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FEniCS overview

http://fenicsproject.org/

collection of free, open source, software components for automated solution of
differential equations

initiated by Chicago and Chalmers University in 2003
contributions from people from Simula Research Lab, Cambridge, KTH...
large community and active development

Features
automated solution of variational formulation (same spirit as FreeFem++,
deal.ii, etc.)
extensive library of finite elements
designed for parallel computation (high-performance linear algebra through
PETSc backends)
simple Python interface and concise high-level language
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FEniCS overview

A collection of interoperable components

FIAT (Finite element Automatic Tabulator) generates finite elements of
arbitrary order on lines, triangles and tetrahedra.
UFL (Unified Form Language), for specifying FE discretizations of PDE in
terms of FE variational forms
UFC (Unified Form Compiler), a C++ interface consisting of low-level
functions for evaluating and assembling FE variational forms
FFC (FEniCS Form Compiler), a JIT compiler for UFL → UFC
DOLFIN, a C++/Python library providing data structures and algorithms
for FE meshes, automated FE assembly, and numerical linear algebra
communication with PETSc, Eigen, ParMETIS, SCOTCH, MPI, OpenMP
and XDMF output
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FEniCS overview

Cantilever beam example

from dolfin import *

# Elasticity parameters
lmbda = Constant (90.)
mu = Constant (100.)

# Define epsilon and sigma operator
def eps(v):

return sym(grad(v))
def sigma(v):

dim = v.geometric_dimension ()
return 2.0*mu*eps(v) + lmbda*tr(eps(v))*Identity(dim)

# Create mesh [0;10]x[0;1]
mesh = RectangleMesh(Point (0. ,0.),Point (10. ,1.) ,100, 10)

# Loading due to self weight
f = Constant ((0.,-1.))
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FEniCS overview

Cantilever beam example

We now define the variational problem for elasticity : Find u ∈ VTrial s.t.

a(u, v) =

∫
Ω

σ(u) : ε(v)dΩ =

∫
Ω

f · vdΩ = L(v) ∀v ∈ VTest

here VTest = VTrial = V (Galerkine method)

# Define function space
V = VectorFunctionSpace(mesh , 'Lagrange ', degree =1)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(sigma(u), eps(v))*dx
L = dot(f, v)*dx
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FEniCS overview

Cantilever beam example

Defining boundary conditions :

def left(x, on_boundary):
return near(x[0] ,0.) and on_boundary

bc = DirichletBC(V, Constant ((0. ,0.)), left)

Compute the solution :

u = Function(V)
solve(a == L, u, bc)

We can specify the linear solver type:
direct (LU, MUMPS, ...)
iterative (CG, GMRES, ...)
with preconditioners (ILU, Algrebraic Multigrid, ...)
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FEniCS overview

Cantilever beam example

Plotting routines

plot(u, mode='displacement ')

But also output to Paraview

output_file = XDMFFile("output.xdmf")
output_file.write(u, 0.)
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FEniCS overview

Multi-field variational problem

One of the big advantages of FEniCS

E.g. Timoshenko beam variational formulation : Find (w ,Φ) ∈ VTrial :∫
Ω

EI (∇Φ) · (∇Φ̂) + κµA(∇w −Φ) · (∇ŵ − Φ̂))dΩ =

∫
Ω

fwdΩ ∀(ŵ , Φ̂) ∈ VTest

U = FiniteElement("CG", mesh.ufl_cell (), 2)
T = FiniteElement("CG", mesh.ufl_cell (), 1)
V = FunctionSpace(mesh , U*T)

u = TrialFunction(V)
v = TestFunction(V)

(w,phi) = split(u)
(w_ ,phi_) = split(v)

with VTest = VTrial = P2 × P1
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FEniCS overview

Multi-field variational problem
# Generalized strain measures
def chi(Phi):

return grad(Phi)
def gamma(w,Phi):

return grad(w)-Phi

# Constitutive laws for bending and shear
def M(Phi):

return E*I*chi(Phi)
def Q(w,Phi):

return kappa*mu*A*gamma(w,Phi)

# Final variational forms
a = ( inner(M(phi),chi(phi_)) +

inner(Q(w,phi),gamma(w_ ,phi_)) )*dx
L = f*w_*dx

# Compute the solution
u = Function(V)
solve(a == L, u, bc)
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FEniCS overview

Other example: Stokes equation

Mixed u − p formulation with Taylor-Hood element (P2/P1)

# Define function space
P2 = VectorElement('P', tetrahedron , 2)
P1 = FiniteElement('P', tetrahedron , 1)
TH = P2 * P1
W = FunctionSpace(mesh , TH)

# Define variational problem
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)
a = inner(grad(u), grad(v))*dx - p*div(v)*dx + div(u)*q*dx
L = dot(f, v)*dx

MINI element (P1 + B)/P1

# Define function space
Pv1 = VectorElement('P', tetrahedron , 2)
B = VectorElement('Bubble ', tetrahedron , 3)
W = FunctionSpace(mesh , (Pv1+B)*P1)

Jeremy Bleyer (Laboratoire Navier) MFront in FEniCS October, 14th 2019 10 / 28



FEniCS overview

Nonlinear problems

Hyperelastic model : elastic potential + automatic differentiation

F = Identity(dim) + grad(u) # Deformation gradient
C = F.T*F
# Invariants of deformation tensors
Ic , J = tr(C), det(F)
# potential (compressible neo -Hookean model)
psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda /2)*(ln(J))**2

# Total potential energy
Pi = psi*dx - dot(f, u)*dx

# Compute first variation of Pi (directional derivative)
F = derivative(Pi, u, v)

# Compute Jacobian of F
J = derivative(F, u, du)
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FEniCS overview

Nonlinear problems

# Solve variational problem
solve(F == 0, u, bc , J=J)

implicitly use a non linear solver, but again we can specify more precisely which
solver and parameters to use

Newton method
PETSc SNES solver : line search, trust region
PETSC TAO solver : bound-constrained minimization

we can choose which linear solver and preconditioner to use for the iterative
process

also possible to formulate yourself a Newton method at the PDE level
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FEniCS overview

Multilayered plate models

Multilayered plate models for accurate representation of edge effects, interface
stress, delamination, etc...

plate forces

interface 
stresses

3D laminate is represented by a family of n "plates" in interaction: generalized
forces, plate kinematics and associated constitutive behaviors depend on the
construction of the model

Many variants have been developped: [Ehrlacher, 1993; Caron, 1997; Chabot, 1997;
Diaz Diaz, 2001; Baroud, 2016]
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FEniCS overview

Recent developments

A statically compatible stress-based model [Baroud et al., 2016]

offers a purely statical construction from 3D stresses (no hypothesis of the
kinematics along z)
enables to satisfy exactly stress-free boundary conditions
convergence results wrt 3D model when refining the number of layers

Basic assumptions
in-plane σαβ stresses are linear −→ N i

αβ ,M
i
αβ

out-of-plane shear stresses are quadratic −→ Q i , τ i−1,i , τ i,i+1

out-of-plane normal stress σ33 is cubic −→ ν i−1,i , ν i,i+1, πi−1,i , πi,i+1

with continuity of
interlaminar shear stress τ i,i+1

α = σα3(x , y , h+
i ) = σα3(x , y , h−i+1)

interlaminar normal stress ν i,i+1 = σ33(x , y , h+
i ) = σ33(x , y , h−i+1)
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FEniCS overview

Recent developments

Equilibrium equations:

divN i + τ i,i+1 − τ i−1,i = 0

divQ i + ν i,i+1 − ν i−1,i = 0

divM i − Q i +
e i

2
(τ i,i+1 + τ i−1,i ) = 0

div τ i,i+1 − πi,i+1 = 0

Kinematics: 2n + n + 2n + n − 1 = 6n − 1 dofs/node
in-plane displacement per layer U i

out-of-plane displacement per layer W i

rotations Φi per layer
"interface relative displacement" V i,i+1
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FEniCS overview

Recent developments

Generalized strain measures:

N i ←→ εi = ∇sU i

M i ←→ χi = ∇sΦi

Q i ←→ γ i = Φi +∇W i

τ i,i+1 ←→ D i,i+1 = U i+1 − U i − 1
2

(e iΦi + e i+1Φi+1) +∇V i,i+1

ν i,i+1 ←→ D i,i+1
ν = U i+1

3 − U i
3

πi,i+1 ←→ λi,i+1 = V i,i+1

Elastic constitutive behaviour{
E1
E2

}
=

[
S1 0
0 S2

]{
Σ1
Σ2

}
where Σ1 =

{
N1 M1 ν1,2 π1,2 N2 . . . πn−1,n

}T

Σ2 =
{
Q1 τ1,2 Q2 . . . τn−1,n

}T
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FEniCS overview

Other features

Available features :
adaptive mesh refinement
Discontinuous Galerkin method
multimesh

Partly missing features
cohesive elements in 2D/3D solids: possible with DG methods but need
deeper look
partial support for quadrilaterals/hexahedra, current development of
isoparametric (curved) elements
partial Lagrange multipliers, coupling different models (possible with
multiphenics library)
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FEniCS overview

What FEniCS has not been designed for

Complex material constitutive laws:
FEniCS has been written by applied mathematics/computational fluid
mechanics researchers
not with the mindset of complex material behaviour, do not have direct access
at what happens at the Gauss point level but at the continuous form level
until now: a small attempt in the FEniCS Solid Mechanics project

Contact: simple contact penalty formulations or Augmented Lagrangian
approaches are possible to implement but no such thing as contact
detection/surface to surface or mortar approaches, etc...

Low-level FE tweaks like B-bar method, assumed strain approaches, etc...
Possible but needs to go deep in the code (possible amelioration quite soon with
dolfin-x version)

Shells: Solid shell elements not implemented, non-manifold surfaces need proper
testing, some developments in the fenics-shells library
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FEniCS overview

von Mises plasticity with linear hardening

Define a Newton-Raphson variational form:

K_Newton = inner(eps(v), dot(Ct, eps(u_)))*dx
residual = -inner(eps(u_), sig)*dx + F_ext(u_)

where Ct is the tangent stiffness
sig is a FEniCS Function living in a Quadrature FunctionSpace
similarly for Ctan

Explicit return mapping as UFL expressions
sig is the prediction of σ

n
, depends on strain increment ∆ε and previous stress

σ
n−1

and cumulated plastic strain pn−1

Analytical expression in UFL:

sig_elas = sig_old + sigma(deps) # elastic predictor
s = dev(sig_elas) # deviatoric part predictor
sig_eq = sqrt (3/2.* inner(s, s)) # equivalent von Mises norm
f_elas = sig_eq - sig0 - H*p_old # plasticity criterion
dp = ppos(f_elas)/(3*mu+H) # plastic strain increment
sig = sig_elas -3*mu*dp/sig_eq*s # corrected stress state
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FEniCS overview

von Mises plasticity with linear hardening

Analytical expression also for Ctan

Expressions are non-linear expressions of u
They are evaluated at Gauss points by projecting on the Quadrature function
space

Limitations
the return mapping is analytical in this simple case
it can therefore be expressed explicitly with UFL expressions

Unfortunately, FEniCS does not provide a mechanism for inner non-linear
procedures at the Gauss point level
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MFront integration
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MFront integration

Coupling with MFront through MGIS

we keep the same Newton-Raphson method with arrays of current stresses,
tangent matrix and internal state variables at each Gauss point
MGIS Python interface for defining the behaviour

# Defining the modelling hypothesis
h = mgis_bv.Hypothesis.PlaneStrain
# Loading the behaviour
b = mgis_bv.load('src/libBehaviour.so','

IsotropicLinearHardeningPlasticity ',h)
# Setting the material data manager
m = mgis_bv.MaterialDataManager(b, ngauss)
for s in [m.s0 , m.s1]:

mgis_bv.setMaterialProperty(s, "YoungModulus", 70e3)
mgis_bv.setMaterialProperty(s, "PoissonRatio", 0.3)
mgis_bv.setMaterialProperty(s, "HardeningSlope", 707.1)
mgis_bv.setMaterialProperty(s, "YieldStrength", 250.)
mgis_bv.setExternalStateVariable(s, "Temperature",
293.15)
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MFront integration

Coupling with MFront

Inside the NR loop:
project (evaluate) ε at Gauss points
feed Gauss point values to MGIS
integrate behaviour
get stress and tangent operator back and update sig and Ct with new values

# copy the strain values to `MGIS `
m.s1.gradients [:, :] = Eps.vector ().get_local ().reshape ((m.n

, s_dim))
# integrate the behaviour
it = mgis_bv.IntegrationType.

IntegrationWithConsistentTangentOperator
mgis_bv.integrate(m, it, 0, 0, m.n);
# getting the stress and consistent tangent operator back to

the FEniCS world.
sig.vector ().set_local(m.s1.thermodynamic_forces.flatten ())
Ct.vector ().set_local(m.K.flatten ())
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MFront integration

Results

Cylinder expansion subject to internal pressure

Same residuals, computing time:
6.8s for pure FEniCS implementation
5.9s for FEniCS-MFront implementation
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MFront integration

Limitations

Still some issues right now:
multi-materials : internal variables should be defined on their corresponding
subdomain, currently they must live on the whole domain
memory and efficiency : we need to store the values of stresses and tangent
operator components at all Gauss points, then use these values when
performing the assembly
usually, behaviour integration is performed during the assembly (FEniCS
offers no user intervention during assembly)
not implemented for parallel computations

In the future
FEniCS currently undergoing consequent redesign
https://github.com/FEniCS/dolfinx

should allow definition of functions on subdomains
should allow user-defined coefficients in forms
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MFront integration

Extension to large strains

Quite simple using for instance F and P (PK1 stress):
Residual is:

R(u) = Wext(u)−
∫

Ω

P : δF (u)dx = Wext(u)−
∫

Ω

P : ∇(δu)dx

residual = Wext -inner(pk1 , grad(u_))*dx

Consistent tangent bilinear form is:

a(u, v) =

∫
Ω

∇u :
∂P

∂F
: ∇vdx

a_Newton = inner(grad(u_), dot(Ct, grad(v)))*dx

where Ct is provided by MGIS in the right "DPK1_DF" format using

mgis_bv.convertFiniteStrainTangentOperator(Ct, m, mgis_bv.
FiniteStrainStress.DPK1_DF)
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MFront integration

Example

3D traction of elastic Signorini law
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MFront integration

Example

Axisymmetric traction of a notched plate: large strain isotropic plasticity using
logarithmic deformation framework
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MFront integration

A collection of computational mechanics examples

Available at: https://comet-fenics.readthedocs.io/en/latest/

isotropic/orthotropic elasticity
axisymmetric structures
uncoupled and coupled thermoelasticity
transient elastodynamics
periodic homogenization
viscoelasticity
elastoplasticity
beam buckling
plates with reduced integration/Discontinous Galerkin formulation
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