards
central path

feasible region

Figure 4: General idea of a IP algorithm (adapted from [29])

Most industrial IP software like Mosek [53] of SeDuMi [54], require that the quadratic
form in the objective function be formulated as SOCP constraints, which can be obtained by
introducing additional optimization variables [55, 53]. In order to limit the computational
effort needed and taking advantage of the specific structure of the problem, we decided
to keep the quadratic form thus changing some aspects of the Newton-like system to be
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solved.
The only non-linearity found in the equation set (5.3) is the complementarity condi-

tion given by (5.3e) which depends on the type of the conic constraint [52, 21, 44]. From
the perturbed KKT conditions (5.3), different strategies can be chosen to compute the
solutions. A typical primal interior point method is based on the elimination of the dual
variables λ, νI and sI and updating only the primal ones i.e. x and xI . We will instead
use a primal-dual method which in application shows better convergence results and per-
formance. For such an approach, dual variables remain unknown and a Newton-like step
will be calculated to update all of the variables. In contrast with a feasible IPM in which
all KKT conditions stated in (5.3) except (5.3e) are satisfied for each iterate, the iterates
will only be required to be feasible with respect to the conic constraint (5.3f). In such
infeasible IPM, residuals of equations (5.3a)-(5.3d) may be initially non-zero and will be
driven to zero when reaching the optimal solution.

More details on the different steps of the IPM method implemented in this work can
be found in [29] and are briefly summarized in appendix C.

5.2. Mesh adaptivity
In order to limit the number of elements used in a 3D analysis, a general adaptive

remeshing scheme is implemented using the error estimator defined in equation (A.4).
First, the volume contribution of the error term is computed for each element of the mesh
using the dual approximate solutions (uh,σh) ∈ KAh × SAh obtained from the resolution
of problems (4.1) and (4.10).

Remeshing algorithms usually require a node-based metric, for that purpose the pre-
viously computed element-wise error contribution is converted to a nodal field based on
error density by performing an average on all elements sharing a common node. A scalar
error ratio field is therefore obtained over all nodes of the model. Finally, since the error
estimator also contains surface terms over the contact area, the elementary surface term
of a given contact facet is split evenly between all nodes of the contact facet and added to
the previous contribution. A scalar nodal error estimator is therefore obtained.

Using an h-version remeshing scheme [56, 38], one can use this nodal scalar field to
change the mesh size accordingly, thus improving the quality of the results while limiting
the number of elements compared to a global mesh-size reduction. For this purpose, we
used a general anisotropic remeshing computed on the basis of an anisotropic 3× 3 metric
tensor. More details about determining such an anisotropic mesh size map can be found
for instance in [57]. Distene’s MeshGems 3 surface (MeshGems-CADSurf) and volume
(MeshGems-Tetra) are used to produce the required meshes for the finite elements analyses.

The complete procedure therefore involves the following steps:

1. an initial static and kinematic calculation are performed over an automatically software-
generated coarse mesh Ω(0)

h ;

3http://www.meshgems.com/
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2. on this mesh Ω(0)
h , an error calculation is made, and global, elementary and relative

errors are computed along with the relative difference between objectives functions as
given by equation (3.4);

3. nodal relative errors are then used to compute a new anisotropic mesh size map;
4. a new mesh Ω(1)

h is generated and new static and kinematic analyses are performed.

The process is repeated until a target objective difference is reached. However, this does
not prevent bad quality meshes wich depends on the meshing software. A post-treatment
is applied on the newly-obtained mesh in which quality measures are checked and mesh is
cleaned.
Remark. Since the IPM does not really rely on good initial guesses for the optimisation
variables, it is unnecessary to map the previous solution on the newly refined mesh.

6. Illustrative applications

6.1. A simple example for remesh scheme with contact error
This first example is a simple test for the error and remesh scheme using a square beam

with contact conditions. The dimensions of the beam are chosen to be in agreement with
the Euler-Bernoulli aspect ratio hypothesis: the main beam has a section of 0.02 × 0.02
m2 and a length of 0.8 m and underneath is a a similar section beam but with a length of
0.4 m. The main beam is fully fixed on one end while as the second one is fully fixed at
its base and right end. Unilateral contact conditions are imposed between the two beams.
A downwards 2 kN force is applied on the edge of the main beam, thus simulating a fixed
beam with a pinned support at its middle. The steel material for the beam is modelled as
linear elastic with Young modulus of 210 GPa and a Poisson’s ratio of 0.3. Figure 5 gives
a quick description of the model. This 3D problem can be well approximated by a simple
1D Euler-Bernoulli beam model with intermediate support as sketched at the bottom of
figure 5. Six remesh iterations are made and the difference between the two objective

Figure 5: 3D model’s description and equivalent Euler-Bernoulli beam

functions of the approaches is measured to assess the convergence quality. Figure 6 shows
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(a) Initial mesh

(b) Third remesh iteration

(c) Fifth remesh iteration

Figure 6: View of some of the different meshes

three of the seven different meshes used. One can clearly see the effectiveness of the remesh
procedure which concentrates meshes over the contact surface between the beams. Since
the relative difference computed from (3.4) gives an upper bound of the real error, the dual
approach allows us to assess the global convergence quality and that by just calculating
the relative difference between the two objective functions of the minimization problems.

Figure 7a shows the evolution of this difference over the mesh iterations. We can clearly
see that the after the second iteration, the difference is already less than 2% which can be
considered as a good convergence level for engineering design applications. Figure 7b plots
the different total errors calculated over the different meshes which shows that the remesh
scheme is very effective in reducing the volume error, but more importantly the surface
term also which constitutes the greater contribution for this specific case.

Local quantities can also be compared such as the displacement obtained by the two
approaches. Its evolution over the remeshes follows the same tendency as the errors.
Indeed, the discrepancy between displacement obtained from the kinematic approach and
the one post-processed from the static approach tend to close and eventually become
indistinguishable at the fourth iteration as shown in figure 7c. The maximum displacement
at the tip of the beam is also in accordance with the analytical value of 2.66 cm obtained
from the simple 1D beam model of figure 5. Plots of the deformed mesh and the normal
gap are also given in figures 8 and 9.

6.2. Performance and results comparison with Abaqus
The next example aims at assessing the procedure computational performance with

respect to computations made using the Abaqus software [45]. The considered problem is
a beam-column continuous connection frequently found in steel-structures buildings, the
constitutive material being the same as before. To eliminate all forms of variations and to
focus on the performance of the solvers only, the same series of 6 iteratively refined meshes
is used in all the studies, both for our implementation and for Abaqus computations.
This model is calculated using the IP algorithm and various configurations in Abaqus,
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Figure 7: Convergence plots for the first example
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Figure 8: Deformed shape and displacement magnitude (in meters) for the fourth remesh iteration
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Figure 9: Normal gap (in meters) on the contact surface between the two beams

corresponding to different modelling choices of contact enforcement summarized in table 1.
Note that these choices have been made in order to position the IPM with respect to a very
simple and general-purpose enforcement of contact constraints (penalty approach) as well
as a more advanced one (Augmented Lagrangian). For the latter case, additional contact
points other than the nodes are used by Abaqus in the surface-to-surface computation. For
the comparison to be fair, we also added 4 additional points inside each triangular facets
for contact enforcement in our implementation, thereby reducing the potential violation of
contact conditions in the node-to-node formulation inside the facet. With such additional
contact points, similar system sizes are obtained. Default parameters have been retained
for assessing the robustness of our approach with respect to its use by an inexperienced
user.

Two variants are defined by changing the friction coefficient between the beam’s end-
plates and the column’s flanges:

– a frictionless contact is used for model 1 (only unilateral contact conditions are en-
forced so that the comparison is most relevant);

– a µ = 0.3 friction coefficient is used for model 2 (note that Abaqus solves standard
Coulomb friction)

Figure 10 gives a general description of the model while three mesh iterations are
represented on figure 11. It consists of a HEB200 central column with two IPE360 beams
attached over the flanges using welded end plates and bolts. The end plates have a 15 mm
thickness and 6 M18 bolts are used to attach each beam. Web stiffeners are used to
prevent its buckling. For the HEB column, their thickness is 12.7 mm to coincide with the
IPE’s flange thickness, whereas for the IPE beams, 15 mm thick stiffeners are used over
the supports to correctly channel shear forces. The stiffeners are glued to the beams and
column using tie constraints (*TIE) in Abaqus. We suppose that the bolt hole is equal
to its diameter and, to prevent rigid body motions, one of the bolt heads is glued to the
plate. A 45 MPa normal pressure is applied over the top section of the HEB column and
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Figure 10: Description of the used model

the displacement of the nodes belonging to the surface defined by the intersection of the
IPE’s web stiffeners are blocked in all the 3 directions, the HEB sections remaining free.

Table 1: Definition of contact modelling choices in Abaqus

Model 1-1 Model 1-2 Model 2-1 Model 2-2

Mesh type C3D10 C3D10 C3D10 C3D10
Contact pairs type node to surface surface to surface node to surface surface to surface
Use supplementary contact points No Yes No Yes
Normal behaviour Hard contact Hard contact Hard contact Hard contact
Enforcement method Penalty Augmented Lagrangian Penalty Augmented Lagrangian
Stiffness reduction 0.01 No reduction 0.01 No reduction
Tangential behaviour Frictionless Frictionless Frictional Frictional
Enforcement method Penalty Penalty
Friction coefficient 0.30 0.30

Since Abaqus offers displacement-based elements only, the calculation times are com-
pared with respect to the kinematic approach. Since the same meshes are used in Abaqus,
the solved system size is nearly the same, the system sparsity patterns and conditioning are
also comparable. The main difference lies in contact modelling and resolution strategy. In
order to closely compare the numerical performance of the algorithm, all the calculations
were made using the same machine. OpenMP technology was used to parallelize over 8
threads. Table 2 summarizes the machine’s specifications.

Tables 3 and 4 show the CPU times for the models described in table 1. The IPM is
largely comparable to Abaqus penalty approach (PEN) in terms of CPU times, with even
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Figure 11: View of some of the different meshes

Table 2: Computer specifications

Processor Intel core i7-4700MQ
Number of cores 4
Number de threads 8
Base frequency 2.40 GHz
Maximum frequency 3.40 GHz
Cache 6 MB –SmartCache
RAM 16.0 GB (15.7 GB usable)

Table 3: First model (frictionless contact) CPU times and speed-up factors of the IPM over Abaqus
augmented Lagrangian approach and penalty approach

Remesh
iteration

Mesh
Size

IPM kinematic
approach
(s)(Niter)

Abaqus AL
approach
(s)(Niter)

Speed-up
factor

Abaqus PEN
approach
(s)(Niter)

Speed-up
factor

0 Ne = 9150 10.2 (17) 25.0 (21) 2.5 9.0 (8) 0.9
1 Ne = 33051 28.3 (18) 69.0 (22) 2.4 30.0 (9) 1.1
2 Ne = 42696 35.0 (17) 97.0 (24) 2.8 38.0 (9) 1.1
3 Ne = 85187 78.8 (17) 278.0 (25) 3.5 98.0 (9) 1.2
4 Ne = 222082 320.6 (18) 1368.0 (30) 4.3 435.0 (10) 1.4
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Table 4: Second model (frictional contact) CPU times and speed-up factors of the IPM over Abaqus
augmented Lagrangian approach and penalty approach

Remesh
iteration

Mesh
Size

IPM kinematic
approach
(s)(Niter)

Abaqus AL
approach
(s)(Niter)

Speed-up
factor

Abaqus PEN
approach
(s)(Niter)

Speed-up
factor

0 Ne = 9150 9.8 (18) 37.0 (23) 3.8 14.0 (8) 1.4
1 Ne = 33051 29.8 (18) 116.0 (24) 3.9 47.0 (10) 1.6
2 Ne = 42696 40.0 (18) 133.0 (21) 3.3 57.0 (9) 1.4
3 Ne = 85187 78.8 (18) 445.0 (25) 5.6 165.0 (9) 2.1
4 Ne = 222082 334.1 (19) 2296.0 (29) 6.9 760.0 (10) 2.3

a small speed-up factor when compared to the augmented Lagrangian (AL) approach.
Compared to the latter, which generally yields more accurate results, the IPM shows a
speed-up factor of 2 to 4 in frictionless contact and up to 6 in frictional contact, the speed-
up factor increasing with the mesh size. This is an attractive feature of the IPM since
it can handle large scale sparse problems efficiently. While Abaqus number of iterations
required for convergence tends to increase (from 20 to 30 for the AL approach), the IPM
number of iteration remains fairly constant varying between 18 and 20 iterations for all
the models and remeshes, this almost independence of number of iteration with respect to
problem size is a known attractive feature of IPM methods. Figures 12 and 13 respectively
illustrate the total CPU cost and the average CPU cost per inner iteration of the non-linear
solvers for the different configurations.

Let us mention that the dual solution with equilibrium elements exhibits approximately
the same computation time as the primal one since the linear system is roughly the same
size. Since both problems are independent, they can be run in parallel. Finally, the error
calculation being a simple post-processing step, it takes less than 1% of the time needed
for the whole resolution.

To assess the global convergence level with mesh refinement, total quantities are con-
sidered. The influence of mesh size over the relative difference between the static and
kinematic IP approaches has been represented in figures 14 and 15. The quality of con-
vergence of the finite element analysis can therefore be directly evaluated by checking the
relative difference between the approaches which reaches acceptable values (less than 5%
directly after the first remesh iteration) and 1.68% for the frictionless model and 1.2% for
the frictional model on the fourth remesh iteration. When inspecting the convergence rate
of the global error when refining the mesh, we observe that it is roughly linear with respect
to the number of degrees of freedom.

Let us now consider some local quantities. Figure 16 shows the evolution of the total
vertical displacement of the column over the six meshes. We can clearly see the upper and
lower bound offered by the dual approach that we used. Abaqus AL approach shows nearly
the same results as the kinematic approach whereas with the penalty contact constraints,
one can easily over-estimate displacements thus leading to misinterpretations. These as-
pects are generally unknown to engineers who do not have means to estimate an upper
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Figure 12: Total solving time for each mesh size

bound for displacements, contrary to what offers equilibrium-based computations. The
maximum gap between the end plate and the column’s flange presented in figure 17 shows
the consequences of the contact constraints enforcement method. It is clear that with the
penalty, the maximum gap is overestimated. An important point is that with the IPM,
no contact constraint violation is permitted, thus we have zero penetration, whereas in
Abaqus, a penetration tolerance is allowed. The results show that a “negative” gap, equiv-
alent to up to 8% of the maximum gap, is possible with the penalty approach (−0.055 mm
compared to 0.707 mm for the first mesh in model 1 as seen in figure 18c and −0.058 mm
compared to 0.697 mm for the first mesh in model 2 as seen in figure 20c). However, with
the AL approach, negative gaps are limited to 0.0001% of the maximum gap, thus yielding
better results that are comparable to the IP kinematic approach. With the penalty ap-
proach in Abaqus and the removal of supplementary contact constraints, one can manage
to obtain results in a more reasonable time. However, the quality of the results is poor and
contact conditions are generally over-evaluated or violated as shown in figure 17 and in the
gap iso-values shown in figures 18 to 21 (COPEN being the gap keyword in Abaqus).

It must be noted that in the case of frictionless contact, both our model and Abaqus im-
pose the same Signorini unilateral conditions so that the comparison is relevant. However,
the validity of the comparison between the models including friction can be questioned
because of our choice of associated friction. In particular, it can be expected that both
computations will differ, especially regarding the normal and tangential components of the
gap vector since associated friction predicts normal opening during sliding. Nevertheless,
due to the end-plates flexural behaviour considered in this example, surfaces in sliding are
quite limited in size (they approximately correspond to the black region of Figure 21b)
and the maximum tangential gap amplitude is less than 5% of the maximum normal gap.
The impact of associated friction is therefore quite limited for this specific situation.
Figures 22 and 23 show the local contact pressure over the end plates, one obtained using
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Figure 13: Average solving time per internal algorithm iteration for each mesh iteration

the IP static approach and the two other from Abaqus (CPRESS being the normal pres-
sure keyword in Abaqus). We can clearly see that the stresses post-processed by Abaqus
from a displacement field are underestimated. While the AL approach gives comparable
results to the IP static approach (247 MPa compared to 268 MPa for model 1 and 243 MPa
compared to 261 MPa for model 2, again, despite the modelling difference of frictional be-
haviour), the penalty approach largely underestimates these values (89.2 MPa for model 1
and 87.3 MPa for model 2). Again, close agreement between our computations and Abaqus
AL computations in terms of normal pressure values is found due to a limited impact of
associated friction in this bending-dominated case. However, the comparison should be
made with greater care in the case of compressed end plates with an important torsional
loading for instance, where the tangential behaviour would be dominant. These aspects
will be investigated in further studies in which non-associated frictional contact will be
considered. In any case, relying on a dual approach enables to produce results of good
quality in a robust and computationally efficient manner which is very attractive in the
context of design engineering.
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Figure 14: Objective function values for the static and the kinematic IP approach
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(b) Model 2 – Frictional contact

Figure 15: Relative difference between static and kinematic IP approach’s objective functions
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Figure 16: Total vertical displacement of the column
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Figure 17: Maximum gap between the end plate and the column’s flange
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Figure 18: Model 1 – frictionless contact, initial coarse mesh, gap iso-values in (m) over one of the end-
plates
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(c) Abaqus PEN approach

Figure 19: Model 1 – frictionless contact, fourth remesh iteration, gap iso-values in (m) over one of the
end-plates
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(c) Abaqus PEN approach

Figure 20: Model 2 – frictional contact, initial coarse mesh, gap iso-values in (m) over one of the end-plates

26



     +3.200e-04
     +3.840e-04
     +4.479e-04

     +1.280e-04

     +5.759e-04
     +6.399e-04

     +1.920e-04
     +2.560e-04

     +7.039e-04
     +7.679e-04

GAP

     +6.399e-05

     +5.119e-04

     +0.000e+00

X Y
Z

(a) IPM kinematic approach

COPEN

+0.000e+00
+6.254e-05
+1.251e-04
+1.876e-04
+2.502e-04
+3.127e-04
+3.752e-04
+4.378e-04
+5.003e-04
+5.629e-04
+6.254e-04
+6.880e-04
+7.505e-04

-4.027e-09

(b) Abaqus AL approach

COPEN

+0.000e+00
+6.666e-05
+1.333e-04
+2.000e-04
+2.666e-04
+3.333e-04
+4.000e-04
+4.666e-04
+5.333e-04
+5.999e-04
+6.666e-04
+7.333e-04
+7.999e-04

-3.001e-05

(c) Abaqus PEN approach

Figure 21: Model 2 – frictional contact, fourth remesh iteration, gap iso-values in (m) over one of the
end-plates

     -1.566e+02
     -1.342e+02
     -1.119e+02

     -2.237e+02

     -6.712e+01
     -4.475e+01

     -2.014e+02
     -1.790e+02

     -2.238e+01
     -2.806e-03

Contact pressure

     -2.461e+02

     -8.949e+01

     -2.685e+02

X Y
Z
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−8.864e+02

(b) Abaqus AL approach

CPRESS

+0.000e+00
−7.500e+01
−1.500e+01
−2.250e+01
−3.000e+01
−3.750e+01
−4.500e+01
−5.250e+01
−6.000e+01
−6.750e+01
−7.500e+01
−8.250e+01
−9.000e+01

+7.389e−01

−1.934e+02

(c) Abaqus PEN approach

Figure 22: Model 1 – frictionless contact, fourth remesh iteration, normal pressure iso-values in (MPa)
over one of the end-plates

7. Conclusions and perspectives

Modelling three-dimensional elastic structures in contact under static loads using SOCP
and IPM has been investigated in this paper. Using a dual principle approach, a kinemat-
ically admissible displacement field and statically admissible stress field can be obtained
by solving a pair of minimisation problems. The obtained second-order cone optimiza-
tion problems are solved using a primal-dual interior point method for which convergence
properties are ensured [44]. The optimal pair of variables allows for computing an error
estimator based on dual analysis which is then used to produce a new anisotropic mesh
size map. The whole process of solving the minimization problems, calculating errors and
remeshing, has been automatized. The process is repeated until a target relative difference
between objective functions is reached. Since this difference measures the global quality
of convergence of the two approaches and provides a upper bound estimate of the global
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(b) Abaqus AL approach

CPRESS
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−8.732e+01

+1.238e−01

(c) Abaqus PEN approach

Figure 23: Model 2 – frictional contact, fourth remesh iteration, normal pressure iso-values in (MPa) over
one of the end-plates

error, it is an excellent indicator of the convergence of the finite elements computations.
The two examples presented in this paper show the numerical and technical efficiency of

this process. The error estimator which consists of an elementary volume term and a local
surface contribution due to contact complementarity condition violation enables to remesh
areas of interest while limiting the number of elements. Few remesh iterations are generally
enough to ensure a difference under 2%, this number can be reduced if the coefficient of
error reduction used in the remesh algorithm is increased and if the initial mesh is less
coarse. However, the mesh size map will be more difficult to process by automatic mesh
generators which could produce bad quality meshes.

The IPM capability to take into account a great number of conic constraints shows all its
advantages over traditional penalty or augmented Lagrangian approaches. Excellent results
were obtained for large scale problems, with a relatively constant number of iterations
ranging between 17 and 20 while the number of iterations in Abaqus AL approach tended
to increase with the problem size. At the expense of quality, contact problems can be
solved with nearly the same time as the IPM using Abaqus penalty approach. However,
it is known that enforcing contact conditions with such a general-purpose strategy can
yield poor estimates of stress levels and larger displacements in structures. The IPM dual
approach appears therefore as an interesting alternative, offering high-quality displacement
and stress estimates while relying on a robust solver with good scaling properties for large
models. This aspect may be very appealing for safety considerations in a structural design
context.

Another main advantage is the absence of user intervention while using the IPM. While
contact solution algorithms and/or parameters can greatly influence calculation times or
sometimes cause divergence, the IPM offers robust and efficient convergence behaviour
with no user intervention and no algorithmic input parameter.

Finally, the present work considered a node-to-node discretization of contact condi-
tions which requires matching meshes. However, the proposed approach does not rely on a
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specific discretization technique and could perfectly be extended to more advanced strate-
gies involving non-matching meshes with a node-to-surface method for instance. Curved
surfaces such as the bolt cores or plate holes can also be finely modelled using curved or
isogeometric elements.

Further developments to include plastic constitutive relations which can be expressed
as second order conic conditions as well are currently investigated. This method should
be able to tackle such problems without using an incremental approach which can be hard
to pilot using a classical Newton-Raphson algorithm and even surpass the problems faced
when using non-conventional equilibrium elements. Although equilibrium elements are not
widely used in industrial software, it offers the advantage of assessing the solution conver-
gence by comparison with the primal displacement-based solution but also of computing
a lower-bound solution and, therefore, a safer solution in terms of stress quantities than
a displacement-based solution. Its use will therefore be even more interesting in the con-
text of safety verifications including elasto-plastic behaviour and limit load computations.
These aspects will be investigated in a future contribution.

Although the efficiency of IPM in the context of contact elastostatics has been illus-
trated, the main bottleneck that needs to be tackled is the linear solver of the Newton
system. The use of direct solvers for really large-scale 3D problems becomes prohibitive
and iterative solvers would certainly be more appropriate. Development of good precon-
ditioners of IPM is however still a subject of current research. Another question concerns
modelling choices of frictional contact. Due to its formulation relying on a convex optimiza-
tion problem, the proposed IPM approach cannot take into account the real non-associative
behaviour of Coulomb’s frictional contact as such. Some strategies have nonetheless been
already proposed to circumvent this aspect [36, 37, 58, 31] and this problem will definitely
deserve further consideration.

Appendix A Constitutive error estimator

As stated in [56], many constitutive relations can be defined using a pair of convex dual
functions ϕ and ϕ∗ such that:

ϕ(ε) + ϕ∗(σ) − σ : ε ≥ 0 (A.1)

This is no other than the Fenchel inequality for a pair of Fenchel conjugate functions. At
any point in Ω, the equality in the above equation is strictly equivalent to enforcing the
constitutive relation at that point:

ϕ(ε) + ϕ∗(σ) − σ : ε = 0⇔ σ = ∂ϕ

∂ε
and ε = ∂ϕ∗

∂σ
(A.2)

Using this concept, we define a constitutive relation error including the same volume term
defined in [56] and adding a surface term expressed over the contact boundary Γc as in
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[59, 60, 61]:

e2
(u,σ) = e2

Ω(u,σ) + e2
Γc(u,σ) (A.3)

e2
(u,σ) =

∫
Ω

(
ϕ(ε(u)) + ϕ∗(σ) − σ : ε(u)

)
dΩ

+
∫

Γc

(
1K◦

µ(g(u)) + 1Kµ(σ.n) − (σ.n).g(u)

)
dΓ

(A.4)

with 1K◦
µ(g) and 1Kµ(σ.n) being the indicator functions of the contact cones defined in section

2.1.3 such as :
1K(x) =

{
1 if x ∈ K
+∞ otherwise (A.5)

Indeed, for the convex cone Kµ, we have that the conjugate of the indicator function of
the cone if no other than the indicator function of its polar cone i.e. (1Kµ)∗ = 1K◦

µ
and it

can be easily shown that:

1K◦
µ(g) + 1Kµ(σ.n) − (σ.n).g = 0 (A.6)

is equivalent to conditions (2.5),(2.6) and (2.8). The important property of this error
functional is that it is always positive:

e2
(u,σ) ≥ 0 ∀(u,σ) (A.7)

In particular, it will be infinite if the contact variables do not satisfy the contact constitu-
tive equations.

For the purpose of the present paper considering only elastic behaviour in the bulk
domain, ϕ(ε) and ϕ∗(σ) coincide with Helmholtz’s free energy and Gibbs’s complementary
energy in the case of linear elasticity:

ϕ(ε) = 1
2ε : C : ε and ϕ∗(σ) = 1

2σ : C−1 : σ (A.8)

It can be easily shown that the error can be expressed as follows for any σ ∈ SA and
u ∈ KA:

e2
(u,σ) = Πp(u) + Πc(σ) (A.9)

with Πp(u) being the well-known total elastic potential energy (TPE) functional including
a surface contact term:

Πp(u) =
∫
Ω

1
2ε(u) : C : ε(u) dΩ +

∫
Γc

1K◦
µ(g(u)) dΓ−

∫
Ω

b.u dΩ−
∫
Γt

td.u dΓ (A.10)

and Πc(σ) being the well-known total elastic complementary energy (TCPE) functional also
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including a surface contact term:

Πc(σ) =
∫
Ω

1
2σ : C−1 : σ dΩ +

∫
Γc

1Kµ(σ.n) dΓ−
∫

Γu

(σ.n).ud dΓ−
∫
Γc

(σ.n).(g0n) dΓ (A.11)

The introduced error also possesses the important property to be zero if and only if the
constitutive equations are satisfied. As a result, the solution (u∗,σ∗) can be characterized
by:

(u∗,σ∗) ∈ KA× SA
{

σ∗ = C : ε(u∗)
(g(u∗),σ

∗.n) ∈ (Kµ ×K◦µ) ⇔ e2
(u∗,σ∗) = 0 (A.12)

Owing to the introduced assumptions, a solution to the previous problem always exists.
It has been demonstrated in [59, 60, 61] that the error estimator described above always
gives an upper bound for the real error i.e. let (u∗,σ∗) be a solution to the contact problem,
and (uh,σh) ∈ KA× SA be an admissible approximation, then:

1
2
∥∥∥σh−σ∗∥∥∥2

C−1,Ω
+1

2
∥∥∥ε(uh)−ε(u∗)

∥∥∥2

C,Ω
−µ

∫
Γc

(σh.n−σ∗.n)(g(uh)−g(u∗))dΓ ≤ e2
(uh,σh) (A.13)

with
∥∥∥ε∥∥∥

C,Ω
and

∥∥∥σ∥∥∥
C−1,Ω

being the traditional energy norms. Further information about
posteriori error estimation for contact problems can be found in [62, 63, 64]

Appendix B Quadratic second-order cone programming

Let us consider the following quadratic second-order cone program:

min
x,xi

1
2x

TPx+ cTx+
m∑
i=1
cTi xi

s.t. Ax = b

Aix− xi = bi i = 1, . . . ,m
xi ∈ Ki i = 1, . . . ,m

(B.1)

where P is a symmetric positive definite matrix and Ki, i = 1, . . . ,m are different types of
second-order self-dual cones such as:

• the positive orthant: Rni
+ = {z ∈ Rni s.t. zj ≥ 0 ∀j = 1, . . . , ni}

• the Lorentz second-order cone:

Qni =
{
z = (z0, z̄) ∈ R× Rni−1 s.t. z0 ≥ ‖z̄‖

}
(B.2)

• the rotated Lorentz second-order cone:

Qnir =
{
z = (z0, z1, z̃) ∈ R× R× Rni−2 s.t. 2z1z0 ≥ ‖z̃‖2

}
(B.3)
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These cones all possess the important property of being self-dual: K∗i = Ki.
Most standard SOCP program formats assumes no quadratic objective term, but the

previous problem can be always reformulated as a problem involving a linear objective
function only by introducing auxiliary variables and additional conic constraints [52, 20, 22].
However, in our implementation, the quadratic term will be kept as such in the objective
function.

We can construct the Lagrangian L of the previous program as follows:

L(x,xi,λ,νi, si) =1
2x

TPx+ (c+ATλ+
m∑
i=1
AT
i νi)Tx

+
m∑
i=1

(ci − νi − si)Txi − λTb−
m∑
i=1
νTi bi

(B.4)

Let ?TI = {. . . ,?Ti , . . .} be the seperate concatenation of each vector indexed by i, AI =
diag(. . . ,Ai, . . .) and K the tensorial product of the Ki cones i.e. x ∈ K ⇔ xi ∈ Ki, ∀i =
1, · · · , n. Problem (B.1) becomes:

min
x,xI

1
2x

TPx+ cTx+ cTI xI

s.t. Ax = b

AIx− xI = bI

xI ∈ K

(B.5)

and the Lagrangian can be expressed as:

L(x,xI ,λ,νI , sI) = 1
2x

TPx+(c+ATλ+AT
I νI)Tx+(cI−νI−sI)TxI−λTb−νTI bI (B.6)

The corresponding KKT optimality conditions are:

∂xL = Px+ c+ATλ+AT
I νI = 0 (B.7a)

∂xIL = cI − νI − sI = 0 (B.7b)
∂λL = Ax− b = 0 (B.7c)

∂νIL = AIx− xI − bI = 0 (B.7d)
xI ∈ K, sI ∈ K∗, xTI sI = 0 (B.7e)

where K∗ is the tensorial product of the dual cones K∗i .

Appendix C Implementation of the primal-dual interior-point method

C.1 The perturbed KKT system
At each iteration k, a Newton step on the perturbed KKT system (5.3) is computed

towards the central path for a fixed value of ηk. The solution is updated after a step-length
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calculation and the barrier parameter is reduced by some amount. The process is repeated
until the residuals fall under a certain tolerance. This will result in a series of iterates
zk = (xk,xkI ,λk,νkI , skI ) which remain feasible regarding the conic constraints.

Given an iteration k at which a point zk satisfying the conic constraints is known
and a value for the barrier parameter ηk has been chosen, the next iterate is calculated
by computing a new point near the central path. This is obtained by performing one
iteration of the Newton method when linearising the residuals equation such as rk+1(z) =
rk(z) + r′k(z).∆z = 0 thus solving the system Dk.∆z = −rk(z) with Dk = r′k(z).
Hence, a descent direction ∆z = (∆x,∆xI ,∆λ,∆νI ,∆sI) is computed by linearising
the perturbed KKT system around zk as follows:

Dk∆z =


P 0 AT AT

I 0
0 0 0 I I
A 0 0 0 0
AI −I 0 0 0
0 SkI 0 0 Xk

I





∆x
∆xI
∆λ
∆νI
∆sI


=



−rkd
−rkdI
−rkp
−rkpI
−rkc


= −rk(z) (C.1)

where Xk
I = diag(. . . ,mat(xki ), . . .) and SkI = diag(. . . ,mat(ski ), . . .) and the vector rk

corresponding to the vector of residuals:

rkd = Pxk +ATλk +AT
I ν

k
I + c (C.2a)

rkdI = cI − νkI − skI (C.2b)
rkp = Axk − b (C.2c)
rkpI = AIx

k − xkI − bI (C.2d)
rkc = ηkeI −Xk

IS
k
I eI (C.2e)

Details about the linearisation of the complementarity condition (5.3e) along with the
definition of matrices mat(xi) and mat(si) involved can be found in appendix D.

C.2 Step-length calculation
The next iterate zk+1 is obtained by performing a line-search on the maximum allowable

step length α in direction ∆z, i.e. zk+1 = zk + α∆z with α ∈ [0, 1]. This step should
be chosen such that the iterate still satisfies the conic constraints. One can use a simple
line-search procedure but a fraction-to-boundary rule is used to limit its value to avoid
that the next iterate will lie exactly on the boundary of the feasible domain. Practically, α
is chosen such as α ≤ αmax < 1 with αmax = 0.995 typically. The primal and dual residuals
are then reduced by a (1− α) ratio. Following the central path which is located far from
the feasibility boundaries will allow for large steps to be taken. The IPM thus shows all
its efficiency compared to a traditional descent method along the gradient of the objective
function where the boundary of the feasible region will be reached in the early stages of
the algorithm, leading to small progress when following the boundary.
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C.3 Choice of the barrier parameter
The choice of the barrier parameter η at the beginning of each step influences the whole

performance of the IP algorithm. This choice will define the type of each step, whether a
“centering” step is made in which the next iterate will be closer to the central path, or a
“descent” step in which the complementarity gap is reduced but maybe to the detriment
of going away from the central path. We recall that in order to solve the perturbed KKT
system and converge to the optimal solution, the barrier parameter η should be driven
to 0. At the end of an iteration (k + 1), a new feasible point zk+1 has been calculated,
and a typical choice for the new barrier parameter ηk+1 makes use of the value of the
complementarity gap gk+1

i = sk+1
i · xk+1

i for each cone:

ηk+1 = γ

(
1
m

m∑
i=1

gk+1
i

)
= γgk+1 (C.3)

m being the total number of cones. The barrier parameter ηk+1 is therefore proportional
to the average complementarity gap via a scalar γ ∈ [0, 1]. This parameter can be chosen
in an adaptive matter as will be explained in section C.5.1.

C.4 Initialization and convergence criteria
All primal non-conic variables i.e. x are initially taken equal to 0, whereas the conic

variables and their dual are taken as xi = (x0
i ,xi) = (1,0). This choice ensures that we

have a starting point that is feasible with the conic constraints. The initial complementarity
gap is then equal to 1 everywhere. As the residual vectors and the complementarity gap
are both reduced at the same rate, the same stopping criterion is used. The iterative
process is stopped when the complementarity gap and the residual norms fall bellow a
given tolerance, here fixed to 10−8. This point will be considered as an optimal solution
for the non-perturbed KKT system. The algorithm will also be stopped if the number of
iterations exceeds 50, and then the algorithm will have failed to find an optimal solution.
In practice, the average number of iterations was always found between 15 and 25 at most.

C.5 Some advanced aspects of the IPM
C.5.1 Predictor-corrector scheme and adaptive choice of the barrier parameter

One of the major improvements in IPM was made by Mehrotra [43] who proposed an
adaptive scheme for the choice of the barrier parameter η. As explained before, the choice
of the centering parameter γ will determine the trade-off between improving centering and
reducing the complementarity gap. The idea behind the method is to take advantage of
the factorisation of the KKT matrix D which takes most of the computing time. Once
done, it is quite inexpensive to solve a second linear system using the same matrix but
using different residuals. Hence the idea is to perform two calculation steps as follows:

1. the first step, called affine step, is calculated using η = 0, and its solution is denoted
∆za. The maximum step length for this step is noted αamax. This step amounts to
solving the unperturbed KKT system;
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2. The centering parameter is then chosen using the heuristic presented in [21]:

γ = (1− αamax) min{0.5; (1− αamax)2} (C.4)

If αamax is large, only a little centering will be necessary (the iterate being far from the
boundary). If, on the contrary, αamax is small, the feasible region boundaries have been
reached and centering will be restored by choosing a large value for γ, driving the next
iterate closer to the central path;

3. the final step direction ∆z is then computed using the value of ηk calculated using the
equation (C.3) and a reduced residuals vector depending on γ, ensuring that residuals
and complementarity gaps are reduced at the same rate.

Further details about the choice of the parameters and the reduction of the residuals can
be found in [55, 53, 43].

C.5.2 Reduced linear system
It is possible to reduce the system (C.1) to a smaller system by eliminating the conic

primal and dual variables ∆xIand ∆sI and the corresponding Lagrange variables ∆νI .
Unfortunately, the system will generally be non-symmetric (except for linear program-
ming). A rescaling of the complementarity conditions (5.3e) using the approach proposed
by Nesterov and Todd [44] enables to obtain a symmetric reduced system of the following
form: [

P +AT
I F

2
IAI AT

A 0

]{
∆x
∆λ

}
=
{
−r′kd
−rkp

}
(C.5)

where:

r′kd = rkd +AT
I FIV

−1
I rkc +AT

I F
2
I r

k
pI (C.6)

rkp = Axk − b (C.7)

The general details for the system’s reduction and symmetric scaling can be found in
appendix D.

The resulting system is still sparse but is now much smaller and symmetric semi-definite
positive. Since the matrices Ai will only affect variables included in cones and its sparsity
pattern is block-diagonal, it does not change the global sparsity pattern of matrix P . The
other variable increments are simply obtained by back-substitution.

Since the matrices Fi and their global concatenation FI depend on each iterate, the
solved system is very similar to those arising in Newton-Raphson algorithms with a tangent
matrix and Lagrange multipliers to enforce boundary conditions. In this work, system (C.5)
is solved using MKL Pardiso direct solver [65, 66, 67].

Appendix D About the complementarity condition for second-order cone

General results concerning Jordan algebra over the Lorentz second-order cone and the
Nesterov-Todd scaling are given here. For a vector v = (v0,v) ∈ Qm+1, we define:
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mat(v) =
[
v0 vT

v v0Im

]
∈ R(m+1)×(m+1) (D.1)

det(v) = det(mat(v)) = (v0)2 − ‖v‖2 (D.2)
Q = diag(1,−Im) (D.3)
v̂ = Qv = (v0,−v) (D.4)

(mat(v))−1 = 1
det(v)

 v0 −vT

−v det(v)Im + vvT
v0

 (D.5)

The last equation is valid only if v is located strictly inside Qm+1, i.e. v ∈ int(Qm+1),
which is equivalent to det(v) > 0.

Let X = mat(x) and S = mat(s), the complementarity condition (5.4) can be
rewritten as:

x ◦ s =
{
x0s0 + xTs
x0s+ s0x

}
= Xs = Sx = XSe (D.6)

with e = (1,0). The linearised form can then be written as:

(x ◦ s)(k+1) 'XkSke+Xk∆s+ Sk∆x (D.7)

It can be shown that for x, s ∈ int(Qm+1), there exists a unique matrix F , depending on
x and s, such that

Fx = x̃ = s̃ = F−1S and x ◦ s = x̃ ◦ s̃ (D.8)
Let V = mat(x̃) = mat(s̃) the associated matrix for the scaled point x̃ = s̃. Using
this symmetrical Nesterov-Todd scaling, the linearised complementarity condition can be
rewritten as

(x ◦ s)(k+1) ' (x ◦ s)(k) + V F−1∆s+ V F∆x (D.9)
Further details and the expression for matrix F can be found in [52, 22, 21, 44].

The KKT system (C.1) can then be efficiently reduced. Using the relation : νI = cI−sI ,
the ∆νI variable can first be eliminated along with the second row. The first residual is
then changed into:

rkd = Pxk +ATλk −AT
I s

k
I +AT

I cI + c (D.10)
and the KKT system now becomes:

Dk∆z =


P AT −AT

I 0
A 0 0 0
AI −I 0 0
0 (VIFI)k 0 (VIF−1

I )k




∆x
∆xI
∆λ
∆sI

 =


−rkd
−rkp
−rkpI
−rkc

 = −rk(z) (D.11)
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where V k
I = diag(. . . ,V k

i , . . .) and F k
I = diag(. . . ,F k

i , . . .). Eliminating ∆xI and ∆sI
using

∆sI = −FIV −1
I rkc − F 2

I ∆xI (D.12)
∆xI = AI∆x+ rkpI (D.13)

one finally obtains the reduced system (C.5).
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