
HAL Id: hal-02388646
https://enpc.hal.science/hal-02388646v2

Submitted on 29 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating the formulation and resolution of convex
variational problems: applications from image

processing to computational mechanics
Jeremy Bleyer

To cite this version:
Jeremy Bleyer. Automating the formulation and resolution of convex variational problems: appli-
cations from image processing to computational mechanics. ACM Transactions on Mathematical
Software, 2020, 46 (3), pp.27. �10.1145/3393881�. �hal-02388646v2�

https://enpc.hal.science/hal-02388646v2
https://hal.archives-ouvertes.fr

1

Automating the formulation and resolution of convex
variational problems: applications from image processing to
computational mechanics

JEREMY BLEYER, Laboratoire Navier, ENPC, Univ Gustave Eiffel, CNRS, France

Convex variational problems arise in many fields ranging from image processing to fluid and solid mechan-
ics communities. Interesting applications usually involve non-smooth terms which require well-designed
optimization algorithms for their resolution. The present manuscript presents the Python package called
fenics_optim built on top of the FEniCS finite element software which enables to automate the formulation
and resolution of various convex variational problems. Formulating such a problem relies on FEniCS domain-
specific language and the representation of convex functions, in particular non-smooth ones, in the conic
programming framework. The discrete formulation of the corresponding optimization problems hinges on the
finite element discretization capabilities offered by FEniCS while their numerical resolution is carried out by
the interior-point solver Mosek. Through various illustrative examples, we show that convex optimization
problems can be formulated using only a few lines of code, discretized in a very simple manner and solved
extremely efficiently.

CCS Concepts: • Mathematics of computing→ Convex optimization; • Computing methodologies
→ Symbolic and algebraic algorithms.

Additional Key Words and Phrases: convex optimization, conic programming, finite element method, FEniCS

ACM Reference Format:
Jeremy Bleyer. 2019. Automating the formulation and resolution of convex variational problems: applications
from image processing to computational mechanics. ACM Trans. Math. Softw. 1, 1, Article 1 (January 2019),
33 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Convex variational problems represent an important class of mathematical abstractions which

can be used to model various physical systems or provide a natural way of formulating interesting
problems in different areas of applied mathematics. Moreover, they also often arise as a relaxation
of more complicated non-convex problems. Optimality conditions of constrained convex variational
problems correspond to variational inequalities which have been the topic of a large amount of
work in terms of analysis or practical applications [30, 35, 52].

In this work, we consider convex variational problems defined on a domain Ω ⊂ R𝑑 (𝑑 = 2, 3 for
typical applications) with convex constraints of the following kind:

inf
𝑢∈𝑉

𝐽 (𝑢)
s.t. 𝑢 ∈ K

(1)

where 𝑢 belongs to a suitable function space 𝑉 , 𝐽 is a convex function and K a convex subset of
𝑉 . Some variational inequality problems are formulated naturally in this framework such as the
classical Signorini obstacle problem in which K encodes the linear inequality constraint that a
membrane displacement cannot interpenetrate a fixed obstacle (see section 3.1). An important

Author’s address: Jeremy Bleyer, jeremy.bleyer@enpc.fr, Laboratoire Navier, ENPC, Univ Gustave Eiffel, CNRS, 6-8 av Blaise
Pascal, Cité Descartes, Champs-sur-Marne, France, 77455.

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in ACM Transactions on Mathematical Software, https://doi.org/10.1145/nnnnnnn.nnnnnnn.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Jeremy Bleyer

class of situations concerns the case where 𝐽 can be decomposed as the sum of a smooth and a
non-smooth term. Such a situation arises in many variational models of image processing problems
such as image denoising, inpainting, deconvolution, decomposition, etc. In some cases, such as
limit analysis problems in mechanics for instance, smooth terms in 𝐽 are absent so that numerical
resolution of (1) becomes very challenging [32, 52]. Important problems in applied mathematics
such as optimal control [42] or optimal transportation [10, 48, 49, 53] can also be formulated,
in some circumstances, as convex variational problems. This is also the case for some classes
of topology optimization problems [11], which can also be extended to non-convex problems
involving integer optimization variables [33, 55]. Finally, robust optimization in which optimization
is performed while taking into account uncertainty in the input data of (1) has been developed in
the last decade [7, 9]. It leads, in some cases, to tractable optimization problems fitting the same
framework, possibly with more complex constraints.
The main goal of this paper is to present a numerical toolbox for automating the formulation

and the resolution of discrete approximations of (1) using the finite-element method. The large
variety of areas in which such problems arise makes us believe that there is a need for a versatile
tool which will aim at satisfying three important features:
• straightforward formulation of the problem, mimicking in particular the expression of the
continuous functional;
• automated finite-element discretization, supporting not only standard Lagrange finite ele-
ments but also DG formulations and 𝐻 (div)/𝐻 (curl) elements;
• efficient solution procedure for all kinds of convex functionals, in particular non-smooth
ones.

In our proposal, the first two points will rely extensively on the versatility and computational
efficiency of the FEniCS open-source finite element library [2, 38]. FEniCS is now an established
collection of components including the DOLFIN C++/Python Interface [40, 41], the Unified Form
Language [1, 3], the FEniCS Form Compiler [36, 39], etc. Using the high-level DOLFIN interface,
the user is able to write short pieces of code for automating the resolution of PDEs in an efficient
manner. For all these reasons, we decided to develop a Python package called fenics_optim [13] as
an add-on to the FEniCS library. We will also make use of Object Oriented Programming possibilities
offered by Python for defining easily our problems (see 4.4). Our proposal can therefore be
considered to be close to high-level optimisation libraries based on disciplined convex programming
such as CVX1 for instance. However, here we really concentrate on the integration within an
efficient finite-element library offering symbolic computation capabilities. As mentioned later, in-
tegrationwith other high-level optimisation libraries will be an interesting development perspective.

Concerning the last point on solution procedure, we will here rely on the state-of-the art
conic programming solver named Mosek [44], which implements extremely efficient primal-dual
interior-point algorithms [4]. Let us mention first that there is no ideal choice concerning solution
algorithms which mainly depends on the desired level of accuracy, the size of the considered
problem, the sparsity of the underlying linear operators, the type of convex functionals involved,
etc. In particular, in the image processing community, first-order proximal algorithms are widely
used since they work well in practice for large scale problems discretized on uniform grids [48].
Moreover, high accuracy on the computed solution is usually not required since one aims mostly at
achieving some decrease of the cost function but not necessarily an accurate computation of the
optimal point. In contrast, interior-point methods can achieve a desired accuracy on the solution
in polynomial time and, in practice, in quasi-linear time since the number of final iterations is
1http://cvxr.com/cvx/

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://cvxr.com/cvx/

Automating the formulation and resolution of convex variational problems 1:3

often observed to be nearly independent on the problem size. However, as a second-order method,
each iteration is costly since it requires to solve a Newton-like system. Iterative solvers are also
difficult to use in this context due to the strong increase of the Newton system conditioning when
approaching the solution. As a result, such solvers usually rely on direct solvers for factorizing
the resulting Newton system, therefore requiring important memory usage. Nevertheless,
interior-point solvers are extremely robust and quite efficient even compared to first order methods
in some cases. For these reasons, the present paper will not focus on comparing different solution
procedures and we will use only the Mosek solver but including first-order algorithms in the
fenics_optim package will be an interesting perspective for future work. Mosek is a proprietary
solver and therefore requires a valid license to be used. Fortunately, free academic licenses are
available for educational or research purposes. Providing interfaces to other interior-point solvers,
especially open-source ones (CVXOPT, ECOS, Sedumi, etc.), is also planned for future releases.

The manuscript is organized as follows: section 2 introduces the conic programming framework
and the concept of conic representable functions. The formulation and discretization of convex
variational problems is discussed in section 3 by means of a simple example. Section 4 discusses
further aspects by considering a more advanced example. Finally, 5 provides a gallery of illustrative
examples along with their formulation and some numerical results.
The fenics_optim package [13] can be downloaded from https://gitlab.enpc.fr/navier-fenics/

fenics-optim. It contains test files as well as demo files corresponding to the examples discussed in
the present paper.

2 CONIC PROGRAMMING FRAMEWORK
2.1 Conic programming in Mosek
The Mosek solver is dedicated to solving problems entering the conic programming framework

which can be written as:
min

x
cTx

s.t. b𝑙 ≤ Ax ≤ b𝑢
x ∈ K

(2)

where vector c defines a linear objective functional, matrix A and vectors b𝑢, b𝑙 define linear
inequality (or equality if b𝑢 = b𝑙) constraints and where K = K1 × K2 × . . . × K𝑝 is a product of
cones K𝑖 ⊂ R𝑑𝑖 so that x ∈ K ⇔ x𝑖 ∈ K𝑖 ∀𝑖 = 1, . . . , 𝑝 where x = (x1, x2, . . . , x𝑝). These cones can
be of different kinds:
• K𝑖 = R𝑑𝑖 i.e. no constraint on x𝑖

• K𝑖 = (R+)𝑑𝑖 is the positive orthant i.e. x𝑖 ≥ 0
• K𝑖 = Q𝑑𝑖 the quadratic Lorentz cone defined as:

Q𝑑𝑖 = {z ∈ R𝑑𝑖 s.t. z = (𝑧0, z̄) and 𝑧0 ≥ ∥z̄∥2} (3)

• K𝑖 = Q𝑟
𝑑𝑖
the rotated quadratic Lorentz cone defined as:

Q𝑟
𝑑𝑖

= {z ∈ R𝑑𝑖 s.t. z = (𝑧0, 𝑧1, z̄) and 2𝑧0𝑧1 ≥ ∥z̄∥22 } (4)

• K𝑖 = S𝑑𝑖 is the vectorial representation of the cone of semi-definite positive matrices S+𝑛𝑖 of
dimension 𝑛𝑖 if 𝑑𝑖 = 𝑛𝑖 (𝑛𝑖 + 1)/2 i.e.

S𝑑𝑖 = {vec(𝑀) s.t.𝑀 ∈ S+𝑛𝑖 } (5)

where S+𝑛𝑖 = {𝑀 ∈ R
𝑛𝑖×𝑛𝑖 s.t.𝑀 = 𝑀T and𝑀 ⪰ 0}

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://gitlab.enpc.fr/navier-fenics/fenics-optim
https://gitlab.enpc.fr/navier-fenics/fenics-optim

1:4 Jeremy Bleyer

and in which the vec operator is the half-vectorization of a symmetric matrix obtained by
collecting in a column vector the upper triangular part of the matrix. The elements are
obtained by spanning successively all upper diagonals, starting from the main diagonal. For
instance, for a 3 × 3 matrix:

vec(𝑀) = (𝑀1,1, 𝑀2,2, 𝑀3,3, 𝑀1,2, 𝑀2,3, 𝑀1,3) (6)

If K contains only cones of the first two kinds, then the resulting optimization problem (2)
belongs to the class of Linear Programming (LP) problems. If, in addition, K contains quadratic
cones Q𝑑𝑖 or Q𝑟

𝑑𝑖
, then the problem belongs to the class of Second-Order Cone Programming (SOCP)

problems. Finally, when cones of the type S𝑑𝑖 are present, the problem belongs to the class of
Semi-Definite Programming (SDP) problems. Note that Quadratic Programming (QP) problems
consisting of minimizing a quadratic functional under linear constraints can be seen as a particular
instance of an SOCP problem as we will later discuss.

There obviously exist dedicated algorithms for some classes of problem (e.g. the simplex method
for LP, projected conjugate gradient methods for bound constrained QP, etc.). However, interior-
point algorithms prove to be extremely efficient algorithms for all kinds of problems from LP up
to difficult problems like SDP. It also turns out that a large variety of convex problems can be
reformulated into an equivalent problem of the previously mentioned categories so that interior-
point algorithms can be used to solve, in a robust and efficient manner, a large spectrum of convex
optimization problems.

2.2 Conic reformulations
Most conic programming solvers other than Mosek (CVXOPT, Sedumi, SDPT3) use a default

format similar to (2). Aiming at optimizing a convex problem using a conic programming framework
therefore requires a first reformulation step to fit into format (2). We give here a few examples
but many conic reformulations can be found in [8, 17, 37] and especially in the Mosek Modeling
Cookbook [45]. In the following examples, we will consider a purely discrete setting in which
optimization variables are in R𝑛 .

2.2.1 𝐿2-norm constraint. Let us consider the following 𝐿2-norm constraint:

∥x∥2 ≤ 1 (7)

This can be readily observed to be the following quadratic cone constraint (1, x) ∈ Q𝑛+1. However,
for this constraint to fit the general format of (2), one must introduce an additional scalar variable
𝑦 such that the previous constraint can be equivalently written:

𝑦 = 1 (8)
∥x∥2 ≤ 𝑦 ⇔ (𝑦, x) ∈ Q𝑛+1

2.2.2 𝐿1-norm constraint. Let us consider the following 𝐿1-norm constraint:

∥x∥1 =
𝑛∑
𝑖=1
|𝑥𝑖 | ≤ 1 (9)

To reformulate this constraint, we introduce 𝑛 scalar auxiliary variables 𝑦𝑖 such that:
𝑛∑
𝑖=1

𝑦𝑖 = 1 (10)

|𝑥𝑖 | ≤ 𝑦𝑖 ∀𝑖

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:5

then each constraint with an absolute value can be written using two linear inequality constraints
𝑥𝑖 − 𝑦𝑖 ≤ 0 and 0 ≤ 𝑥𝑖 + 𝑦𝑖 .

2.2.3 Quadratic constraint. Let us consider the case of a quadratic inequality constraint such as:

1
2

xTQx ≤ 𝑏 (11)

Matrix Q must necessarily be semi-definite positive for the constraint to be convex. In this case,
introducing the Cholesky factor C of Q such that Q = CTC, one has:

1
2

xTQx =
1
2
∥Cx∥22 ≤ 𝑏 (12)

Introducing an auxiliary variable y, the previous constraint can be equivalently reformulated as:

Cx − y = 0 (13)

∥y∥22 ≤ 2𝑏

Finally adding two others scalar variables 𝑧0 and 𝑧1, we have:

Cx − y = 0 (14)
𝑧0 = 𝑏

𝑧1 = 1

∥y∥22 ≤ 2𝑧0𝑧1

where the last constraint is also the rotated quadratic cone constraint (𝑧0, 𝑧1, y) ∈ Q𝑟
𝑛+2

2.2.4 Minimizing a 𝐿2-norm. Let us now consider the problem of minimizing the 𝐿2-norm of Bx
under some affine constraints:

min
x
∥Bx∥2

s.t. Ax = b
(15)

As such this problem does not fit (2) since the objective function is non-linear. In order to circumvent
this, one needs to consider the epigraph of 𝐹 (x) = ∥Bx∥2 defined as epi 𝐹 = {(𝑡, x) s.t. 𝐹 (x) ≤ 𝑡}.
Minimizing 𝐹 is then equivalent to minimizing 𝑡 under the constraint that (𝑡, x) ∈ epi 𝐹 . For the
present case, we therefore have:

min
x,𝑡

𝑡

s.t. Ax = b
∥Bx∥2 ≤ 𝑡

(16)

Introducing an additional variable y we have:

min
x,y,𝑡

𝑡

s.t. Ax = b
Bx − y = 0
∥y∥2 ≤ 𝑡

(17)

where the last constraint is again a quadratic Lorentz cone constraint. Problem (15) is now a linear
problem of the augmented optimization variables (x, y, 𝑡) under linear and conic constraints.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 Jeremy Bleyer

2.3 Conic representable sets and functions
As previously mentioned, minimizing a convex function 𝐹 (x) can be turned into a linear problem

with a convex non-linear constraint involving the epigraph of 𝐹 . We will thus consider the class of
conic representable functions as the class of convex functions which can be expressed as follows:

𝐹 (x) = min
y

cT𝑥x + cT𝑦y

s.t. b𝑙 ≤ Ax + By ≤ b𝑢
y ∈ K

(18)

in which K is again a product of cones of the kinds detailed in section 2.1.
For instance, consider the case of the 𝐿1-norm, we have:

∥x∥1 = min
y∈R𝑛

eTy

s.t. 0 ≤ x + y
x − y ≤ 0

(19)

where e = (1, . . . , 1) whereas for the 𝐿2-norm we have:
∥x∥2 = min

y∈R𝑛+1
𝑦0

s.t. x − ȳ = 0
y ∈ Q𝑛+1

(20)

where y = (𝑦0, 𝑦1, . . . , 𝑦𝑛) and ȳ = (𝑦1, . . . , 𝑦𝑛). In this example, it can be seen that the representa-
tion (18) is not necessarily optimal in terms of number of additional variables, one could perfectly
eliminate the y variable. However, in most practical cases, functions like the 𝐿2-norm will quite
often be composed with some linear operator (gradient, interpolation, etc.) so that introducing
such additional variables will be necessary to fit format (2).

Obviously, if 𝐹 is the indicator function of a convex set, then we have a similar notion of conic
representable sets for which only the constraints in (18) are relevant.

3 VARIATIONAL PROBLEMS AND THEIR DISCRETE VERSION
3.1 A first illustrative example

Before describing the framework of variational formulation and discretization, let us first intro-
duce a classical example of variational inequality, namely the obstacle problem. Let Ω be a bounded
domain of R2 and 𝑢 ∈ 𝑉 = 𝐻 1

0 (Ω), 𝑓 ∈ 𝐻−1 (Ω) and 𝑔 ∈ 𝐻 1 (Ω) ∩𝐶0 such that 𝑦 ≤ 0 on 𝜕Ω. The
obstacle problem consists in solving:

inf
𝑢∈𝑉

∫
Ω

1
2
∥∇𝑢∥22 dx −

∫
Ω
𝑓 𝑢 dx

s.t. 𝑢 ∈ K
(21)

whereK = {𝑣 ∈ 𝐻 1
0 (Ω) s.t. 𝑣 ≥ 𝑔 on Ω}. Physically, this problem corresponds to that of amembrane

described by an out-of-plane deflection 𝑢 and loaded by a vertical load 𝑓 which may potentially
enter in contact with a rigid obstacle located on the surface 𝑧 = −𝑔(𝑥,𝑦).

3.2 Discretization
Let us now consider some finite element discretization of Ω using a mesh Tℎ of 𝑁𝑒 triangular cells.

For the displacement field 𝑢, we consider a Lagrange piecewise linear interpolation represented
by the discrete functional space 𝑉ℎ = {𝑣 ∈ 𝐶0 (Ω) s.t. 𝑣 |𝑇 ∈ P1 (𝑇) ∀𝑇 ∈ Tℎ} of dimension 𝑁 .
Interpolating the obstacle position 𝑦 on the same space 𝑉ℎ , a discrete approximation Kℎ of K

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:7

consists in a pointwise inequality on the vectors v, g ∈ R𝑁 of degrees of freedom of 𝑣ℎ, 𝑔ℎ ∈ 𝑉ℎ :
Kℎ = {𝑣ℎ ∈ 𝑉ℎ s.t. v ≥ g}. Finally, introducing a quadrature formula with𝑀 quadrature points for
the first integral in (21), the discrete obstacle problem is now:

min
u∈R𝑁

𝑀∑
𝑔=1

𝜔𝑔

1
2
∥B𝑔u∥22 − fTu

s.t. u ≥ g

(22)

In (22), B𝑔u ∈ R2 denotes the discrete gradient evaluated at the current quadrature point 𝑔 and𝜔𝑔

is the associated quadrature weight. Note that since 𝑢ℎ is linear, its gradient is piecewise-constant
so that only one point per triangle 𝑇 with 𝜔𝑔 = |𝑇 | is sufficient for exact evaluation of the integral
(𝑀 = 𝑁𝑒 in this case). Finally, f is the assembled finite-element vector corresponding to the linear
form 𝐿(𝑢) =

∫
Ω
𝑓 𝑢 dx.

The quadratic term in the objective function is now rewritten following section 2.2 as follows:

min
u∈R𝑁

𝑀∑
𝑔=1

𝜔𝑔𝑦𝑔,0 − fTu

s.t. u ≥ g
𝑦𝑔,1 = 1

B𝑔u −
[
𝑦𝑔,2
𝑦𝑔,3

]
= 0 ∀𝑔 = 1, . . . , 𝑀

(𝑦𝑔,0, 𝑦𝑔,1, 𝑦𝑔,2, 𝑦𝑔,3) ∈ Q𝑟
4

(23)

Collecting the 4𝑀 auxiliary variables y𝑔 = (𝑦𝑔,0, 𝑦𝑔,1, 𝑦𝑔,2, 𝑦𝑔,3) into a global vector ŷ =

(y1, . . . y𝑀) ∈ R4𝑀 , the previous problem can be rewritten as:

min
u∈R𝑁 ,̂y∈R4𝑀

cTŷ − fTu

s.t. u ≥ g
A𝑢u + A𝑦 ŷ = b
ŷ ∈ Q𝑟

4 × · · · × Q𝑟
4

(24)

where c = (𝜔1, 0, 0, 0, 𝜔2, 0 . . . , 𝜔𝑀 , 0, 0, 0), A𝑢 =



0
B1
0

B2
...

0
B𝑀


, A𝑦 =


−I

. . .

−I

 with I =

0 1 0 0
0 0 1 0
0 0 0 1


and b = (−1, 0, 0,−1, 0 . . . ,−1, 0, 0). This last formulation enables to see that problem (22) indeed
fits into the general conic programming framework (2) but in a specific fashion since it possesses a
block-wise structure induced by the quadrature rule. Indeed, each 4-dimensional block of auxiliary
variables 𝑦𝑔 is decoupled from each other and is linked to the main unknown variable u through
the evaluation of the discrete gradient at each point 𝑔. The conic reformulation performed in (22) is
in fact the same for all quadrature points.

This observation motivates us to rewrite the initial continuous problem as:

inf
𝑢∈𝑉

∫
Ω
𝐹 (∇𝑢) dx −

∫
Ω
𝑓 𝑢 dx

s.t. 𝑢 ∈ K
(25)

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 Jeremy Bleyer

with 𝐹 (x) = 1
2
∥x∥22 which is conic representable as follows2:

𝐹 (x) = min
y∈R4

𝑦0

s.t. 𝑦1 = 1

x −
[
𝑦2
𝑦3

]
= 0

y ∈ Q𝑟
4

(26)

Introducing now the previously mentioned discretization and the quadrature formula, we aim at
solving:

min
u∈R𝑁

𝑀∑
𝑔=1

𝜔𝑔𝐹 (B𝑔u) − fTu

s.t. u ≥ g

(27)

which will be equivalent to (22) when injecting (26) into (27) since, for all 𝑀 evaluations of 𝐹 , a
4-dimensional auxiliary vector y𝑔 will be introduced as an additional minimization variable.

3.3 General structure of the considered convex variational problems
As a consequence, the fenics_optim package has been particularly designed for a sub-class of

problems of type (1) in which 𝐽 (𝑢) possesses a specific structure i.e. a sum of convex functions,
possibly composed with linear operators, namely:

𝐽 (𝑢) =
𝑚∑
𝑖=1

∫
Ω
𝐹𝑖 ◦ ℓ𝑖 (𝑢) dx (28)

in which 𝐹𝑖 are conic-representable convex functions and ℓ𝑖 are linear operators. In the above, the
𝐹𝑖 may be smooth, non-smooth functions or indicators of a convex set for instance. The linear
operators ℓ𝑖 can be expressed using UFL operators. UFL is also used to define the linear relations in
the 𝐹𝑖 conic representation (see section 3.4). Global linear constraints of the form 𝑎 ≤ 𝐿𝑖 (𝑢) ≤ 𝑏

where 𝐿𝑖 is a linear form (again expressed using UFL) can also be included in the problem definition.

Other constraints may also be modelled provided some reformulations. For instance, although
the generic form (28) may not seem like it, global inequality constraints such as

∫
Ω
𝐹 (𝑢) dx ≤ 𝛼

where 𝐹 is a convex function and 𝛼 ∈ R also fall into the above format. Indeed, introducing an
additional variable 𝑡 , we can write equivalently the following constraints:

𝐹 (𝑢) ≤ 𝑡 in Ω (29)∫
Ω
𝑡 dx ≤ 𝛼 (30)

in which the first constraint is local and can be expressed as the indicator of (𝑢, 𝑡) ∈ epi 𝐹 which is
conic-representable. The second constraint is a global linear inequality constraint.

Finally, as it will be illustrated in sections 4 and 5, in addition to volume integrals in (28), we can
also add similar convex terms composed with linear operators integrated over the set of interior
finite-element facets Γ and over the domain boundary 𝜕Ω as in UFL.

2Note that it would have been possible to work directly with function 𝐹 (𝑢) := 1
2 ∥∇𝑢 ∥

2
2 which is also conic-representable

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:9

3.4 FEniCS formulation
In the following, we present the main part of a fenics_optim script. More details on how an

optimization problem is defined are discussed in A. In particular, it is possible to write manually
the discretized version of the obstacle problem based on (24) (see A.3). However, fenics_optim
also provides a more user-friendly way of modelling such problems which is based on (25) and (26)
and will now be presented.

First, a simple unit square mesh and P1 Lagrange function space V is defined using basic FEniCS
commands. Homogeneous Dirichlet boundary conditions are also defined in variable bc. Finally,
obstacle is the interpolant on 𝑉 of

𝑔(𝑥,𝑦) = 𝑔0 + 𝑎 sin(2𝜋𝑘1𝑥) cos(2𝜋𝑘1𝑦) sin(2𝜋𝑘2𝑥) cos(2𝜋𝑘2𝑦)

In the following simulations, we took 𝑔0 = −0.1, 𝑎 = 0.01, 𝑘1 = 2 and 𝑘2 = 8. The loading is also
assumed to be uniform and given by 𝑓 = −5. The main part of the script starts by instantiating a
MosekProblem object (see Appendix A.1) and adding a first optimization variable u living in the
function space V, subject to Dirichlet boundary conditions bc. The add_var method also enables to
define a lower bound (resp. an upper bound) on an optimization variable by specifying a value for
the lx (resp. ux) keyword. For the present case, we use lx=obstacle for enforcing u ≥ g.

1 prob = MosekProblem("Obstacle problem")
2 u = prob.add_var(V, bc=bc, lx=obstacle)
3

4 prob.add_obj_func(-dot(load,u)*dx)

where we also added the linear part of the objective function through the add_obj_func method.
The next step consists in defining the quadratic part of the objective function. For this purpose,

we define a class inheriting from the base ConvexFunction class which must be instantiated by
specifying on which previously defined optimization variable3 this function will act (here the only
possible variable is u). Moreover, we also need to specify the degree of the quadrature necessary
for integrating the function (one-point quadrature is used by default but written explicitly in the
code snippet below). Note that for a quadratic term, FEniCS could automatically compute an exact
minimal quadrature degree, although for more complex non-linear expressions, integration is not
exact and FEniCS may select a large quadrature degree. For this reason, we require the user to
specify himself the wanted quadrature degree.
We must also define the conic_repr method which will encode the conic representation (26).

We add a local optimization variable Y of dimension 4 which will belong to the cone RQuad(4)
representing Q𝑟

4 . Equality constraints are then added using the add_eq_constraint by specifying,
as in (18), a block matrix

[
A B

]
and a right-hand side b (= 0 by default). Note that both equality

constraints could also have been written in a single one of row dimension 3. Finally, the local linear
objective (c𝑥 , c𝑦) vector is defined using the set_linear_term method.

1 class QuadraticTerm(ConvexFunction):
2 def conic_repr(self, X):
3 Y = self.add_var(4, cone=RQuad(4))
4 self.add_eq_constraint([None, Y[1]], b=1)
5 self.add_eq_constraint([X, -as_vector([Y[2], Y[3]])])
6 self.set_linear_term([None, Y[0]])
7

3see the notion of block-variables discussed in A.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 Jeremy Bleyer

Mesh size Interior point (Mosek) TRON algorithm (TAO)
Objective Opt. time iter. Objective Opt. time iter.

ℎ = 1/25 -0.265081 0.13 s 14 -0.265082 0.09 s 5
ℎ = 1/50 -0.264932 0.56 s 15 -0.264932 0.22 s 6
ℎ = 1/100 -0.264883 2.27 s 16 -0.264884 1.04 s 10
ℎ = 1/200 -0.264867 10.04 s 19 -0.264871 6.03 s 14
ℎ = 1/400 -0.264864 48.95 s 20 -0.264868 47.79 s 22

Table 1. Comparison between the fenics_optim implementation of the obstacle problem relying on the
interior point Mosek solver and TAO’s bound-constrained TRON solver.

8 F = QuadraticTerm(grad(u), degree=0)
9 prob.add_convex_term(F)

Note that constraints and linear objectives are all defined in a block-wise manner, these blocks
consisting of, first, the main variable which has been specified at instantiation (u in this case), then
the additional local variables (Y here). Besides, these blocks are represented in terms of their action
on the block variables using UFL expressions.
The set_term method enables to evaluate 𝐹 for the gradient of 𝑢 using the UFL grad operator.

This function is then added to the global optimization problem. Finally, optimization (minimization
by default) is performed by calling the optimize method of the MosekProblem object:

1 prob.optimize()

For validation and performance comparison, the obstacle problem has been solved for vari-
ous mesh sizes using the fenics_optim toolbox as well as using PETSc’s TAO quadratic bound-
constrained solver [5, 46] which is particularly well suited for this kind of problems. We used the
Trust Region Newton Method (TRON) and an ILU-preconditioned conjugate gradient solver for the
inner iterations. Results in terms of optimal objective function value, total optimization time and
number of iterations have been reported for both methods in table 1. Note that default convergence
tolerances have been used in both cases and that total optimization time includes the presolve
step of Mosek which can efficiently eliminate redundant linear constraints for instance. It can be
observed that both approach yield close results in terms of optimal objective values and that TAO’s
solver is more efficient than Mosek in terms of optimization time as expected, mainly because
of the small number of iterations needed to reach convergence but also because no additional
variables are introduced when using TAO. However, Mosek surprisingly becomes quite competitive
for large-scale problems because of its number of iterations scaling quite weakly with the problem
size, contrary to the TRON algorithm. Membrane displacement along the line 𝑦 = 0.5 and contact
area for ℎ = 1/400 have been represented in Figure 1.

4 A MORE ADVANCED EXAMPLE
Let us now consider the following problem:

inf
𝑢∈𝑉

∫
Ω
∥∇𝑢∥2 dx

s.t.
∫
Ω
𝑓 𝑢 dx = 1

(31)

This problem is known to be related to antiplane limit analysis problems in mechanics as well
as to the Cheeger problem and the eigenvalue fo the 1-Laplacian when 𝑓 = 1 [19, 20, 23]. In this

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:11

0.0 0.2 0.4 0.6 0.8 1.0
x coordinate

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

D
is

p
la

ce
m

en
t

obstacle

membrane

(a) Membrane displacement in contact with the obstacle along
𝑦 = 0.5 (b) Contact area in blue

Fig. 1. Results of the obstacle problem for ℎ = 1/400

particular case, the solution of (31) can indeed be shown to be proportional to the characteristic
function of a subset 𝐶Ω ⊆ Ω known as the Cheeger set of Ω which is the solution of:

𝐶Ω := arg min
𝜔⊆Ω

|𝜕𝜔 |
|𝜔 | (32)

that is the subset minimizing the ratio of perimeter over area, the associated optimal value of this
ratio 𝑐Ω being known as the Cheeger constant.

This problem is not strictly convex and is particularly difficult to solve using standard algorithms
due to the highly non-smooth objective term. Again, introducing a P𝑘 Lagrange discretization for
𝑢, we aim at solving the following discrete problem:

min
u∈R𝑁

𝑀∑
𝑔=1

𝜔𝑔𝐹 (B𝑔u)

s.t. fTu = 1
(33)

where 𝐹 (x) = ∥x∥2 with its conic representation being given by (20). Similarly to the obstacle
problem, choosing a P1 discretization requires only a one-Gauss point quadrature rule for the
objective function evaluation. For P𝑘 with 𝑘 ≥ 2, the quadrature is always inexact and Gaussian
quadrature is not necessarily optimal. For the particular case 𝑘 = 2, one can choose a vertex
quadrature scheme on the simplex triangle to ensure that the discrete integral is approximated by
excess: ∫

𝑇

∥r(𝑥,𝑦)∥ dx ≲
|𝑇 |
3

3∑
𝑖=1
∥r(𝑥𝑖 , 𝑦𝑖)∥ (34)

where (𝑥𝑖 , 𝑦𝑖) denote the simplex vertices. The choice of the quadrature scheme can also be made
when defining the corresponding ConvexFunction:

1 class L2Norm(ConvexFunction):
2 """ Defines the L2-norm function ||x||_2 """
3 def conic_repr(self, X):
4 d = self.dim_x

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 Jeremy Bleyer

5 Y = self.add_var(d+1, cone=Quad(d+1))
6 Ybar = as_vector([Y[i] for i in range(1, d+1)])
7 self.add_eq_constraint([X, -Ybar])
8 self.set_linear_term([None, Y[0]])
9

10 prob = MosekProblem("Cheeger problem")
11 u = prob.add_var(V, bc=bc)
12

13 if degree == 1:
14 F = L2Norm(grad(u))
15 elif degree == 2:
16 F = L2Norm(grad(u), quadrature_scheme="vertex")
17 else:
18 F = L2Norm(grad(u), degree=degree)
19 prob.add_convex_term(F)

In the previous code, degree denotes the polynomial degree 𝑘 of function space V. If 𝑘 = 1,
the default one-point quadrature rule is used, if 𝑘 = 2 the above-mentioned vertex scheme is
used, otherwise a default Gaussian quadrature rule for polynomials of degree 𝑘 is used. Quad(d+1)
corresponds to the quadratic Lorentz cone Q𝑑+1 of dimension 𝑑 + 1 where 𝑑 = self.dim_x is the
dimension of the X variable.

In the Cheeger problem, a normalization constraint must also be added. This can again be done
by adding a convex term including only the corresponding constraint or it can also be added
directly to the MosekProblem instance by defining the function space for the Lagrange multiplier
corresponding to the constraint (here it is scalar so we use a "Real" function space) and passing
the corresponding constraint in its weak form as follows:

1 f = Constant(1.)
2 R = FunctionSpace(mesh, "Real", 0)
3 def constraint(l):
4 return [l*f*u*dx]
5 prob.add_eq_constraint(R, A=constraint, b=1)

4.1 Discontinuous Galerkin discretization
Problem (31) can be discretized using standard Lagrange finite elements but also using Discon-

tinous Galerkin discretization, in this case the gradient 𝐿2-norm objective term is completed by
absolute values of the jumps of 𝑢:

inf
𝑢∈𝑉

∫
Ω
∥∇𝑢∥2 dx +

∫
Γ
| [[𝑢]] | dS +

∫
Γ𝐷

|𝑢 | dS

s.t.
∫
Ω
𝑓 𝑢 dx = 1

(35)

where Γ denotes the set of internal edges and [[𝑢]] = 𝑢+−𝑢− is the jump across Γ. Γ𝐷 is the Dirichlet
boundary part but the Dirichlet boundary condition 𝑢 = 𝑔 (with 𝑔 = 0 here) is not included in the
DG function space definition. As a result, an additional jump term contribution |𝑢 − 𝑔| = |𝑢 | must
also be taken into account on Γ𝐷 .

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:13

The discretized version using discontinuous P𝑘
𝑑
Lagrange finite elements reads as:

min
u∈R𝑁

𝑀∑
𝑔=1

𝜔𝑔𝐹 (B𝑔u) +
𝑀𝑒∑
𝑔𝑒=1

𝜔𝑔𝑒𝐺 (J𝑔𝑒 u) +
𝑀𝑑∑
𝑔𝑑=1

𝜔𝑔𝑑𝐺 (T𝑔𝑑 u)

s.t. fTu = 1
(36)

where 𝐺 (𝑥) = |𝑥 |, 𝑔𝑒 (resp. 𝑔𝑑) denotes a current quadrature point on the internal (resp. Dirichlet)
facets,𝑀𝑒 (resp.𝑀𝑑) denoting the total number of such points and 𝜔𝑔𝑒 (resp. 𝜔𝑔𝑑) the associated
quadrature weights. Finally, J𝑔𝑒 u denotes the evaluation of [[𝑢]] at the quadrature point 𝑔𝑒 and
T𝑔𝑑 u the evaluation of 𝑢 at 𝑔𝑑 .

Here, we define another ConvexFunction corresponding to the conic representable convex
function 𝐺 (𝑥):

1 class AbsValue(ConvexFunction):
2 def conic_repr(self, X):
3 Y = self.add_var()
4 self.add_ineq_constraint(A=[X, -Y], bu=0)
5 self.add_ineq_constraint(A=[-X, -Y], bu=0)
6 self.set_linear_term([None, Y])

In order to specify that this function will be used for integration over facets, we must use
the on_facet=True keyword at instantiation. Integration will (by default) be performed both on
internal facets (in FEniCS the corresponding integration measure symbol is dS) and on external
facets (FEniCS symbol being ds). If the Dirichlet boundary does not cover the entire boundary, then
the ds measure can be restricted to the corresponding part. Again, the desired quadrature rule has
to be passed as an argument when instantiating the function. In order to distinguish between the
integration over the internal and external facets, the first argument is passed as a list containing
the UFL expression for [[𝑢]] and 𝑢 associated with the different integration measures (dS first, then
ds).:

1 G = AbsValue([jump(u), u], on_facet=True)
2 prob.add_convex_term(G)

By default, facet integrals are evaluated using the vertex scheme.

4.2 Numerical example
We consider the problem of finding the Cheeger set of the unit square Ω = [0; 1]2. The exact

solution of this problem is known to be the unit square rounded by circles of radius 𝜌 =
1

2 +
√
𝜋

in

its four corners, the associated Cheeger constant being 𝑐Ω = 1/𝜌 [47, 51]. Results of the optimal
field 𝑢 for various discretization schemes have been represented on Figure 2. For all the retained
discretization choices, the obtained Cheeger constant estimates are necessarily upper bounds to the
exact one, in particular because of the choice of vertex quadrature schemes ensuring upper bound
estimations such as (34). It can be seen on Figure 2 that all schemes yield a correct approximation
of the Cheeger set, except for the DG-0 scheme which is too stiff and produces straight edges in
the corners, following the structured mesh edges.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 Jeremy Bleyer

(a) 25×25 mesh

(b) CG-1 (c) CG-2

(d) DG-0 (e) DG-1

Fig. 2. Results of the Cheeger problem for various discretizations on the unit square: continuous Galerkin
(CG) and discontinuous Galerkin (DG) of degrees 𝑘 = 0, 1 or 2.
ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:15

4.3 A 𝐻 (div)-conforming discretization for the dual problem
It can be easily shown through Fenchel-Rockafellar duality that problem (31) is equivalent to the

following dual problem (see [20] for instance):

sup
𝜆∈R,𝝈 ∈𝑊

𝜆

s.t. 𝜆𝑓 = div𝝈 in Ω
∥𝝈 ∥2 ≤ 1

(37)

A natural discretization strategy for such a problem is to use 𝐻 (div)-conforming elements such
as the Raviart-Thomas element. Here, we will use the lowest Raviart-Thomas element, noted 𝑅𝑇1 by
the FEniCS definition [38]. For the fenics_optim implementation, two minimization variables are
defined: 𝜆 belonging to a scalar "Real" function space and 𝝈 ∈ 𝑅𝑇1. Since for 𝝈 ∈ 𝑅𝑇1, div𝝈 ∈ P0,
we write the constraint equation using P0 Lagrange multipliers:

1 N = 50
2 mesh = UnitSquareMesh(N, N, "crossed")
3

4 VRT = FunctionSpace(mesh, "RT", 1)
5 R = FunctionSpace(mesh, "Real", 0)
6 VDG0 = FunctionSpace(mesh, "DG", 0)
7

8 prob = MosekProblem("Cheeger dual")
9 lamb, sig = prob.add_var([R, VRT])
10

11 f = Constant(1.)
12 def constraint(u):
13 return [lamb*f*u*dx, -u*div(sig)*dx]
14 prob.add_eq_constraint(VDG0, A=constraint, name="u")

Finally, since 𝝈 ∈ P1 on a triangle, if the constraint ∥𝝈 ∥2 is satisfied at the three vertices, it is
satisfied everywhere by convexity.We here define a ConvexFunction representing the characteristic
function of a 𝐿2-ball constraint and select the "vertex" quadrature scheme so that the constraint
will be indeed satisfied at the three vertices. Finally, the objective function is defined through the
add_obj_func method of the problem instance:

1 class L2Ball(ConvexFunction):
2 """ Defines the L2-ball constraint ||x||_2 <= 1 """
3 def conic_repr(self, X):
4 d = self.dim_x
5 Y = self.add_var(d+1, cone=Quad(d+1))
6 Ybar = as_vector([Y[i] for i in range(1, d+1)])
7 self.add_eq_constraint([X, -Ybar])
8 self.add_eq_constraint([None, Y[0]], b=1)
9

10 F = L2Ball(sig, quadrature_scheme="vertex")
11 prob.add_convex_term(F)
12

13 prob.add_obj_func([1, None])

With the above-mentioned discretization and quadrature choice, it can easily be shown that the
discrete version of (37) will produce a lower bound of the exact Cheeger constant. For instance, for

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 Jeremy Bleyer

100 101 102 103

1/h

10−3

10−2

10−1

100

R
el

at
iv

e
er

ro
r

DG1

CG1

CG2

RT1

Fig. 3. Convergence results on the Cheeger problem

Fig. 4. Optimal 𝑢 field from the RT discretization

a 25 × 25 mesh, we obtained:

𝑐
𝑅𝑇1
Ω ≈ 3.704 ≤ 𝑐Ω ≈ 3.772 ≤ 𝑐𝐷𝐺1

Ω ≈ 3.800 (38)

Convergence results of the numerical Cheeger constant estimate 𝑐Ω,ℎ obtained with the previous
CG/DG discretizations as well as with the present RT discretization have been reported in Figure
3. The relative error is computed as 𝜖 (𝑐Ω,ℎ/𝑐Ω − 1) where 𝜖 = −1 for the RT discretization and
𝜖 = 1 otherwise. We observe in particular that the DG1 scheme is the most accurate and that all
schemes have the same convergence rate in 𝑂 (ℎ). Finally, primal-dual solvers such as Mosek also
provide access to the optimal values of constraint Lagrange multipliers. The Lagrange multiplier
associated with the constraint 𝜆𝑓 = div𝝈 can be interpreted as the field 𝑢 from the primal problem.
This Lagrange multiplier, which belongs to a DG0 space, has been represented in Figure 4.

4.4 A library of convex representable functions
In the fenics_optim library, instead of defining each time the conic representation of usual

functions, a library of common convex functions has been already implemented, including:
• linear functions 𝐹 (x) = cTx

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:17

(a) 𝐿1-norm (b) 𝐿2-norm (c) 𝐿∞-norm

Fig. 5. Generalized Cheeger sets of a star-shaped domain using different norms

• quadratic functions 𝐹 (x) = 1
2 (x − x0)TQTQ(x − x0)

• absolute value 𝐹 (𝑥) = |𝑥 |
• 𝐿1, 𝐿2 and 𝐿∞ norms
• 𝐿1, 𝐿2 and 𝐿∞ balls characteristic functions

Using such predefined functions, many problems can be formulated in an extremely simple
manner, without even worrying about the conic reformulation. For instance, we revisited the
Cheeger problem on a star-shaped domain but with anisotropic norms [34] such as 𝐿1 and 𝐿∞

instead of 𝐿2 in (31)4, the resulting sets are represented on Figure 5.

5 A GALLERY OF ILLUSTRATIVE EXAMPLES
We now give a series of examples which illustrate the versatility of the fenics_optim package

for formulating and solving problems taken from the fields of solid and fluid mechanics, image
processing and applied mathematics. The last two examples involve, in particular, time-dependent
problems. Let us again point out that discretization choices or solver strategies using interior-point
methods are not necessarily the most optimal ones for each of these problems and that many other
approaches which have been proposed in the literature may be much more appropriate. We just
aim at illustrating the potential of the package to formulate and solve various problems.

5.1 Limit analysis of thin plates in bending
The first problem consists in finding the ultimate load factor that a thin plate in bending can

sustain given a predefined strength criterion and boundary condition. This limit analysis problem
has been studied in [14, 27]. In the present case, we consider a unit square plate made of a von
Mises material of uniform bending strength𝑚 and subjected to a uniformly distributed loading 𝑓 .
The thin plate limit analysis problem consists in solving the following problem:

inf
𝑢∈HB0 (Ω)

∫
Ω
𝜋 (∇2𝑢) dx

s.t.
∫
Ω
𝑓 𝑢 dx = 1

(39)

where HB0 is the space of bounded Hessian functions [28] with zero trace on 𝜕Ω and 𝜋 (𝑀) =
2𝑚√

3

√
𝑀2

11 +𝑀2
22 +𝑀2

12 +𝑀11𝑀22 for any 𝑀 ∈ S+2 . One can notice that problem (39) shares some

4Note that in the general case of an 𝐿𝑝 -norm for the gradient term, the corresponding jump term in (35) is
∫
Γ
| [[𝑢]] | · ∥𝒏 ∥𝑝 dS

where 𝒏 is the facet normal and similarly for the Dirichlet boundary term.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 Jeremy Bleyer

similar structure with the Cheeger problem (31) except that we are now dealing with the Hessian
operator and a different norm through function 𝜋 .

Contrary to elastic bending plate problems involving functions with 𝐶1-continuity, we deal here
with functions in HB which are continuous but may have discontinuities in their normal gradient
𝜕𝑛𝑢, in particular we can consider again a Lagrange interpolation for 𝑢 with jumps of 𝜕𝑛𝑢 across all
internal facets 𝐹 ∈ Γℎ of unit normal 𝒏. The 𝜋-function being some generalized total variation for
∇2𝑢, we have explicitly [15]:

inf
𝑢∈HB0 (Ω)

∑
𝑇 ∈Tℎ

∫
𝑇

𝜋 (∇2𝑢) dx +
∑
𝐹 ∈Γℎ

∫
𝐹

𝜋 ([[𝜕𝑛𝑢]]𝒏 ⊗ 𝒏) dS

s.t.
∫
Ω
𝑓 𝑢 dx = 1

(40)

where it happens that in fact 𝜋 ([[𝜕𝑛𝑢]]𝒏 ⊗ 𝒏) = | [[𝜕𝑛𝑢]] |𝜋 (𝒏 ⊗ 𝒏) = | [[𝜕𝑛𝑢]] | 2𝑚√3
. Following B, we

have the following formulation of the bending plate problem for a P2 interpolation:

1 prob = MosekProblem("Bending plate limit analysis")
2

3 V = FunctionSpace(mesh, "CG", 2)
4 bc = DirichletBC(V, Constant(0.), boundary)
5 u = prob.add_var(V, bc = bc)
6

7 R = FunctionSpace(mesh, "R", 0)
8 def Pext(lamb):
9 return [lamb*dot(load,u)*dx]
10 prob.add_eq_constraint(R, A=Pext, b=1)
11

12 J = as_matrix([[2., 1., 0.],
13 [0, sqrt(3.), 0.],
14 [0, 0, 1]])
15 def Chi(v):
16 chi = sym(grad(grad(v)))
17 return as_vector([chi[0,0], chi[1,1], 2*chi[0, 1]])
18 t = m/sqrt(3)*dot(J, Chi(u))
19 pi_c = L2Norm(t, quadrature_scheme="vertex", degree=1)
20 prob.add_convex_term(pi_c)
21

22 pi_h = AbsValue([jump(grad(u), n)], k=2/sqrt(3)*m, on_facet=True)
23 prob.add_convex_term(pi_h)
24

25 prob.optimize()

The reference solution for this problem is known to be 25.02𝑚/𝑓 [18], whereas we find 25.05𝑚/𝑓
for a 50 × 50 structured mesh. The corresponding solutions for 𝑢 and 𝜋 (∇2𝑢) are represented in
Figure 6.

5.2 Viscoplastic yield stress fluids
Viscoplastic (or yield stress) fluids [6, 26] are a particular class of non-Newtonian fluids which,

in their most simple form, namely the Bingham model, behave like a purely rigid solid when the
shear stress is below a critical yield stress 𝜏0 and flow like a Newtonian fluid when the shear stress
is above 𝜏0. They appear in many applications ranging from civil engineering, petroleum, cosmetics

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:19

(a) Optimal collapse mechanism 𝑢 (b) Curvature dissipation density 𝜋 (∇2𝑢)

Fig. 6. Results for the simply supported von Mises square plate

or food industries. The solution of a steady state viscoplastic fluid Stokes-type flow under Dirichlet
boundary conditions and a given external force field 𝒇 can be obtained as the unique solution to
the following convex variational principle [31]:

inf
𝒖∈𝑯 1 (Ω;R𝑑)

∫
Ω
(𝜇∥∇𝒖∥22 +

√
2𝜏0∥∇𝒖∥2) dx −

∫
Ω
𝒇 · 𝒖 dx

s.t. div 𝒖 = 0 in Ω
𝒖 = 𝒈 on 𝜕Ω

(41)

where 𝜇 is the fluid viscosity. Typical solutions of problem (41) involve rigid zones in which ∇𝒖 = 0
and flowing regions where ∥∇𝒖∥ ≠ 0, the locations of which are a priori unknown. Note that when
𝜏0 = 0, we recover the classical viscous energy of Stokes flows and optimality conditions of problem
(41) reduce to a linear problem. The FE discretization is quite classical, we adopt Taylor-Hood P2/P1

discretization for the velocity 𝒖 and the pressure 𝑝 which is the Lagrange multiplier of constraint
div 𝒖 = 0.
The considered problem is the classical lid-driven unit-square cavity, with 𝒇 = 0, 𝒖 = 0 every-

where on 𝜕Ω, except on the top boundary 𝑦 = 1 where 𝒖 = (𝑈 , 0) with 𝑈 the imposed constant
velocity. Different solutions to problem (41) are then obtained depending on the value of the non-

dimensional Bingham number Bi =
𝜏0𝐿

𝜇𝑈
with the characteristic length 𝐿 = 1 for the present case.

When Bi = 0, the solution is that of a Newtonian fluid and when Bi→∞ it corresponds to that of
a purely plastic material.
Implementation in fenics_optim is straightforward once the symmetric tensor ∇𝒖 has been

represented as a vector of R3 through the strain function [12].

1 prob = MosekProblem("Viscoplastic fluid")
2

3 V = VectorFunctionSpace(mesh, "CG", 2)
4 bc = [DirichletBC(V, Constant((1.,0.)), top),
5 DirichletBC(V, Constant((0.,0.)), sides)]
6 u = prob.add_var(V, bc=bc)
7

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 Jeremy Bleyer

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
y coordinate

0.0

0.2

0.4

0.6

0.8

1.0

V
el

o
ci

ty
u
x

solution from [Bleyer et al., 2015]

present computation

(a) Bi = 2

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
y coordinate

0.0

0.2

0.4

0.6

0.8

1.0

V
el

o
ci

ty
u
x

solution from [Bleyer et al., 2015]

present computation

(b) Bi = 20

Fig. 7. Horizontal velocity profile 𝑢𝑥 (𝑦) on the middle plane 𝑥 = 0.5, comparison with results from [16]

8 Vp = FunctionSpace(mesh, "CG", 1)
9 def mass_conserv(p):
10 return [p*div(u)*dx]
11 prob.add_eq_constraint(Vp, mass_conserv)
12

13 def strain(v):
14 E = sym(grad(v))
15 return as_vector([E[0, 0], E[1, 1], sqrt(2)*E[0, 1]])
16 visc = QuadraticTerm(strain(u), degree=2)
17 plast = L2Norm(strain(u), degree=2)
18

19 prob.add_convex_term(2*mu*visc)
20 prob.add_convex_term(sqrt(2)*tau0*plast)
21

22 prob.optimize()

The obtained optimal velocity field is compared on Figure 7 with that from a previous independent
implementation described in [16]. Finally, if 𝒅 = ∇𝒖 ≠ 0, then the stress inside the fluid is given by

𝝉 = 2𝜇𝒅 +
√

2𝜏0
𝒅

∥𝒅∥2
and ∥𝝉 ∥2 >

√
2𝜏0. In Figure 8, ∥𝝉 ∥2 has been plotted with a colormap ranging

from
√

2𝜏0 to 1.01
√

2𝜏0, thus exhibiting the transition from solid regions (white) to liquid regions
(blue).

5.3 Total Variation inpainting
In this example, we consider an image processing problem called inpainting, consisting in

recovering an image which has been deteriorated. In the present case, we consider a color RGB
image in which a fraction 𝜂 of randomly chosen pixels have been lost (black). The inpainting
problem consists in recovering the three color channels U = (u𝑗) for 𝑗 ∈ {𝑅,𝐺, 𝐵} such that
it matches the original color for pixels which have not been corrupted and minimizing a given
energy for the remaining pixels. An efficient choice of energy for the inpainting problem is the 𝐿2

total variation norm 𝑇𝑉 (𝑢) =
∫
Ω
∥∇𝑢∥2 dx for a given color channel 𝑢. For an image, the discrete

gradient can be computed by finite differences. Here, as we work with a FE library, the image will
be represented using a Crouzeix-Raviart (𝐶𝑅) interpolation [21] on a structured finite element mesh.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:21

(a) Bi = 2 (b) Bi = 20

Fig. 8. Transition between solid (white) and liquid (regions). The bottom solid region is arrested and the
central region rotates like a rigid body.

The image pixel data are transferred to the values located at vertices corresponding to the𝐶𝑅 space
degrees of freedom, i.e. to the middle of the mesh edges. The interpolated field is therefore not fully
conforming but the use of a 𝐶𝑅 space offers better estimations of the gradient term present in the
TV norm. The inpainting problem therefore reads as:

min
U∈(R𝑁)3

∑
𝑗 ∈{𝑅,𝐺,𝐵 }

∫
Ω
∥∇𝑢 𝑗 ∥2 dx

s.t. 𝑈𝑖, 𝑗 = 𝑈
orig
𝑖, 𝑗

∀𝑖 ∉ 𝐼𝑐 , ∀𝑗 ∈ {𝑅,𝐺, 𝐵}
(42)

where 𝐼𝑐 denotes the set of corrupted pixels. Again, problem (42) can be defined very easily as
follows:

1 prob = MosekProblem("TV inpainting")
2 u = prob.add_var(V, ux=ux, lx=lx)
3

4 for i in range(3):
5 tv_norm = L2Norm(grad(u[i]))
6 prob.add_convex_term(tv_norm)
7

8 prob.optimize()

where V is the space (𝐶𝑅)3 and ux (resp. lx) denote functions of V equal to the original image
on cells corresponding to uncorrupted pixels and which take +∞ (resp. −∞) values on 𝐼𝑐 , so that
lx ≤ u ≤ ux amounts to enforcing fidelity with the uncorrupted values. Finally, an 𝐿2-norm term
on the gradient of each channel is added to the problem. Results for a 512×512 image discretized
using a triangular mesh of identical resolution (each pixel is split into two triangles) are represented
in Figure 9 for two corruption levels. It must be noted that optimization took roughly one minute
for both cases.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 Jeremy Bleyer

(a) 𝜂 = 25% corruption level

(b) 𝜂 = 50% corruption level

Fig. 9. Inpainting problem of a corrupted image using TV restoration

5.4 Cartoon+Texture Variational Image Decomposition
The next image processing example we consider is that of decomposing an image 𝑦 = 𝑢 + 𝑣 into

a cartoon-like component 𝑢 and a texture component 𝑣 (here we assume that the image is not
noisy). The cartoon layer 𝑢 captures flat regions separated by sharp edges, whereas the texture
component 𝑣 contains the high frequency oscillations. There are many existing models to perform
such a decomposition, in the following, we implement the model proposed by Y. Meyer [43, 54]:

inf
𝑢,𝑣

∫
Ω
∥∇𝑢∥2 dx + 𝛼 ∥𝑣 ∥𝐺

s.t. 𝑦 = 𝑢 + 𝑣

where ∥𝑣 ∥𝐺 = inf
𝒈∈𝐿∞ (Ω;R2)

{∥
√
𝑔2

1 + 𝑔2
2∥∞ s.t. 𝑣 = div𝒈}

(43)

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:23

Fig. 10. Cartoon-texture decomposition with 𝛼 = 2e-4

This model favors flat regions in 𝑢 due to the use of the TV norm and oscillatory regions in 𝑣 since
∥𝑣 ∥𝐺 increases for characteristic functions. Following [54], we reformulate the model as:

inf
𝑢,𝒈

∫
Ω
∥∇𝑢∥2 dx

s.t. 𝑦 = 𝑢 + div(𝒈)√
𝑔2

1 + 𝑔2
2 ≤ 𝛼

(44)

The original image (512×512) is here represented on a triangular finite-element mesh of similar
mesh size and we adopt a Crouzeix-Raviart interpolation for 𝑢 and a Raviart-Thomas interpolation
for 𝒈. The constraint 𝑦 = 𝑢 + div(𝒈) is enforced weakly on the𝐶𝑅 space. The implementation reads
as:

1 prob = MosekProblem("Cartoon/texture decomposition")
2 Vu = FunctionSpace(mesh, "CR", 1)
3 Vg = FunctionSpace(mesh, "RT", 1)
4 u, g = prob.add_var([Vu, Vg])
5

6 def constraint(l):
7 return [dot(l, u)*dx, dot(l, div(g))*dx]
8 def rhs(l):
9 return dot(l, y)*dx
10 prob.add_eq_constraint(Vu, A=constraint, b=rhs)
11

12 tv_norm = L2Norm(grad(u))
13 prob.add_convex_term(tv_norm)
14

15 g_norm = L2Ball(g, k=alpha)
16 prob.add_convex_term(g_norm)
17

18 prob.optimize()

Results for the Barbara image decomposition are shown in Figure 10.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:24 Jeremy Bleyer

5.5 Time-dependent sandpile growth
In this example, we consider the time-dependent evolution model of a sandpile characterized by

its height ℎ. Since sand can fall off the table domain Ω, Dirichlet boundary conditions are prescribed.
Layers of sand having a slope larger than the critical angle at rest tan𝛼 will fall down the slope
and can be modelled by Prighozin evolutionary PDE [50]:

𝜕𝑡ℎ − div(𝑚∇ℎ) = 𝑓 in Ω × [0;𝑇] (45)
𝑚 ≥ 0, ∥∇ℎ∥ ≤ tan𝛼

𝑚(∥∇ℎ∥ − tan𝛼) = 0

with ℎ(𝒙, 𝑡) = 0 for 𝒙 ∈ 𝜕Ω and ℎ(𝒙, 0) = ℎ0 (𝒙) as the initial sandpile height. In the above, −𝑚∇ℎ
denotes the horizontal material flux of collapsing sand layers and 𝑓 is a potential source term. This
model has been also linked with the Monge-Kantorovitch problem of optimal mass transportation.
Performing a backward implicit Euler discretization of the time derivative at each time step 𝑡𝑛
and knowing the previous height configuration ℎ𝑛−1 (𝒙) at time 𝑡 = 𝑡𝑛−1, finding ℎ𝑛 (𝒙) amounts to
solving the following variational problem [29]:

inf
ℎ

1
2

∫
Ω
(ℎ − 𝑔𝑛)2 dx

s.t. ∥∇ℎ∥ ≤ tan𝛼
(46)

where 𝑔𝑛 = Δ𝑡 𝑓 + ℎ𝑛−1 and Δ𝑡 = 𝑇 /𝑁 is the time interval of each 𝑁 time increments discretization
of interval [0;𝑇]. Adopting a standard Lagrange P1 interpolation for ℎ, problem (46) is solved 𝑁

times with values of 𝑔𝑛 updated from the previous solution. Figure 11 illustrate the results obtained
with 𝛼 = 30◦, no source term 𝑓 = 0 and an initial unstable configuration for ℎ0 since ∥∇ℎ0∥ > tan𝛼 .

5.6 Optimal transport with space-time finite elements
Finally, we consider the Brenier-Benamou dynamic formulation [10] of quadratic cost optimal

transport between two distributions 𝜌0 and 𝜌1 which reads as:

inf
𝜌,𝒗

1
2

∫ 1

0

∫
Ω
𝜌 (𝒙, 𝑡)∥𝒗 (𝒙, 𝑡)∥22 dx dt

s.t. 𝜕𝑡𝜌 + div𝑥 (𝜌𝒗) = 0
𝜌 (𝒙, 𝑡 = 0) = 𝜌0 (𝒙)
𝜌 (𝒙, 𝑡 = 1) = 𝜌1 (𝒙)
𝒗 · 𝒏 = 0 on 𝜕Ω

(47)

The change of variable (𝜌,𝒎) := (𝜌, 𝜌𝒗) proposed in [10] enables to obtain the following convex
optimization problem:

inf
𝜌,𝒎

∫ 1

0

∫
Ω
𝑐 (𝜌,𝒎) dx dt

s.t. 𝜕𝑡𝜌 + div𝑥 𝒎 = 0
𝜌 (𝒙, 𝑡 = 0) = 𝜌0 (𝒙)
𝜌 (𝒙, 𝑡 = 1) = 𝜌1 (𝒙)
𝒎 · 𝒏 = 0 on 𝜕Ω

(48)

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:25

(a) 𝑡 = 0 (b) 𝑡 = 0.05

(c) 𝑡 = 0.1 (d) 𝑡 = 0.25

Fig. 11. Sandpile growth evolution starting from an initial unstable configuration (height amplification by
factor 2)

where the cost function is 𝑐 (𝜌,𝒎) =


∥𝒎∥22

2𝜌
if 𝜌 > 0

0 if (𝜌,𝒎) = (0, 0)
+∞ otherwise

. This function is convex and,

observing that 𝑐 (𝜌,𝒎) ≤ 𝑡 is equivalent to 2𝜌𝑡 ≥ ∥𝒎∥22 , is conic representable as follows:

𝑐 (𝜌,𝒎) = min
y

𝑦0

s.t.

𝜌

𝑚1
𝑚2

 −

𝑦1
𝑦2
𝑦3

 = 0

y ∈ Q𝑟
4

(49)

The numerical approximation is performed by relying on a space-time finite element discretiza-
tion of𝑄 = [0; 1]2 × [0;𝑇] with𝑇 = 1 using a 3D mesh in which we reinterpret the third dimension
as time5. We adopt P2 Lagrange finite elements for the 3d-vector (𝜌,𝒎). Initial and boundary

5Note that FEniCS is not a space-time finite element solver and therefore this only works because the original spatial
dimension is 2 for the considered example.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:26 Jeremy Bleyer

conditions are imposed on the different boundaries of the space-time cube. The mass conservation
equation is replaced by a relaxed inequality between ±𝜖 to allow for small deviations because of
errors induced by the space-time discretization. It is written as:

1 prob = MosekProblem("Optimal transport")
2 u = prob.add_var(V, bc=bc)
3

4 rho, mx, my = u[0], u[1], u[2]
5 eps = 1e-3
6 conserv = InequalityConstraint(rho.dx(2)+mx.dx(0)+my.dx(1), bl=-eps,
7 bu=eps, degree=2)
8 prob.add_convex_term(conserv)

where dx(0) and dx(1) stand for derivation along both spatial directions and dx(2) stands for
derivation along the third time direction. Finally, the cost function term is added following refor-
mulation (49):

1 class CostFunction(ConvexFunction):
2 def conic_repr(self, X):
3 Y = self.add_var(dim=4, cone=RQuad(4))
4 Ybar = as_vector([Y[i] for i in range(1, 4)])
5 self.add_eq_constraint([X, -Ybar])
6 self.set_linear_term([None, Y[0]])
7

8 c = CostFunction(u, degree=2)
9 prob.add_convex_term(c)

Numerical results for 𝜌 (𝒙, 𝑡) at different time slices 𝑡 are represented in Figure 12 for 𝜌0 being a
Gaussian distribution of standard deviation 0.2 and 𝜌1 being four identical Gaussian distributions
of standard deviation 0.1 located on four opposite points of [0; 1]2. It can be observed how the
optimal transport splits the initial distribution 𝜌0 into four parts driving towards 𝜌1.

6 CONCLUSIONS AND PERSPECTIVES
With the Python package fenics_optim [13] based on the FEniCS project, we propose a way to

easily formulate convex variational problems arising in many applications of applied mathematics,
image processing or mechanics. Convex optimization problems are formulated to fit into the conic
programming framework in order to use efficient interior-point solvers especially tailored for such
classes of problem. In the current form of the project, we use Mosek as the interior-point solver
but other solvers could well be interfaced with the obtained discrete problems. The key point for
fitting into the conic programming framework relies on a conic reformulation of convex functions.
We have shown that many elementary convex functions such as 𝐿𝑝 norms arising in applications
can be indeed reformulated in such a way. In the gallery of examples we tackled, we showed that
various problems can be formulated with the fenics_optim library in a very condensed manner.
Note that a commented example involving a SDP problem can be found in the package demos
demos/notebooks/limit_analysis_3D_SDP.ipynb. Besides, despite the fact that interior-point
solvers are not necessarily the method of choice for all the considered examples, in particular for
image processing applications, they are still very efficient and robust. They are therefore a good
choice for a general-purpose solver for the present package. Finally, the versatility of FEniCS in
terms of discretization solutions allowed to formulate very easily different discretization strategies,
in particular including DG finite-elements or 𝐻 (div)-conforming elements which naturally arise in

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:27

(a) 𝑡 = 0: 𝜌0 distribution (b) 𝑡 = 0.2 (c) 𝑡 = 0.4

(d) 𝑡 = 0.6 (e) 𝑡 = 0.8 (f) 𝑡 = 1: 𝜌1 distribution

Fig. 12. Optimal transport between two distributions

dual problems.

Obviously, there exist many aspects for improving the scope of the library or its efficiency. For
instance, since version 9 of Mosek, power and exponential cones [22] are also available, which
would broaden even more the class of conic representable functions including, for instance, 𝐿𝑝-
norms with 𝑝 ∉ {1, 2,∞}, exponential, entropy functions, etc [45]. Including such a feature would
therefore be a huge added value for many applications.
As regards computational efficiency, we mentioned that interior-point solvers, although being
efficient and robust, have important memory requirements for large-scale problems since they rely
on solving Newton-like systems using direct solvers. Image processing applications usually rely
on proximal algorithms for solving the corresponding optimization problems, it would therefore
be interesting to implement such algorithms in the package. For this purpose, we can remark
that the same structure as in (28) has been considered in [24, 25] for developing generic proximal
algorithms. Finally, there are some internal limitations due to the current status of the FEniCS
library (e.g. Lagrange multipliers cannot be defined on one sub-part, the boundary for instance, of
the domain) that could be improved. Fortunately, the FEniCS project is currently experiencing a
major redevelopment to bring new functionalities and improve efficiency6. We will therefore aim
at taking advantage of these new developments in the later versions of the fenics_optim package.

6https://github.com/FEniCS/dolfinx and https://github.com/FEniCS/ffcx/

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://github.com/FEniCS/dolfinx
https://github.com/FEniCS/ffcx/

1:28 Jeremy Bleyer

ACKNOWLEDGMENTS
The author would like to thank Gabriel Peyré for his useful advices when preparing the manu-

script and F. Bleyer for providing some of the illustrative examples input material.

A GENERAL PRINCIPLES OF FENICS_OPTIM INTERNAL STRUCTURE
A.1 The MosekProblem class

The MosekProblem class enables to define the different components of an optimization problem
(variables, constraints, objectives). In particular, it contains the following main methods (more
details on the methods signature can be found in the fenics_optim package docstrings):
• add_var: adds a (list of) optimization variable to the problem from a (list of) function space
• add_eq_constraint: adds a linear equality constraint to the problem
• add_ineq_constraint: adds a linear inequality constraint to the problem
• add_obj_func: adds a linear objective term to the problem objective function
• add_convex_term: adds a convex term to the problem objective function, the convex term
being an instance of ConvexFunction with a proper conic representation
• optimize: performs minimization/maximization of the defined problem by calling the Mosek
solver
• get_var: gets the optimal value of a variable from its name
• get_lagrange_multiplier: gets the optimal value of a Lagrange multiplier from its name

A.2 Block-structure of the problem
The formulation of an optimization problem using fenics_optim relies on a block-structure

definition of variables and constraints. Let us consider, for instance formulation (24). The conic
reformulation leads to the introduction of variables ŷ in addition to u. Problem (24) therefore
contains a block-structure of 𝑝 = 2 variables (x1, x2) = (u, ŷ) ∈ R𝑁 × R4𝑀 . The internal machinery
of fenics_optim works by adding sequentially new optimization variables, possibly associated
with bound or conic constraints, and new linear equality or inequality constraints. Pseudo-code for
defining such a block-wise structure would look like:

1 # Problem initialization
2 prob = MosekProblem("My problem")
3

4 # Adding a first block variable x1
5 x1 = prob.add_var(V1, lx=lx1, ux=ux1, cone=K1)
6 # Adding a first linear constraint
7 prob.add_ineq_constraint(W1, A=[a1], bl=bl1, bu=bu1)

At this stage, the prob instance represents the following problem:
min
x1∈𝑉1

0

s.t. l1𝑥 ≤ x1 ≤ u1
𝑥

b1
𝑙
≤ A1x1 ≤ b1

𝑢

(50)

where 𝑉1 would be R𝑑1 in a purely discrete setting but will, in fact, be the variable FunctionSpace
in the FEniCS FE-discretization setting. Bounds like l1𝑥 , u1

𝑥 , b1
𝑙
, b1

𝑢 are ±∞ by default (None in
Python) and can be ignored in such case. K1 is a Cone object describing the type of cone to
which the variable belongs (again None by default if there is no conic constraint). Finally, the
linear constraint matrix A1 is represented by a bilinear form 𝑎1 (𝑦1, 𝑥1) on𝑊1 ×𝑉1 where 𝑦1 is the
constraint Lagrange multiplier and𝑊1 its corresponding FunctionSpace. The bilinear form 𝑎1 is

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:29

then assembled by FEniCS to produce the discrete matrix A1 stored in sparse format.

Adding a second variable is then similar, except that constraints must now include the block-
structure of both variables such as:

1 # Problem initialization
2 prob = MosekProblem("My problem")
3

4 # Adding a first block variable x1
5 x1 = prob.add_var(V1, lx=lx1, ux=ux1, cone=K1)
6 # Adding a first linear constraint
7 prob.add_ineq_constraint(W1, A=[a1], bl=bl1, bu=bu1)
8

9 # Adding a second block variable x2
10 x2 = prob.add_var(V2, lx=lx2, ux=ux2, cone=K2)
11 # Adding a second linear constraint
12 prob.add_ineq_constraint(W2, A=[a21, a22], bl=bl2, bu=bu2)

where we now have two bilinear forms 𝑎21 (𝑦2, 𝑥1) on𝑊2 ×𝑉1 and 𝑎22 (𝑦2, 𝑥2) on𝑊2 ×𝑉2 leading to:

min
(x1,x2) ∈𝑉1×𝑉2

0

s.t. l1𝑥 ≤ x1 ≤ u1
𝑥

b1
𝑙
≤ A1x1 ≤ b1

𝑢

l2𝑥 ≤ x2 ≤ u2
𝑥

b2
𝑙
≤ A21x1 + A22x2 ≤ b2

𝑢

(51)

Finally, a linear objective term (c1)Tx1 + (c2)Tx2 can be added as

1 prob.add_obj_fun([c1, c2])

The final block-structure for a problem with 𝑝 blocks will therefore look like:

min
x=(x1,...,x𝑝) ∈𝑉1×...×𝑉𝑝

(c1, . . . , c𝑝)T (x1, . . . , x𝑝)

s.t. l𝑥 ≤ x ≤ u𝑥

b𝑙 ≤


A11 0 . . . 0
A21 A22 . . . 0
...

...
. . .

...

A𝑝1 A𝑝2 . . . A𝑝𝑝


x ≤ b𝑢

(52)

Note that when defining sequentially the block-constraints until variable x𝑖 , the blocks A𝑖 𝑗 with
𝑗 > 𝑖 are automatically zero since variables x𝑗 have not been defined yet. This is by no means a
restriction since one could perfectly define the constraint matrices once all variables have been
defined. This lower-triangular structure allows however for an easier definition of the constraints
in many cases. Note also that empty blocks can also be written with 0 or None in Python. Such
symbols must be explicitly used for all A𝑖 𝑗 with 𝑗 ≤ 𝑖 .

A.3 Explicit construction of problem (24)
Going back to problem (24), one could do first:

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:30 Jeremy Bleyer

1 # Problem initialization
2 prob = MosekProblem("Obstacle problem")
3

4 # Adding a first block variable u
5 u = prob.add_var(Vu, lx=g)

creating only variable u and its lower bound constraint u ≥ g.
Auxiliary variable ŷ corresponds to a 4-dimensional vectorial fieldwith degrees of freedom located

at quadrature points. FEniCS provides such a functional space through the concept of Quadrature
elements. We will use one, noted V2, of dimension 4 for ŷ and one, noted W, of dimension 3 for the
Lagrange multipliers corresponding to constraints:

𝑦𝑔,1 = 1

B𝑔u −
[
𝑦𝑔,2
𝑦𝑔,3

]
= 0

Indeed, satisfying the above constraints for all Gauss points 𝑔 is equivalent to writing:

𝑎12 (𝑧,𝑢) + 𝑎22 (𝑧,𝑦) = 𝑏 (𝑧) ∀𝑧 ∈𝑊 (53)

where

𝑎12 (𝑧,𝑢) =
∫
Ω

(
𝑧2
𝑧3

)
· ∇𝑢 dx

𝑎22 (𝑧,𝑦) = −
∫
Ω
𝑧 · ©­«

𝑦1
𝑦2
𝑦3

ª®¬ dx

𝑏 (𝑧) =
∫
Ω
𝑧 · ©­«
−1
0
0

ª®¬ dx

in which the integrals are computed using the same quadrature used for defining 𝑦 ∈ 𝑉2 and 𝑧 ∈𝑊 .
This results in the following code:

1 def quad_element(degree=0, dim=1):
2 return VectorElement("Quadrature", mesh.ufl_cell(),
3 degree=degree, dim=dim, quad_scheme="default")
4 V2 = FunctionSpace(mesh, quad_element(degree=0, dim=4))
5 W = FunctionSpace(mesh, quad_element(degree=0, dim=3))
6 y = prob.add_var(V2, cone = RQuad(4))
7

8 dxq = Measure("dx", metadata={"quadrature_scheme":"default",
9 "quadrature_degree":0})
10 def constraint(z):
11 g = grad(u)
12 a21 = dot(z, as_vector([0, g[0], g[1]]))*dxq
13 a22 = -dot(z, as_vector([y[1], y[2], y[3]]))*dxq
14 return [a21, a22]
15 def rhs(z):
16 return -z[0]*dxq
17 prob.add_eq_constraint(W, A=constraint, b=rhs)

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:31

where 𝑦 ∈ 𝑉2 is created by specifying that it also belongs to a rotated quadratic cone Q4
𝑟 . This

statement is understood point-wise, meaning that at each degree of freedom (Gauss point) location
𝑥𝑔, the local 4-d vector 𝑦 (𝑥𝑔) belongs to Q4

𝑟 . The dxq measure is used to enforce a one-point
quadrature on each cell, the same used for the definition of V2 and W. Finally, the constraint matrix
is passed as a function (constraint) of the Lagrange multiplier 𝑧 ∈ 𝑊 and returns a list of 2
bilinear forms corresponding to both blocks in 𝑢 and 𝑦, while the constraint right-hand side is also
passed as a function of 𝑧 (rhs) and returns a single linear form in 𝑧. A similar syntax would be used
for inequality constraints.

Finally, the objective term is set as a list of two linear forms in 𝑢 and 𝑦 respectively:

1 prob.add_obj_func([-dot(load, u)*dx, y[0]*dxq])

Note again the use of the one-point quadrature measure for the second term.
One role of ConvexFunction classes described in 3.4 is to avoid for the user to explicitly define

function spaces for the additional variables and Lagrange multipliers. The complete script of this
implementation can be found in demos/obstacle/obstacle_problem_explicit_construction.

B CONIC REFORMULATION OF PROBLEM (39)

We consider function 𝜋 : 𝑀 ∈ S2 ←→ 2𝑚√
3

√
𝑀2

11 +𝑀2
22 +𝑀2

12 +𝑀11𝑀22. Expressing 𝑀 ∈ S2 as
X = (𝑀11, 𝑀22, 2𝑀12), we have that:

𝜋 (𝑀) = 𝜋 (X) = 𝑚
√

3

√
XTCX with C =


4 2 0
2 4 0
0 0 1

 (54)

Computing the Cholesky factor J =

2 1 0
0
√

3 0
0 0 1

 of matrix C, we have that 𝜋 (X) = 𝑚
√

3

√
XTJTJX =

𝑚
√

3
∥JX∥2.

REFERENCES
[1] Alnæs, M. S. (2012). UFL: a Finite Element Form Language, chapter 17. Springer.
[2] Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells,
G. N. (2015). The FEniCS Project version 1.5. Archive of Numerical Software, 3(100).
[3] Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N. (2014). Unified Form Language: A domain-specific
language for weak formulations of partial differential equations. ACM Transactions on Mathematical Software, 40(2).
[4] Andersen, E. D., Roos, C., and Terlaky, T. (2003). On implementing a primal-dual interior-point method for conic
quadratic optimization. Mathematical Programming, 95(2):249–277.
[5] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D.,
Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H. (2016). PETSc
Web page. http://www.mcs.anl.gov/petsc.
[6] Balmforth, N. J., Frigaard, I. A., and Ovarlez, G. (2014). Yielding to stress: recent developments in viscoplastic fluid
mechanics. Annual Review of Fluid Mechanics, 46:121–146.
[7] Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust optimization, volume 28. Princeton University Press.
[8] Ben-Tal, A. and Nemirovski, A. (2001). Lectures on modern convex optimization: analysis, algorithms, and engineering
applications, volume 2. Siam.
[9] Ben-Tal, A. and Nemirovski, A. (2002). Robust optimization–methodology and applications. Mathematical Programming,
92(3):453–480.
[10] Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge-Kantorovich mass
transfer problem. Numerische Mathematik, 84(3):375–393.
[11] Bendsoe, M. P. and Sigmund, O. (2004). Topology Optimization: Theory, Methods and Applications. Springer.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:32 Jeremy Bleyer

[12] Bleyer, J. (2018). Advances in the simulation of viscoplastic fluid flows using interior-point methods. Computer Methods
in Applied Mechanics and Engineering, 330:368–394.
[13] Bleyer, J. (2020). fenics-optim – Convex optimization interface in FEniCS. Version 1.0. Zenodo,
https://doi.org/10.5281/zenodo.3604086.
[14] Bleyer, J., Carlier, G., Duval, V., Mirebeau, J.-M., and Peyré, G. (2016). A Γ-convergence result for the upper bound limit
analysis of plates. ESAIM: Mathematical Modelling and Numerical Analysis, 50(1):215–235.
[15] Bleyer, J. and de Buhan, P. (2013). On the performance of non-conforming finite elements for the upper bound limit
analysis of plates. International Journal for Numerical Methods in Engineering, 94(3):308–330.
[16] Bleyer, J., Maillard, M., De Buhan, P., and Coussot, P. (2015). Efficient numerical computations of yield stress fluid
flows using second-order cone programming. Computer Methods in Applied Mechanics and Engineering, 283:599–614.
[17] Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.
[18] Capsoni, A. and Corradi, L. (1999). Limit analysis of plates- a finite element formulation. Structural Engineering and
Mechanics, 8(4):325–341.
[19] Carlier, G., Comte, M., Ionescu, I., and Peyré, G. (2011). A projection approach to the numerical analysis of limit load
problems. Mathematical Models and Methods in Applied Sciences, 21(06):1291–1316.
[20] Carlier, G., Comte, M., and Peyré, G. (2009). Approximation of maximal cheeger sets by projection. ESAIM: Mathematical
Modelling and Numerical Analysis, 43(1):139–150.
[21] Chambolle, A. and Pock, T. (2018). Crouzeix-Raviart approximation of the total variation on simplicial meshes.
hal-01787012.
[22] Chares, R. (2009). Cones and interior-point algorithms for structured convex optimization involving powers andexponentials.
PhD thesis, Ph. D. Thesis, UCL-Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
[23] Cheeger, J. (1969). A lower bound for the smallest eigenvalue of the Laplacian. In Proceedings of the Princeton conference
in honor of Professor S. Bochner.
[24] Combettes, P. L. and Pesquet, J.-C. (2012). Primal-dual splitting algorithm for solving inclusions with mixtures of
composite, lipschitzian, and parallel-sum type monotone operators. Set-Valued and variational analysis, 20(2):307–330.
[25] Condat, L. (2013). A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and
linear composite terms. Journal of Optimization Theory and Applications, 158(2):460–479.
[26] Coussot, P. (2016). Bingham’s heritage. Rheologica Acta, 6(3):163–176.
[27] Demengel, F. (1983). Problemes variationnels en plasticité parfaite des plaques. Numerical Functional Analysis and
Optimization, 6(1):73–119.
[28] Demengel, F. (1984). Fonctions à hessien borné. In Annales de l’institut Fourier, volume 34, pages 155–190.
[29] Dumont, S. and Igbida, N. (2009). On a dual formulation for the growing sandpile problem. European Journal of Applied
Mathematics, 20(2):169–185.
[30] Duvaut, G. and Lions, J. L. (2012). Inequalities in mechanics and physics, volume 219. Springer Science & Business
Media.
[31] Glowinski, R. (1984). Numerical Methods for Nonlinear Variational Problems, volume 158 of Springer Series in Computa-
tional Physics. Springer-Verlag Berlin Heidelberg.
[32] Kanno, Y. (2011). Nonsmooth mechanics and convex optimization. Crc Press.
[33] Kanno, Y. and Guo, X. (2010). A mixed integer programming for robust truss topology optimization with stress
constraints. International Journal for Numerical Methods in Engineering, 83(13):1675–1699.
[34] Kawohl, B. and Novaga, M. (2008). The p-Laplace eigenvalue problem as p→ 1 and Cheeger sets in a Finsler metric.
Journal of Convex Analysis, 15(3):623.
[35] Kinderlehrer, D. and Stampacchia, G. (1980). An introduction to variational inequalities and their applications, volume 31.
Siam.
[36] Kirby, R. C. and Logg, A. (2006). A compiler for variational forms. ACM Transactions on Mathematical Software, 32(3).
[37] Lobo, M. S., Vandenberghe, L., Boyd, S., and Lebret, H. (1998). Applications of second-order cone programming. Linear
algebra and its applications, 284(1-3):193–228.
[38] Logg, A., Mardal, K.-A., and Wells, G. (2012a). Automated solution of differential equations by the finite element method:
The FEniCS book, volume 84. Springer Science & Business Media.
[39] Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N. (2012b). FFC: the FEniCS Form Compiler, chapter 11. Springer.
[40] Logg, A. and Wells, G. N. (2010). Dolfin: Automated finite element computing. ACM Transactions on Mathematical
Software, 37(2).
[41] Logg, A., Wells, G. N., and Hake, J. (2012c). DOLFIN: a C++/Python Finite Element Library, chapter 10. Springer.
[42] Malanowski, K. (1982). Convergence of approximations vs. regularity of solutions for convex, control-constrained
optimal-control problems. Applied Mathematics and Optimization, 8(1):69–95.
[43] Meyer, Y. (2001). Oscillating patterns in image processing and nonlinear evolution equations: the fifteenth Dean Jacqueline
B. Lewis memorial lectures, volume 22. American Mathematical Soc.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Automating the formulation and resolution of convex variational problems 1:33

[44] MOSEK ApS, . (2018). The MOSEK optimization API for Python 8.1.0. http://docs.mosek.com/8.1/pythonapi/index.htm.
[45] MOSEK ApS, . (2019). MOSEK Modeling Cookbook. https://docs.mosek.com/modeling-cookbook/index.html.
[46] Munson, T., Sarich, J., Wild, S., Benson, S., and McInnes, L. C. (2012). Tao 2.0 users manual.
[47] Overton, M. L. (1985). Numerical solution of a model problem from collapse load analysis. In Proc. of the sixth int’l.
symposium on Computing methods in applied sciences and engineering, VI, pages 421–437. North-Holland Publishing Co.
[48] Papadakis, N., Peyré, G., and Oudet, E. (2014). Optimal transport with proximal splitting. SIAM Journal on Imaging
Sciences, 7(1):212–238.
[49] Peyré, G., Cuturi, M., et al. (2019). Computational optimal transport. Foundations and Trends in Machine Learning,
11(5-6):355–607.
[50] Prigozhin, L. (1996). Variational model of sandpile growth. European Journal of Applied Mathematics, 7(3):225–235.
[51] Strang, G. (1979). A minimax problem in plasticity theory. In Functional analysis methods in numerical analysis, pages
319–333. Springer.
[52] Trémolières, R., Lions, J.-L., and Glowinski, R. (2011). Numerical analysis of variational inequalities, volume 8. Elsevier.
[53] Villani, C. (2003). Topics in optimal transportation. Number 58. American Mathematical Soc.
[54] Weiss, P., Blanc-Féraud, L., and Aubert, G. (2009). Efficient schemes for total variation minimization under constraints
in image processing. SIAM journal on Scientific Computing, 31(3):2047–2080.
[55] Yonekura, K. and Kanno, Y. (2010). Global optimization of robust truss topology via mixed integer semidefinite
programming. Optimization and Engineering, 11(3):355–379.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Conic programming framework
	2.1 Conic programming in Mosek
	2.2 Conic reformulations
	2.3 Conic representable sets and functions

	3 Variational problems and their discrete version
	3.1 A first illustrative example
	3.2 Discretization
	3.3 General structure of the considered convex variational problems
	3.4 FEniCS formulation

	4 A more advanced example
	4.1 Discontinuous Galerkin discretization
	4.2 Numerical example
	4.3 A H(div)-conforming discretization for the dual problem
	4.4 A library of convex representable functions

	5 A gallery of illustrative examples
	5.1 Limit analysis of thin plates in bending
	5.2 Viscoplastic yield stress fluids
	5.3 Total Variation inpainting
	5.4 Cartoon+Texture Variational Image Decomposition
	5.5 Time-dependent sandpile growth
	5.6 Optimal transport with space-time finite elements

	6 Conclusions and perspectives
	Acknowledgments
	A General principles of fenics_optim internal structure
	A.1 The MosekProblem class
	A.2 Block-structure of the problem
	A.3 Explicit construction of problem (24)

	B Conic reformulation of problem (39)
	References

