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Abstract. The importance of lake water surface temperature has long been highlighted for eco-
logical and hydrological studies as well as for water quality management. In the absence of
regular field observations, satellite remote sensing has been recognized as a cost-effective way
to monitor water surface temperature on large spatial and temporal scales. The thermal infrared
sensors (TIRS) onboard of Landsat satellites (since 1984) are adequate tools for monitoring
surface temperature of small to medium sized lakes with a biweekly frequency, as well as for
performing retrospective analysis. Nonetheless, the satellite data have to deal with effects due to
the atmosphere so that several approaches to correct for atmospheric contributions have been
proposed. Among these are: (i) the radiative transfer equation (RTE); (ii) a single-channel algo-
rithm that depends on water vapor content and emissivity (SC1); (iii) its improved version
including air temperature (SC2); and (iv) a monowindow (MW) algorithm that requires emis-
sivity, atmospheric transmissivity, and effective mean atmospheric temperature. We aim to evalu-
ate these four approaches in a river dammed reservoir with a size of 12 km2 using data gathered
from the band 10 of the TIRS onboard of Landsat 8. Satellite-derived temperatures were then
compared to in situ data acquired from thermistors at the time of Landsat 8 overpasses. All
approaches showed a good performance, with the SC1 algorithm yielding the lowest root mean
square error (0.73 K), followed by the SC2 method (0.89 K), the RTE (0.94 K), and then the MW
algorithm (1.23 K). Based on the validation results, we then applied the SC1 algorithm to
Landsat 4, 5, and 8 thermal data (1984 to 2018) to extend data series to past years. These data
do not reveal any warming trend of the reservoir surface temperature. The results of this study
also confirm how the 100-m spatial resolution of TIRS is valuable as an additional source of
data to field-based monitoring. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.13.044505]
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1 Introduction

Lake water temperature is a key parameter influencing the functioning of freshwater ecosystems.
Gaining insight about the distribution of water surface temperature is crucial for understanding
the hydrodynamic functioning and biological processes in lakes and reservoirs.1,2

Conventional methods for water surface temperature measurements, which make use of
thermistors on buoys and radiometry, might benefit from additional data from remote sensing,
providing a larger spatial coverage of water characteristics over time. Coarse-spatial high-
frequency satellite sensors [e.g., the advanced very high-resolution radiometer and the moderate
resolution imaging spectroradiometer (MODIS)] have been commonly used to map medium to
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large lakes worldwide,3,4,5 as well as to develop time-series to assess the lake sensitivity to global
change.6,7 As the spatial resolution of these sensors might be too coarse for mapping water sur-
face temperature in smaller lakes or reservoirs, sharpening techniques or higher spatial resolution
sensors have been alternatively used. For example, Teggi8 developed an algorithm for improving
the spatial resolution of ASTER from 90 to 30 m to map water surface temperature in coastal
waters and of watercourses, whereas other studies made use of Landsat imagery.9,10,11

In particular, although with at around biweekly revisiting time, Landsat 4 and 5 TM (thematic
mapper, 1984 to 2013, spatial resolution of the thermal band 120 m), Landsat 7 ETM+ (enhanced
thematic mapper, since 1999, spatial resolution of the thermal band 60 m), and the most recent
Landsat 8 TIRS (thermal infrared sensor, since 2013, spatial resolution of the thermal band
100 m) have the appropriate spatial resolution for mapping medium to small size waterbodies.
Since the Landsat Data Continuity Mission program holds an impressive continuous record of
45 years of imagery data at an approximately biweekly revisiting time, Landsat is a prime plat-
form for retrospective studies on thermal properties of inland waters.

Owing to the trade-off between spatial and temporal resolutions, several techniques (data
fusion or disaggregation) have been developed to derive surface temperature at high spatial and
temporal resolutions from existing remote sensing data.12 These approaches generate data with
fine spatial resolution and temporal frequency by combining multisensor spatial and temporal
characteristics. Most of them were used for land surface temperature retrieval,13 whereas their
application to inland waters is very scarce. Examples of these techniques include the fusion of
Landsat 8 panchromatic and thermal infrared images to enhance the spatial resolution of the
latter14 and disaggregating surface temperature from MODIS images to the Landsat spatial res-
olution using Landsat visible-near-infrared data.15 Yet, the models or algorithms implicated in
these techniques require additional validation and improvement.16

In order to obtain accurate and comparable measurements of water surface temperature from
spaceborne observations, atmospheric corrections accounting for atmospheric attenuation and
emission should be undertaken for each image. Several approaches have been proposed to cor-
rect for atmospheric contributions. One way to correct these contributions is to apply directly the
radiative transfer equation (RTE), which requires atmospheric parameters including transmis-
sivity and downwelling and upwelling radiances.17,18 The method has been successfully applied
to characterize the impact of river plumes in marine waters during a significant flood event.19

Another way is to use its approximation, the generalized single-channel algorithm (SC1)
developed by Jiménez-Muñoz and Sobrino20 and further improved (SC2) in Cristóbal et al.21

or the monowindow (MW) algorithm22 by Qin et al.23 and Isaya Ndossi and Avdan.24 The
SC1 algorithm reduces the need for local data to atmospheric water vapor content and emissivity.
However, an error in water vapor content or values outside its validity range (>3 g cm2) might
increase the errors in retrieving surface temperature. The SC1 algorithm can be applied to any
thermal infrared sensor. It was mostly used for surface temperature retrieval over land24 while
few studies dealt with direct applications to inland waters.25,26 Furthermore, it was more often
validated for Landsat 4, 5, and 7 than for Landsat 8, which is the most recent.

Because the SC1 algorithm only depends on water vapor content and emissivity, Cristóbal
et al.21 proposed an improved version of the SC1 algorithm, hereafter denoted as the SC2 algo-
rithm, in order to minimize the errors associated with the amount of water vapor content. The
SC2 algorithm has a supplementary input, near-surface air temperature. It operates on a wider
range of water vapor content and air temperature and was evaluated for Landsat 8 TIRS.

The MW algorithm has been used for retrieving surface temperature from the thermal bands
of Landsat sensors (TM, ETM+, and TIRS). Similar to the RTE, the SC1, and SC2 algorithms,
the MW algorithm requires atmospheric parameters including emissivity, atmospheric transmis-
sivity, and effective mean atmospheric temperature.

The launch of Landsat 8 with two thermal bands (band 10: 10.6 to 11.19 μm and band 11:
11.5 to 12.51 μm) allowed the application of split-window algorithms that have been developed
for decades27 to correct satellite data acquired with multiple bands in the thermal infrared wave-
lengths. Unfortunately, due to the calibration uncertainties in band 11, it is not recommended that
band 11 be used for the split-window technique (USGS-Landsat Mission 2017 (Ref. 28)], which
is why single-channel algorithms (also called MW algorithms) using band 10 are more appro-
priate for surface temperature estimation.29
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The aims of this work are: (1) to assess the performance of four approaches, namely, RTE,
MW, SC1, and SC2 for retrieving surface water temperature in a river dammed reservoir in a
semiarid climate and (2) to look for a trend in the mean temperature at the water surface. The site
is Karaoun Reservoir, located in Lebanon and considered to be an altered ecosystem affected by
several anthropogenic activities.30 The RTE and the MW, SC1, and SC2 algorithms were applied
to a set of Landsat 8 images acquired in 2016 and 2017 using band 10 of the TIRS and compared
to subsurface temperature observations. After validation, the most effective approach was used to
assess retrospective water surface temperatures (1984 to 2015 and 2018) from the Landsat 4 and
5 TM and Landsat 8 TIRS sensors.

2 Materials and Methods

2.1 Study Site

The largest freshwater body in Lebanon, Karaoun Reservoir (Fig. 1, 33°34’N, 35°41’E), is deep,
monomictic, and eutrophic, and belongs to the few regularly monitored lakes and reservoirs of
the Middle East. It has a surface area of 12 km2 at full capacity, maximum and mean depths of 60
and 19 m, respectively.31 Karaoun Reservoir serves different purposes, such as power generation
and irrigation, leading to large fluctuations in its water level (about 25 m in a year), which is also
influenced by the hydrological cycle. These cause considerable variations in the water surface
temperatures and in the stratification pattern.32 During the dry season, the reservoir stratifies over
a considerable period between May and August. The thermal stratification is then broken down
as a result of vertical mixing due to air cooling and higher inflows. Monitoring of water temper-
ature was mainly performed on a single point SD near the dam in 2016.33 With no measurements
available on a spatial scale (except for 2017) and given the effect of water temperature on its biota
distribution,34 synoptic estimations of water surface temperature are valuable for this ecosystem.

2.2 Radiative Transfer Equation

For a single infrared thermal band, the at-sensor radiance can be approximated based on the RTE
according to the following expression:35

EQ-TARGET;temp:intralink-;e001;116;360Lsen ¼ τ½εLλðTRTEÞ þ ð1 − εÞLd� þ Lu; (1)

where Lsen (in Wm−2 sr−1 μm1 is the radiance measured by the TIRS (or top of atmosphere
radiance), τ is the atmospheric transmissivity, ε is the emissivity of water, LλðTRTEÞ represents

Fig. 1 Location of Karaoun reservoir with the sampling locations SD near the dam, SM in the
middle of the reservoir, and SR near the Litani River inlet.
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Planck’s function of a blackbody at surface temperature TRTE, Ld is the downwelling atmos-
pheric radiance, and Lu is the upwelling atmospheric radiance.

Surface temperature (TRTE) can be then calculated from Eq. (2) as follows:

EQ-TARGET;temp:intralink-;e002;116;699TRTE ¼ K2

ln
h

K1

LλðTRTEÞ þ 1
i ; (2)

where (TRTE) is the surface temperature in K, K1 and K2 are the calibration parameters for TIRS
band 10, their values are 774.8853 Wm−2 sr−1 μm−1 and 1321.0789 K, respectively. TRTE, here-
after, designates surface temperature retrieved from the RTE.

Using the TIRS band 10, García-Santos et al.36 found a lowest root mean square error
(RMSE) of 2.3 K with the RTE. Furthermore, Yu et al.37 used the RTE for retrieving land surface
temperature at four study sites in the United States and found that the RMSE between estimated
and ground temperature measurements was much higher with TIRS band 11 (1.17, 1.19, 1.12,
and 0.75 K) than with TIRS band 10 (0.87, 1.01, 0.93, and 0.57 K).

2.3 General Single-Channel Algorithm

The general SC1 algorithm for retrieving surface temperature was initially proposed by Jiménez-
Muñoz and Sobrino.20 The algorithm aims at retrieving surface temperature in a more opera-
tional way than using the RTE. It depends only on water vapor w and emissivity ε as input.
Hence, it avoids dependence on atmospheric parameters such as atmospheric transmissivity
τ and upwelling and downwelling atmospheric radiances Lu and Ld, which are rarely available
and somewhat difficult to measure.

The SC1 algorithm retrieves surface temperature (TSC1 in K) using the following general
equation:

EQ-TARGET;temp:intralink-;e003;116;420TSC1 ¼ γ½ε−1ðΨ1Lsen þΨ2Þ þ Ψ3� þ δ: (3)

γ and δ are expressed as

EQ-TARGET;temp:intralink-;e004;116;376γ ≈
T2
sen

bλ × Lsen

; δ ≈ Tsen −
T2
sen

bλ
; (4)

where Tsen is the at-sensor brightness temperature in K, bλ is equal to 1324 K for Landsat 8 TIRS
band 10, 1290 K for Landsat 4 band 6, and 1256 K for Landsat 5 band 6, and Ψ1;Ψ2, and Ψ3 are
the atmospheric functions.

The concept of the SC1 algorithm aims at the approximation of the atmospheric functions
presented in Eq. (3) versus the water vapor content (w in g cm−2) through a polynomial fit.
In a matrix notation, this approximation can be expressed as follows, where the coefficients
Cij (Sec. 5) are obtained by simulation from the sensor filter response:

EQ-TARGET;temp:intralink-;e005;116;247

 Ψ1

Ψ2

Ψ3

!
¼
 C11 C12 C13

C21 C22 C23

C31 C32 C33

! w2

w
1

!
: (5)

A particular set of coefficients linking transmissivity and radiances to the water vapor content
was derived from the filter response of Landsat 5 TM. This algorithm was further revised by
Jiménez-Muñoz et al.38 and sets of coefficients were proposed for Landsat 4 and 7. Eventually
new sets of coefficients for Landsat 8 TIRS were provided by Jiménez-Muñoz et al.39 Ψ1;Ψ2,
and Ψ3 are the atmospheric functions given by

EQ-TARGET;temp:intralink-;e006;116;130Ψ1 ¼
1

τ
;Ψ2 ¼ −Ld −

Lu

τ
; and Ψ3 ¼ Ld: (6)

Recently, Cristóbal et al.21 further introduced air temperature to the algorithm together
with water vapor content (w) as it is supposed to improve to the algorithm’s performance.
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The atmospheric functions are then fitted with a second degree polynomial based on water vapor
content (w) and near surface air temperature (T0) in K as follows:

EQ-TARGET;temp:intralink-;e007;116;711Ψn ¼ iw2 þ hT2
0 þ gwþ fT0 þ eT2

0wþ dT0wþ cT0w2 þ bT2
0w

2 þ a; (7)

where n ¼ 1;2; 3 and a; b; c; d; e; f; g; h; i are the numerical coefficients of the statistical fit
(Sec. 5). In this case, surface temperature (TSC2) is retrieved from Eq. (3).

Within the general SC1 algorithm, the approximations of the atmospheric functions differ for
Landsat 4, 5, and 8 and each case is assigned a different set of coefficients (Sec. 5). For a com-
plete description, readers are advised to refer to Jiménez-Muñoz et al.38,39 The SC1 algorithm
was implemented as follows: γ and δ were calculated from Eq. (4), the atmospheric functions
Ψ1;Ψ2, and Ψ3 were obtained from Eq. (5) after selection of appropriate coefficients for the
TM and the TIRS sensors and assigning the corresponding w values. Once all parameters were
calculated, surface temperature (TSC1) with atmospheric coefficients calculated from Eq. (5) was
then retrieved using Eq. (3) with a value of 0.995 for water emissivity. The SC2 algorithm was
implemented in the same manner. The atmospheric functions were obtained from Eq. (7) after
assigning specific coefficients for each. Surface temperature (TSC2) was then retrieved from
Eq. (3).

A long-term change in air temperature is expected to cause a simultaneous change in surface
water temperatures of lakes. Schneider and Hook40 demonstrated that surface water temperature
of inland water bodies increases more rapidly than air temperature worldwide. As a result, air
temperature has been used in several modeling approaches as a predictor of lake surface
temperature.41,42 The most recent SC2 algorithm developed with water vapor content and air
temperature has not been yet validated as extensively as the SC1 approach. It has been shown
to yield a RMSE of the order of 1 K against in situ data recorded over an area containing a variety
of vegetation and snow in Alaska.21

Both the SC1 and SC2 approaches are expected to provide good results. The choice of the
method depends on the range of water vapor content. The good performance of the former is still
limited to values >3 g cm−2. Hence, errors are expected to increase with the amount and errors
associated with the water vapor content. On the contrary, the SC2 approach shows a superior
performance in a wide range of water vapor content and air temperature.

2.4 Monowindow Algorithm

The MWalgorithm, initially developed by Qin et al. 23 and widely used for surface temperature
retrieval from Landsat TM and ETMþ single thermal bands, depends on emissivity, atmos-
pheric transmissivity, and effective mean atmospheric temperature. Isaya Ndossi and Avdan24

further improved the algorithm for surface temperature retrieval from Landsat 8 TIRS band 10
by including local meteorological data for estimating the effective mean atmospheric tem-
perature.

Surface temperature can be retrieved from the MW algorithm in the following form:

EQ-TARGET;temp:intralink-;e008;116;247TMW ¼ a10ð1 − C10 −D10Þ þ ½b10ð1 − C10 −D10Þ þ C10 þD10�Tsen −D10Ta

C10

; (8)

where TMW is the surface temperature retrieved from band 10 of the TIRS, a10 and b10 are the
constants used to approximate the derivative of the Planck radiance function for the TIRS band
10 and depend on the range of Tsen (here a10 ¼ −62.7182 and b10 ¼ 0.4339), Ta is the effective
mean atmospheric temperature in K, and C10 and D10 are the internal parameters for the
algorithm:

EQ-TARGET;temp:intralink-;e009;116;142C10 ¼ τε; (9)

EQ-TARGET;temp:intralink-;e010;116;99D10 ¼ ð1 − τÞ½1þ ð1 − εÞτ�: (10)

As before, τ and ε are, respectively, atmospheric transmissivity derived from the TIRS band
10 spectral response curve and water emissivity.
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The effective mean atmospheric temperature is approximated from the near surface air
temperature T0 (from a ground meteorological station) from the following linear relation for
an atmosphere of mid-latitude summer:23

EQ-TARGET;temp:intralink-;e011;116;699Ta ¼ 16.0110þ 0.9262T0: (11)

The MW algorithm was shown to provide lower discrepancies than the SC1 algorithm, with
RMSEs of 0.84 and 1.05 K, respectively, using TIRS band 10.23 Yet, Sobrino et al.43 compared
the MW and SC1 approaches using thermal data from the TM band 6 and found that the SC1
algorithm yielded less errors than the MW algorithm with root mean square deviations of 1 and
2 K, respectively.

The performance of the algorithms was assessed by estimating the RMSE, the mean absolute
error (MAE), and the Pearson correlation coefficient (r) between observed (Tin situ) and satellite-
derived water surface temperatures from the RTE, SC1, SC2, and MW algorithms (TRTE, TSC1,
TSC2, and TMW).

2.5 Data Collection

19 cloud free Landsat 8 scenes corresponding to a total of 31 water surface temperature obser-
vations (Tin situ) were acquired every 16 days (at 11:10 a.m. local time) from May 15 to October
16, 2016, and from April 26 to September 1, 2017. Due to variations in the water level, the
surface of the reservoir was extracted for each scene, using the normalized difference water
index.44

Continuous in situ water surface temperature data were available for both years and were
extracted at the time of satellite overpasses. Measurements were recorded with a thermistor
at 0.5-m depth at a single-location SD near the dam in 2016, and at 0.2-m depth at three points
in 2017, SD, SM in the middle of the reservoir, and SR near the Litani River inlet (Fig. 1). In the
literature, the bulk surface temperatures that are used to assess satellite inferred observations are
usually measured over depths ranging from a few centimeters to several meters.2

In addition to 2016–2017 images, 153 images from the Landsat 4 and 5 TM and Landsat 8
TIRS sensors were used to characterize the evolution of water surface temperature between
1984–2015 and 2018, whereas no in situ water temperature records were available for this
period. Thermal infrared data were freely downloaded from the United States Geological
Survey. Images were converted from digital numbers to at-sensor radiance Lsen and at-sensor
brightness temperature Tsen by means of the ENVI software (version 5.2) using calibration
parameters from the metadata file.

For the RTE and the MWalgorithms, atmospheric parameters (τ, Lu, and Ld) were computed
with the atmospheric correction parameter calculator of the National Center for Environmental
Prediction (NCEP)17,35 using the Landsat 8 TIRS band 10 spectral response curve. This atmos-
pheric correction tool uses the NCEP modeled atmospheric global profiles and the moderate
resolution atmospheric transmission radiative transfer code. Daily water vapor content was
collected for the whole validation period and downloaded from the ERA interim dataset of the
European Centre for Medium-Range Weather Forecasts at 12:00 p.m.45 Near surface air temper-
ature T0 used for both the SC2 and MW algorithms was taken from a meteorological ground
station (Tal-Amara meteorological station, Fig. 1) although if it had been available it could have
been taken from atmospheric radiosoundings.

3 Results and Discussion

In order to validate surface temperature retrieval, we compared observed water surface temper-
atures to estimates by the RTE, SC1, SC2, and the MW algorithms. The results are summarized
in Fig. 2. The values of the statistical indicators suggest a good agreement between measure-
ments and estimations of surface temperatures. Very high correlations were obtained with the
four approaches (Table 1). With r ¼ 0.97 for TSC1 and 0.96 for TSC2, the SC1 and SC2 methods
showed the highest correlations and least errors. The SC1 and SC2 algorithms yielded RMSEs of
0.73 and 0.89 K and MAEs of 0.71 and 0.88 K, respectively. The RTE also performed well,
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however, with a bias as seen on its MAE of 1.6 K and an RMSE of 0.94 K. The MW algorithm
displayed the weakest results with an RMSE and a MAE of 1.23 and 1.01 K, respectively.

Further, the RMSE values observed in each approach agree with values found in similar
validation studies25,46 over reservoirs. For the SC1 algorithm for instance, Jiménez-Muñoz
et al.,39 whose estimations were validated with simulated data selected over land, obtained
RMSEs around 1.5 K only when the water vapor content is lower than 3 g cm−2. In this study,
RMSE is 0.73 K but the water vapor content remained in the range where the SC1 algorithm
performs best. For a more humid atmosphere, RMSEs could reach up to 5 K when using the SC1
algorithm.39

Among the four approaches, the SC1 algorithm gave the highest correlations and lowest
RMSE and MAE in this study. Based on these results and as long as the water vapor content
is in the recommended range, the SC1 algorithm is the preferable method for estimating surface
temperature from TIRS band 10 at Karaoun Reservoir. Unlike the RTE and the MW algorithm,
it minimizes the input of atmospheric parameters and thus the errors are mostly restricted to
the accuracy of the water vapor content.

Fig. 2 Temperature measurements (T in si tu) in 2016 and 2017 versus corrected Landsat 8 TIRS
band 10 data (TRTE, T SC1, T SC2, and TMW), respectively, from the RTE, the SC1, the SC2, and the
MW algorithms (n ¼ 31) with the following equations: yRTE ¼ 1.31x − 88.9, ySC1 ¼ 1.2x − 60.6,
ySC2 ¼ 1.26x − 77.11, yMW ¼ 1.23x − 67.1.

Table 1 Pearson correlation coefficient r ; root mean squared error, RMSE (K); and mean abso-
lute error, MAE (K), between field measurements (T in situ) and estimations from the RTE (TRTE),
the SC1, and SC2 algorithms (T SC1 and T SC2) and the MW algorithm (TMW).

r RMSE (K) MAE (K)

TRTE 0.95 0.94 1.6

T SC1 0.97 0.73 0.71

T SC2 0.96 0.89 0.88

TMW 0.92 1.23 1.01
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Figure 3 shows the difference between in situ water surface temperatures and estimates from
the SC1 and SC2 algorithms plotted versus the water vapor content. The water vapor content
ranges from 1 to 3 g cm−2. The difference between Tin situ and TSC1 exhibits no trend with
the water vapor content (p ¼ 0.10). The range of differences exceeds the −1 K to 1 K interval
(standard deviation SD is 0.84 K). This range is consistent with literature results.21 Although
García-Santos et al.36 observed an increase in the errors with the water vapor content, the lack of
trend here can be attributed to its small range, with few points at high values.

The differences are slightly higher for the SC2 algorithm with a standard deviation of 1.07 K
and some differences above 2 K. Cristóbal et al.21 reported better estimations and less bias with
the SC2 algorithm: their errors tended to be within the −1 K to 1 K range. However, they also
reported that the performance of the SC2 algorithm and hence the expected errors can differ
between different types of study sites. For example, they found that the SC2 algorithm performed
better over vegetation than snow, which can be due to emissivity. These findings call for addi-
tional validation studies over inland waterbodies where, in comparison to land, the performance
of such algorithms was seldom assessed.

A difference of a few degrees can be observed between satellite derived skin temperatures
and in situ bulk water temperatures.11,47 Most often, skin temperatures are cooler than bulk tem-
peratures. This is called the cool skin effect48 although other sources of mismatch might explain
this difference (e.g., the thermal emission by adjacent targets).

Validating satellite-derived surface temperatures is quite a challenge as atmospheric condi-
tions can greatly influence the accuracy of the process, whereas the timing and the depth at which
water surface temperature is measured in situ might not be directly comparable to satellite esti-
mations. The main error sources in surface temperature retrieval associated with the SC1 algo-
rithm arise from atmospheric effects and surface emissivity uncertainties. This algorithm requires
only water vapor content and surface emissivity. Unfortunately, these variables have never been
measured at Karaoun Reservoir. The fact that these variables are obtained through modeling or
approximations makes it, to a certain degree, difficult to obtain minimal discrepancies between
remote sensing estimations and ground observations. As for in situ surface temperatures, they
were recorded simultaneously with the Landsat 8 overpasses for all dates, thus avoiding another
source of uncertainty. Measurements of in situ bulk temperatures were recorded at 50 and 20 cm
below the surface, whereas satellite-derived temperatures are provided at the top millimeter of
the water surface layer. Differences between the measurement depth of lake in situ and satellite
surface temperature estimations are neglected since measurements have been shown to be
representative of satellite-derived surface temperatures, at least during morning overpasses
(11:10 a.m.).49

Using the SC1 algorithm, we then proceeded with the water surface temperature retrieval
from band 6 and band 10 of the Landsat TM and TIRS, respectively, between 1984 and
2015 and in 2018 using 153 cloud free images. Water temperature was averaged over the res-
ervoir surface. Between 1984 and 2018, remote sensing estimations did not indicate a significant
warming trend with a very high p value of 0.9 for the whole data series. During that period,

Fig. 3 Difference of in situ and surface temperatures in 2016 and 2017 as a function of the water
vapor content, n ¼ 31.
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surface temperature ranged between 290 and 304 K with the latter, highest temperature, being
recorded in August of 2001. According to each month of the year, the highest temperatures were
found in the following years; 2006 for May, 1990 for June, 2013 for July, 2001 for August, 1985
for September, and 1999 for October (Fig. 4). Moreover, there is no significant trend in the
surface temperatures sorted by month in the year.

Deutsch and Alameddine50 conducted a retrospective study of water surface temperature over
Karaoun Reservoir between 1984 and 2015 and did not find a significant warming trend except
in August. They initially applied the SC1 algorithm to the period 2000 to 2015. However, instead
of using water vapor content to calculate the atmospheric functions and thus avoid the use of
several atmospheric parameters, they adopted τ, Lu, and Ld from NCEP data as input to the
algorithm. They also found that bewteen 2000 and 2015 brightness temperatures derived from
Landsat sensors were in better correlation with in situmeasurements of surface temperature than
with the atmospherically corrected estimates. This further led to their use of brightness temper-
ature and in situ measurements to develop a linear regression model and derive data prior to
2000, in order to ultimately analyze the suface temperature trend between 1984 and 2015.
The use of three atmospheric parameters (τ, Lu, and Ld) as input to the SC1 algorithm and
brightness temperature data instead of atmospherically corrected surface temperatures could add
uncertainty in surface temperature retrieval.36 With reference to the historical analysis of surface
temperature at Karaoun Reservoir, this can also explain the difference between the findings of
Deutsch and Alameddine50 and this work, in which a warming trend of surface temperature was
not discernable between 1984 and 2018 after applying the SC1 algorithm in its original form,
namely with water vapor data and emissivity as only inputs.

Surface temperatures of inland waterbodies have been used as indicators of climate
change.6 Yet such studies are still limited, due to the lack in long-term measurements, and
focus on waterbodies greater than 500 km2,40 thus neglecting small to medium sized lakes
and reservoirs.

Some of the climate-induced changes to lake physical properties are manifested by higher
water surface temperatures, the earlier onset and longer periods of thermal stratification and
overall greater lake stability.51–54 These manifestations have been largely attributed to meteoro-
logical forcing and morphometry. Although it is commonly considered and shown that lake and
reservoir water temperature will warm in synchrony with increasing air temperatures,55 the latter
is not always reflected in long-term temperature trends in reservoirs.56 The thermal dynamics
differ between lakes and reservoirs. Reservoirs experience large fluctuations in the water level,
often irregular over the years due to operational constraints, and thus thermal dynamics are
expected to be more variable in contrast to many lakes where the water volume does not change

Fig. 4 Surface-averaged water temperature (T SC1) between 1984 and 2018 derived from Landsat
4, 5, and 8.
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significantly and the seasonal heat dynamics dominates. Therefore, the fact that the conditions at
Karaoun Reservoir are not seasonally reproducible might have disabled the possibility to detect a
warming trend of surface temperature although the influence of other climatic factors should not
be excluded.

Studies dealing with warming trends of lake and reservoir surface temperature in the Middle
East are scarce except for Lake Kinneret, Israel. The analysis of the surface temperature record
(1984 to 2018) of Karaoun Reservoir contrasts the trend found at Lake Kinneret, which revealed
a warming (∼0.036°C per year) of lake summer surface temperature between 1969 and 2015.57

However, the increase in water temperature at Lake Kinneret was mainly attributed to anthropo-
genic activities such as the reduction in the water level while climate change had a minor
influence.58

Water surface temperature is a key parameter for determining ecological processes in lakes
and reservoirs as it influences biological processes such as the primary productivity. In lake
Dianchi, China, surface water temperature was found to be the main cause of algal bloom
development.1 At Karaoun Reservoir blooms of toxic species of cyanobacteria have occurred
annually since 2009.28 Between 1984 and 2007, a recent study making use of a remote sensing
algorithm to derive concentrations of the phycocyanin pigment demonstrated the occurrence of
cyanobacteria at Karaoun Reservoir.59 Concentrations were found to be significantly high
(>50 μg∕L) with a peak of phycocyanin concentration occurring in May of 2006 thus coincid-
ing with the highest temperature recorded in May between 1984 and 2018 as shown in
this work.

Acquiring a long-term record of water quality parameters is valuable especially in Middle
Eastern areas where lakes and reservoirs are poorly monitored. The record of water surface tem-
perature found in this work is an additional source of data, which can complement in situ obser-
vations and interpolate temporal gaps. Water surface temperature data can also have implications
for reservoir management through environmental applications. It reflects the impact of climate
change, stratification, and mixing. Further, it can also be used to understand the hydrological
cycle and verify hydrodynamic models.

4 Conclusions and Perspectives

Water surface temperature is an important parameter in limnological studies. Several algorithms
have been developed to retrieve surface temperature from thermal bands of the long series of
Landsat. Nevertheless, validation studies are still useful to assess the effectiveness of algorithms
applied to satellite data when applied to a new case study.

In this work, we validated against in situ measurements water surface temperature estimated
with four single-channel approaches applied to data acquired by the TIRS (band 10) onboard of
the latest Landsat 8.

The results on method comparison showed a good agreement between in situ observations
and satellite estimations for all four approaches. In particular, the SC1 algorithm provided the
lowest errors in terms of RMSE (0.73 K) and MAE (0.71 K) followed by the SC2 algorithm and
the RTE. The MW algorithm had the weakest performance and yielded the highest RMSE
(1.23 K). Further, the historic retrieval of the reservoir surface temperature between 1984 and
2018 did not reveal a warming trend.

We conclude that the SC1 algorithm is the most adequate for achieving the finest match with
field-based temperature observations for Karaoun Reservoir. The results indicate that the algo-
rithm, which was formerly mostly validated on land, is also suitable for retrieving the water
surface temperature of medium to small lakes and reservoirs in semiarid regions.

However, additional validation studies are still needed to extent the analysis to other inland
waterbodies at different latitudes and with different thermal regimes. The results of this analysis
might help to exploit the use of Landsat in lake surface water monitoring and hence to overcome
limitations imposed by conventional measurement methods. These results can further serve for
hydrodynamic modeling studies where synoptic observation of lake surface water during time
might be used for initializing the model or for validating model simulations of water surface
temperature.
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5 Appendix: Numerical Coefficients of the General Single-Channel
Algorithm

The atmospheric functions of TIRS band 10 presented in Eq. (5) and included in the
SC1 algorithm were calculated from a second-order polynomial fit with the following
coefficients:39

EQ-TARGET;temp:intralink-;e012;116;667

 Ψ1

Ψ2

Ψ3

!
¼
 

0.040 0.0292 1.02

−0.383 −1.50 0.20

0.00918 1.36 −0.275

! w2

w
1

!
: (12)

The coefficients for the atmospheric functions of the thermal band 6 of Landsat 4 and 5 are
shown in Table 2 following the matrix notation expressed in Eq. (5).

The numerical coefficients for the atmospheric functions of TIRS band 10 shown in Eq. (7)
are presented in Table 3.

Table 2 Coefficients of the atmospheric functions for band 6
of Landsat 4 and Landsat 5.38

Platform Cij i ¼ 1 i ¼ 2 i ¼ 3

Landsat 4 band 6 j ¼ 1 0.0877 −0.0967 1.09

j ¼ 2 −0.703 −0.612 −0.122

j ¼ 3 −0.0252 1.51 −0.488

Landsat 5 band 6 j ¼ 1 0.106 −0.130 1.12

j ¼ 2 −0.814 −0.476 −0.291

j ¼ 3 −0.0442 1.62 −0.487

Table 3 Numerical coefficients for the atmospheric func-
tions of TIRS band 10 listed in Eq. (7).21

Coefficients Ψ1 Ψ2 Ψ3

a 4.47 −30.4 −3.76

b −0.0000748 0.000911 −0.000141

c 0.0466 −0.573 0.0911

d 0.0232 −0.784 0.545

e −0.0000496 0.00140 −0.000909

f −0.0263 0.215 0.0418

g −2.45 106 −80.0

h 0.0000492 −0.000376 −0.000104

i −7.21 89.6 −14.7
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