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Abstract.
This paper proposes a constitutive model for polycrystalline shape memory

alloy (SMA) wires arising from micromechanical arguments. The texture of
the polycrystal is captured through the volume fractions and the maximal
transformation strain in each crystalline orientation. As a result, the model
is able to reproduce texture effects such as nonlinear hardening during phase
transformation. An attractive feature of the proposed model is that closed-form
expressions of the material response can be obtained for typical thermomechanical
loadings of interest in SMA, such as cyclic traction at high temperature or thermal
cycling at a fixed stress. Those analytical solutions are notably useful for identifying
the constitutive parameters of the model. A temperature-controlled testing
apparatus for SMA wires was developed for performing a reliable characterization
of Nickel-Titanium wires. All model parameters have been identified by means of
three tests: differential scanning calorimetry, isothermal traction test and thermal
cycling at constant stress.

Keywords Shape memory alloy, wire, polycrystal, micromechanics, modelling,
analytical solution

1. Introduction

The specific properties of shape memory alloys (such as the superelastic behavior
and the shape memory effect) are the result of a diffusionless solid/solid
phase transformation between different crystallographic structures (austenite and



A Micromechanics-based Model for Polycrystalline Ni-Ti Wires 2

martensite). From their discovery in the 1930s until today, shape memory alloys
(SMA) have slowly become a widely used industrial material, with applications
in various fields of engineering such as aeronautics, robotics, biomedicals or civil
engineering. However, the great capabilities of this material are rarely fully exploited.
For example, when the shape memory effect is used in actuators, there are often only
two operating positions, a "cold" position and a "hot" position. The intermediary
shapes of the SMA are rarely used. There are several possible reasons for this, such
as the difficulty to manufacture the correct material, the nonlinear behaviour of
SMAs (which makes it difficult to use simple control laws) and the lack of accurate
thermomechanical models to correctly describe the phase change of SMAs.

A strong research effort has already been put into modeling of SMAs, both
in the one-dimensional and three-dimensional settings. Roughly speaking, SMA
models fall in two main categories: phenomenological macroscopic models and
micromechanical models. Phenomenological macroscoping models draw inspiration
from plasticity by using inelastic strains as internal variables [1, 2, 3, 4, 5, 6, 7].
In micromechanical models, the internal variables (usually the volume fractions of
the different phases) are directly related to the austenite-martensite microstructures
that develop in the material [8, 9, 10, 11, 12, 13, 14]. Compared to phenomenological
models, micromechanical models provide more information on the material behavior:
in addition to the macroscopic stress-strain-temperature relation, they also give
some insight in the microstructures that appear at a microscopic scale. However,
micromechanical models are more difficult to use and to implement in a finite-
element code, partly because the number of internal variables is larger (and grows
proportionally with the number of crystalline orientations). A third category of
models that needs to mentioned is Landau/Landau-Ginzburg type models (see e.g.
[15] and references therein). Those models are phenomelogical in nature, but they are
able to describe the movements of martensite-martensite and austenite-martensite
domain boundaries.

In a wide range of applications (such as actuators), SMAs are used in the
form of wires loaded in tension. For such a simple geometry, the most widely used
phenomenological models predict a piecewise linear response. This is in contradiction
with experiments: for instance, experimental stress-strain curves at low temperature
show some nonlinear hardening. It is possible to introduce nonlinear hardening
in phenomenological models (as done in plasticity for instance), but this does not
explain the physical original of that phenomenon. Numerical simulations based on
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three-dimensional models [16] show that the origin of the nonlinear hardening lies in
the polycrystalline nature of the material: Phase transformation initiates in grains
which are the most favorably oriented with respect to the loading, and progressively
extends to the least favorably oriented grains. The corresponding simulations are
computationally intensive as they require to consider a large number of grains for
capturing the nonlinear hardening in a convincing manner.

In this paper, our objective is to propose a micromechanical model of SMA
wires that: (i) is able to capture the mechanical stress-induced nonlinear hardening
in relation with the polycrystalline texture, (ii) remains of simple use, in the sense
that closed-form solutions can be derived. To fulfill those objectives, we start
from an already established three-dimensional micromechanical model and make
use of the wire geometry to perform some simplification. This construction is
detailed in Sect. 2. In the model obtained, the polycrystalline texture is taken into
account via 2 scalar functions representing the volume fractions and the uniaxial
transformation strain for each crystalline orientation. An attractive feature of the
proposed model is that closed-form expressions of the material response can be
obtained for typical thermomechanical loadings of interest in SMA, such as cyclic
traction at high temperature (superelastic regime) or thermal cycling at a fixed
stress. Those analytical solutions are presented in Sect. 3. In Sect. 4 are reported
some experimental results from calorimetry tests, traction at fixed temperature,
and thermal cycling at fixed stress. Those results are used to identify the material
parameters and discuss the validity of the model.

2. Micromechanical modelling of polycrystalline SMA wires

2.1. Reversible model

The geometrically linear setting is adopted throughout the paper. Consider a
reference single crystal of shape memory alloy and denote the three-dimensional
transformation strains of the N martensitic variants by etr1 , · · · , etrN . These
transformation strains are symmetry-related and have therefore the same trace k.
They also verify the relation

1

N

N∑
i=1

etri = kI (1)
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where I is the identity second-order tensor. The value of k is very small for common
shape memory alloys, which justifies using the approximation k = 0.

A polycrystalline SMA consists of numerous monocrystalline grains with
distinct orientations. To each orientation corresponds a rotation R such that the
transformation strains in the considered orientation are given by R · etri · RT with
i = 1, · · · , N . Since the number of orientations can be very large, it is convenient
to track the orientations with a continuously varying parameter s (which we can
assume to vary in [0,1] without loss of generality). We denote by R(s) the rotation
corresponding to orientation s. The transformation strains in orientation s are
denoted by etri (s), i.e etri (s) = R(s) · etri · R(s)T . We also introduce the volumic
density c(s) of orientation s. The function c(s) is positive and satisfies∫ 1

0

c(s)ds = 1.

The functions R(s) and c(s) capture some information on the texture of the
polycrystal. In three-dimensional reversible models of polycrystalline shape memory
alloys, a commonly used expression for the free energy is

W (e, T ) = inf
Θ1,··· ,ΘN

W (e, T,Θ1, · · · ,ΘN) (2)

where

W (e, T,Θ1, · · · ,ΘN) =
1

2
(e−

∫ 1

0

N∑
i=1

Θi(s)e
tr
i (s)ds) : L : (e−

∫ 1

0

N∑
i=1

Θi(s)e
tr
i (s)ds)

+λ(T )

∫ 1

0

N∑
i=1

Θi(s)ds+m(T ).

(3)
In (2) and (3), e is the strain tensor, L is the elasticity tensor and λ(T ) is usually
taken in the form

λ(T ) =
T − T0

T0

λ0 (4)

where T0 is the critical temperature of phase transition and λ0 is the latent heat. A
common expression of the term m(T ) in (3) is

m(T ) = c(1− log
T

T0

)
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where c is the specific heat [17].
Expression (3) rests on some assumptions. In particular, the elastic interaction

between the individual austenite/martensite phases as well as the interaction between
the grains are ignored. Those interactions would typically result in a additional
mixing energy term in (3) (see e.g. [18, 19, 20] for some results in that direction).
Expression (3) also ignores thermal strains which are supposed to remain small
compared to transformation strains.In Eq. (3) it is also assumed that the austenite
and the martensite have the elastic moduli: Such an assumption considerably
simplifies the mathematical analysis but its validity remains questionable.

The scalar Θi(s) in (2) can be interpreted as the volume fraction of
martensitic variant i in the grains with orientation s. Accordingly, the function
W (ε, T,Θ1, · · · ,ΘN) in (3) is referred to as the free energy at fixed volume fractions.
In (2), the infimum is taken over the functions Θi(s) such that

Θi(s) ≥ 0,
N∑
i=1

Θi(s) ≤ c(s). (5)

The stress-strain relation reads as σ = ∂W (e, T )/∂e, i.e.

σ = L :

(
e−

∫ 1

0

N∑
i=1

Θi(s)e
tr
i (s)ds

)
(6)

where Θi(s) is a solution to the minimization problem in (2).
Neglecting bending stiffness, the stress tensor σ in a wire is expected to be

uniaxial with the form
σ = σn⊗ n (7)

where n is a unit vector along the axis of the wire. Consider a infinitesimal element of
length in which the stress is of the form (7). The strain e in the infinitesimal element
is such that σn⊗ n = ∂W (e, T )/∂e and therefore is a solution to the minimization
problem

inf
e
W (e, T )− σ(n · e · n). (8)

Replacing W with its expression (2), the problem (8) becomes

inf
e

inf
Θ1, · · · ,ΘN

W (e, T,Θ1, · · · ,ΘN)− σ(n · e · n). (9)
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where we recall from that the infimum is taken over volume fractions Θ1, · · · ,ΘN

satisfying (5). Swapping the two infima in (8) and calculating the infimum with
respect to e yields

e = σL−1 : (n⊗ n) +

∫ 1

0

N∑
i=1

Θi(s)e
tr
i (s)ds. (10)

Substituting (10) in (3) gives

W (e, T,Θ1, · · · ,ΘN)− σ(n · e ·n) =

∫ 1

0

N∑
i=1

Θi(s)(λ(T )− σ(n · etri (s) ·n))ds+m(T ).

The minimization problem (8) thus reduces to

inf
Θ1, · · · ,ΘN

∫ 1

0

N∑
i=1

Θi(s)(λ(T )− σ(n · etri (s) · n))ds (11)

where the constant m(T ) has been dropped as it is independent of Θ1, · · · ,ΘN . In
a way similar to (2) and (9), the infimum problem in (11) is restricted to volume
fractions Θ1, · · · ,ΘN satisfying the constraints (5).

In order to solve the linear program (11), it is convenient to relabel the
transformation strains etri (s) of each orientation s in such a way that

n · etr1 (s) · n ≥ n · etr2 (s) · n ≥ · · · ≥ n · etrN(s) · n (12)

In such an ordering, variant 1 can be interpreted as the most favorably oriented
variant with respect to the loading direction. Except for very special values of the
orientation matrix R(s), the inequalities in (12) are strict (which we assume in the
following to simplify the presentation).

If σ > 0 (i.e. the wire is under tension), it can easily be verified that the volume
fractions Θi(s) solutions to (11) satisfy

Θi(s) = 0 for i > 1 (13)

i.e. the only martensitic variant that may appear in orientation s is the most
favorably oriented one. If σ = 0 and λ(T ) ≤ 0, the minimum in (11) is attained
for any set of volumes fractions such that

∑N
i=1 Θi(s) = c(s) for all s. Such volumes
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fractions correspond to purely martensitic states. In particular, in view of (1), a
self-accommodated state with negligible strain is obtained for

Θi(s) =
c(s)

N
. (14)

Self-accommodated states are typically observed when cooling down a stress-free
specimen from a sufficiently high temperature.

In the model presented in this paper, we consider that the volume fractions
Θi(s) are always linear combinations of states of the form (13) and (14), i.e. Θi(s)

is assumed to be such that

Θ1(s) =
1

N
θ0(s) + θ1(s),Θ2(s) = · · · = ΘN(s) =

1

N
θ0(s) (15)

for some θ0(s) that can be interpreted as the volume fraction of self-accommodated
martensite. The scalars θ0(s) and θ1(s) are submitted to the constraints

θ0(s) ≥ 0, θ1(s) ≥ 0, θ0(s) + θ1(s) ≤ c(s). (16)

which are consistent with (5). For Θi(s) satisfying (15), the free energy in the
infinitesimal element can be written as

W (e, T,Θ1, · · · ,ΘN) =
1

2
σ2(n⊗n) : L−1 : (n⊗n)+λ(T )

∫ 1

0

(θ0(s)+θ1(s))ds+m(T )

(17)
where (10) has been used. Let

ε = n · e · n

and
E = ((n⊗ n) : L−1 : (n⊗ n))−1

be respectively the strain and the elastic stiffness in the direction of the wire. Setting

εtr(s) = n · etr1 (s) · n (18)

and using (10), the expression (17) can be rewritten in terms of the uniaxial strain
ε as

w(ε, T, θ0, θ1) =
1

2
E

(
ε−

∫ 1

0

θ1(s)εtr(s)ds

)2

+ λ(T )

∫ 1

0

(θ0(s) + θ1(s))ds+m(T ).

(19)
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In the proposed model, we adopt Eq. (19) as the free energy at fixed volume fractions.
Expression (19) is derived from the three-dimensional energy (3) by performing a
model reduction based on the wire geometry. In particular, the number of internal
variables has been reduced from N (equal to 12 for NiTi alloys) to 2. A list of the
main symbols used in the model is supplied in Table 1.

Table 1. List of symbols for the model proposed
σ uniaxial stress
ε uniaxial strain
T temperature
E elastic modulus
λ(T ) latent heat at temperature T
T0 critical temperature of phase transition
c specific heat
s continuous parameter (in [0, 1]) tracking the crystalline orientations
c(s) volume density of the crystalline orientation s
εtr(s) transformation strain for the crystalline orientation s
f inverse function of εtr

εtrmin minimum value of the function εtr(s)
εtrmax minimum value of the function εtr(s)
θ0(s) volume fraction of self-accommodated martensite for the crystalline orientation s
θ1(s) volume fraction of oriented martensite for the crystalline orientation s
G0 Dissipative parameter for the self-accommodated (thermal induced) martensite
G1 Dissipative parameter for the oriented (stress induced) martensite

A reversible model of SMA wire is obtained by minimizing (19) with respect to
θ0 and θ1. The corresponding free energy reads as

w(ε, T ) = inf
θ0,θ1

w(ε, T, θ0, θ1). (20)

For later reference, we note that the Gibbs energy w∗(σ, T ) = infεw(ε, T ) − σε

corresponding to (20) is given by

w∗(σ, T ) = inf
θ0(s),θ1(s)

w∗(σ, T, θ0, θ1) (21)
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with

w∗(σ, T, θ0, θ1) = − σ
2

2E
− σ

∫ 1

0

εtr(s)θ1(s) + λ(T )

∫ 1

0

(θ0(s) + θ1(s))ds+m(T ). (22)

2.2. Dissipative model

Experiments show that irreversible effects (hysteresis) play an important role in
SMAs. To capture such irreversible effects, we wish to appeal to the framework
work of standard generalized materials [21], viewing (θ0, θ1) as internal variables and
specifying their evolution law using a dissipation potential. In the classical framework
of generalized standard materials (as applied for instance in hardening plasticity),
the constitutive laws for a material with an internal variable α indeed read as

σ =
∂w

∂ε
, −∂w

∂α
∈ ∂Φ(α̇) (23)

where Φ is the dissipation potential and ∂ is the subdifferential operator. Compared
to hardening plasticity, a distinctive feature of phase transformation is that the
internal variable (i.e. (θ0, θ1) in our case) is constrained. More specifically, (θ0, θ1)

need to satisfy the inequalities (16) which result from mass conservation in the phase
transformation process. In the presence of such constraints, the general constitutive
laws (23) need to be amended as

σ =
∂w

∂ε
, −∂w

∂α
∈ ∂Φ(α̇) + ∂IT (α) (24)

where IT is the indicator function associated to the constraints on the internal
variable [22]. To be consistent with the second principle of thermodynamics, the
dissipation potential Φ in (24) should be convex, positive and null at the origin. For
the internal variable α = (θ0, θ1), the requirements on Φ are satisfied by the following
function

Φ(θ̇0, θ̇1) =

∫ 1

0

G0|θ̇0(s)|+G1|θ̇1(s)|ds (25)

whereG0 andG1 are positive parameters. We note that a similar dissipation potential
has been used in [16, 8] in the 3D setting. As will be seen later in Sect. 3.2.1,
consistency with the experimental observations on the phase transformation requires
that

G0 < G1.
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Adopting the expressions (19) for w and (25) for Φ, Eq. (24) yields the stress-strain
relation

σ = E

(
ε−

∫ 1

0

θ1(s)εtr(s)ds

)
(26)

and the evolution law
−∂w ∈ ∂Φ(θ̇i) + ∂IT (θ0, θ1) (27)

with
∂w = (

∂w

∂θ0

,
∂w

∂θ1

) = (λ(T ), λ(T )− σεtr(s)). (28)

In (27), the subdifferential ∂Φ(θ̇i) is the multivalued operator given by

∂Φ(θ̇i) = (Bd
0(s), Bd

1(s)) (29)

with Bd
i (s) satisfying 

|Bd
i (s)| ≤ Gi if θ̇i(s) = 0

Bd
i (s) = Gi if θ̇i(s) > 0

Bd
i (s) = −Gi if θ̇i(s) < 0

(30)

The subdifferential ∂IT (θ0, θ1) is given by

∂IT (θ0, θ1) = (z(s)− a0(s), z(s)− a1(s)) (31)

with conditions

z(s) ≥ 0, ai(s) ≥ 0, ai(s)θi(s) = 0, z(s)(c(s)− θ0(s)− θ1(s)) = 0. (32)

Collecting the expressions above, the evolution law (27) becomes

−λ(T ) = Bd
0(s) + z(s)− a0(s)

σεtr(s)− λ(T ) = Bd
1(s) + z(s)− a1(s)

(33)

with conditions (30) and (32).

Consider a given local strain and temperature history (ε(t), T (t)) and denote by
θi(s, t) the value of θi(s) at time t. Starting from a given initial state θi(s, t = 0), the
history θi(s, t) is found by solving the time evolution problem defined by Eqs (26),
(30), (32) and (33). This task greatly simplifies in situations where θi(s, t) evolves
monotonically with time. In such case, the values of θ0(s, t) and θ1(s, t) at any
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given time t can indeed be obtained by solving the incremental energy minimization
problem

inf
θ0,θ1

w(ε(t), T (t), θi(s)) +

∫ 1

0

G0ε0(s)θ0(s) +G1ε1(s)θ1(s)ds (34)

with εi(s) = 1 if θi(s, t) is increasing with t and εi(s) = −1 if θi(s, t) is decreasing. A
justification of this result is provided in Appendix A. A similar result holds for stress
controlled loadings: for a given local stress and temperature history (σ(t), T (t)) such
that θi(s, t) evolves monotonically with time, the value of θ0(s, t) and θ1(s, t) at any
given time t are a solution to the minimization problem

inf
θ0,θ1

w∗(σ(t), T (t), θi(s)) +

∫ 1

0

G0ε0(s)θ0(s) +G1ε1(s)θ1(s)ds (35)

where w∗ is defined as in (22). We will make use of the incremental variational
formulations (34) and (35) in the next section.

3. Analytical solutions

As detailed in the following, closed-form expressions of the response of the material
can be obtained for typical loadings of interest for SMAs.

3.1. Traction at high temperature

3.1.1. Reversible case It is insightful to first consider the reversible model. For a
prescribed strain ε, the state of the material is obtained by solving the minimization
problem

inf
θ0,θ1

w(ε, T, θ0, θ1) (36)

where θ0 and θ1 are submitted to the constraints (16). The stress σ is given by (26)
where (θ0, θ1) is the solution of (36).

For solving (36) in the high temperature regime (λ(T ) ≥ 0), we first observe that
w(ε, T, θ0, θ1) > w(ε, T, 0, θ1) for any (θ0, θ1) satisfying (16) and such that θ0 > 0. It
follows that the minimization problem (36) reduces to

inf
0≤θ1(s)≤c(s)

w(ε, T, 0, θ1) (37)
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i.e. there is no self-accommodated martensite in the energy-minimizing state.
Writing down the local optimality conditions in (37) yields

−σεtr(s) + λ(T )


= 0 if θ1(s) ∈ (0, c(s))

≥ 0 if θ1(s) = 0

≤ 0 if θ1(s) = c(s)

(38)

If
λ(T ) > σεtr(s) for all s ∈ [0, 1] (39)

then it follows from (38) that θ1(s) = 0 for all s, i.e. the material is in the purely
austenitic phase. Similarly, if

λ(T ) < σεtr(s) for all s ∈ [0, 1] (40)

then θ1(s) = c(s) for all s, i.e. the material is purely in the oriented martensite
phase. With proper labelling of the cristalline orientations, we can assume without
loss of generality that εtr(s) is a decreasing function of s. Setting εtrmax = εtr(0)

and εtrmin = εtr(1), the conditions (39) and (40) thus translate as λ(T ) > σεtrmax and
λ(T ) < σεtrmin, respectively.

In the intermediary case where λ(T )/εtrmax ≤ σ ≤ λ(T )/εtrmin, the conditions (38)
show that

θ1(s) =

{
c(s) for s ≤ s∗,

0 for s > s∗
(41)

where s∗ is given by the consistency condition −σεtr(s∗) + λ(T ) = 0, i.e.

λ(T ) = Eεtr(s∗)

(
ε−

∫ s∗

0

c(s)εtr(s)ds

)
(42)

Let us now detail the explicit expression of the stress-strain curve provided by
the model. The most natural way to parameterize the stress-strain curve is to use ε
as a parameter, solving (42) for each given ε and substituting the result in (26). This
turns out to be a relatively complex calculation, even for simple functions εtr(s) and
c(s). Such difficulties can be avoided if εtr is strictly decreasing, which we assume
from now. In such case, the stress-strain curve is strictly increasing and can therefore
by parameterized by σ. Denoting by f the inverse function of εtr, Eq. (42) can be
equivalently rewritten as

s∗ = f

(
λ(T )

σ

)
. (43)
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From (26) and (41) we have

ε =
σ

E
+

∫ s∗

0

c(s)εtr(s)ds.

Using the change of variable s = f(x) in the above integral yields

ε =
σ

E
+

∫ λ(T )/σ

εtrmax

f ′(x)c(f(x))xdx (44)

where (43) has been used. The relation (44) holds for λ(T )/εtrmax ≤ σ ≤ λ(T )/εtrmin
and gives the stress-strain response during phase transformation.

It is insightful to calculate the tangent stiffness dσ/dε during phase
transformation. By differentiation of (42) and (44) we find

dσ

dε
=

E

1− Eλ(T )2

σ3
f ′(

λ(T )

σ
)c(f(

λ(T )

σ
))

(45)

Since εtr (and consequently f) is a decreasing function, it is clear from (45) that
0 ≤ dσ/dε ≤ E, i.e. the tangent stiffness is positive (there is no softening) and
always remains smaller than the Young modulus of the pure phases. Eq. (45) shows
that the tangent stiffness dσ/dε is a function of σ, meaning that the response of the
material is nonlinear during phase transformation.

Table 2. Examples of function εtr(s)

Texture function εtr(s) Inverse function f(x)

A (εtrmax − εtrmin)(1− s)3 + εtrmin 1−
(

x− εtrmin
εtrmax − εtrmin

)1

3

B (εtrmax − εtrmin) cos
(πs

2

)
+ εtrmin

2

π
arccos

(
x− εtrmin

εtrmax − εtrmin

)

Details of the stress-strain curve (44) depend on the functions εtr and c which
capture some information on the texture of the polycrystalline material. As an
illustration, some stress-strain curves are plotted in Fig.1 for two different textures



A Micromechanics-based Model for Polycrystalline Ni-Ti Wires 14
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λ(T )
εtrmax

300

λ(T )
εtrmin

ε (%)

σ
(M

P
a)

Linear elastic evolution
Texture A
Texture B

Figure 1. Superelastic stress-strain curves for the textures A and B, in the
reversible case (no dissipation).

labelled as A and B. The corresponding εtr(s) functions are listed in Table 2 and
plotted in Fig. 2. The values εtrmin = 0.03, εtrmax = 0.11, λ(T ) = 12 MPa, E = 28

GPa, c(s) = 1 have been used in Figs. 1 and 2.
In the case of textures A and B, the integral in (44) can be calculated in closed-

form, leading to fully explicit expressions of the stress-strain response during phase
transformation. The obtained expressions read as

ε =
σ

E
+

1

4

εtrmax + 3εtrmin −

(
λ(T )
σ
− εtrmin

εtrmax − εtrmin

) 1
3 (

3εtrmin +
λ(T )

σ

)
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for texture A, and

ε =
σ

E
+ εtrmin +

2

π

[ √
(εtrmax −

λ(T )
σ

)(εtrmax − 2εtrmin + λ(T )
σ

)

−εtrmin arctan

 λ(T )
σ
− εtrmin√

(εtrmax −
λ(T )
σ

)(εtrmax − 2εtrmin + λ(T )
σ

)

]

for texture B.
As can be observed in Fig.1, the first elastic part of the stress-strain curves is the

same for textures A and B. Then, once the threshold stress λ(T )/εtrmax is exceeded,
the curves present different evolutions. We note that depending on εtr(s), the stress-
strain curve can present sharp slope changes or smooth changes, at the beginning
and at the end of phase transformation. The stresses at the beginning and at the
end of phase transformation only depend on the function εtr through its extreme
values εtrmax and εtrmin. A similar remark holds for the strain at the beginning of
phase transformation. The strain at the end of phase transformation depends on the
integral of εtr(s) and is equal to

λ(T )

Eεtrmax
+

∫ 1

0

εtr(s)ds.

The term
∫ 1

0
εtr(s)ds can be interpreted as the maximum recoverable strain of the

wire. It is equal to (εtrmax + 3εtrmin)/4 for texture A and 2(εtrmax − εtrmin)/π + εtrmin for
texture B. At the end of phase transformation, which occurs for σ = λ(T )/εtrmin, the
evolution becomes linear elastic again, which is represented by dotted lines in Figure
1.

3.1.2. Dissipative case Let us now study how the results are modified in the
dissipative case. We assume that the material is fully austenitic in the initial state,
i.e. θ0(s) = θ1(s) = 0 for all s. An increasing strain ε is applied at a fixed temperature
T such that λ(T ) > G1. For any given s, it is expected that θi(s) increases with the
applied strain, as in the reversible case. The exact value of θi(s) can be obtained by
using the variational formulation of the incremental evolution problem (34), which
in the present case specializes as

inf
θ0,θ1

w(ε, T (t), θ0, θ1) +

∫ 1

0

G0θ0(s) +G1θ1(s)ds. (46)
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Figure 2. Examples of functions εtr(s)

An important observation is that (46) has the same structure as the minimization
problem (36) considered in Sect. 3.1.1. It follows that the solution to (46) is obtained
by replacing λ(T ) with λ(T )+G1 in the expressions of the stress-strain response found
previously in Sect. 3.1.1. We thus have

ε =
σ

E
for 0 ≤ σ ≤ λ(T )+G1

εtrmax

ε =
σ

E
+

∫ λ(T )+G1
σ

εtrmax

f ′(x)c(f(x))xdx for λ(T )+G1

εtrmax
≤ σ ≤ λ(T )+G1

εtrmin

ε =
σ

E
+

∫ εtrmin

εtrmax

f ′(x)c(f(x))xdx for λ(T )+G1

εtrmin
≤ σ

(47)

Eq. (47) give the stress-strain relations during loading, provided that λ(T )+G1 > 0.

Let us now assume that the applied strain ε decreases after having reached a
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maximum value εmax. We denote by θmax1 be the value of θ1 when ε = εmax. When
ε decreases, it can be verified from the optimality conditions (33) that θi does not
evolve as long as σεtrmin ≥ λ(T ) − G1. This corresponds to elastic unloading. For
smaller values of σ, reverse phase transformation takes place, i.e. the volume fractions
of martensite decrease. The problem (34) thus specializes as

inf
θ0,θ1

w(ε, T, θ0, θ1)−
∫ 1

0

(G0θ0(s) +G1θ1(s))ds. (48)

Provided λ(T ) − G1 > 0, the minimization problem (48) has the same structure as
(36) so that the solution to (48) is obtained by substituting λ(T ) with λ(T )−G1 in
the expressions obtained in Sect. 3.1.1. In summary, we have

ε =
σ

E
for 0 ≤ σ ≤ λ(T )−G1

εtrmax

ε =
σ

E
+

∫ λ(T )−G1
σ

εtrmax

f ′(x)c(f(x))xdx for λ(T )−G1

εtrmax
≤ σ ≤ λ(T )−G1

εtrmin

ε =
σ

E
+

∫ 1

0

θmax1 (s)εtr(s)ds for λ(T )−G1

εtrmin
≤ σ

(49)

Eq. (49) give the stress-strain relations during unloading, provided that λ(T )−G1 >

0. Such values of the temperature correspond to the superelastic regime of the
material. In Fig.3 is presented an example of stress-strain cycle as provided by Eqs
(47) and (49), using texture B with parameters εtrmax = 0.11, εtrmin = 0.03, λ(T ) = 12

MPa, E = 28 GPa, G1 = 3 MPa.

3.2. Thermal cycling under constant stress

Let us now consider a cyclic thermal loading at a constant stress σ. We assume
that the material is fully austenitic in the initial state. During cooling, the volume
fractions θi(s) increase so that the minimization problem (35) becomes

inf
θ0,θ1
−σ
∫ 1

0

εtr(s)θ1(s) + λ(T )

∫ 1

0

(θ0(s) + θ1(s))ds+

∫ 1

0

G0θ0(s) +G1θ1(s). (50)

It can be checked from (50) that the evolution is elastic as long λ(T ) ≥
min(−G0, σε

tr
max − G1). The subsequent evolution depends on the value of the

imposed stress σ, as detailed next.
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Figure 3. Example of superelastic response in the dissipative case - Texture B

3.2.1. Case σ ≤ (G1 − G0)/εtrmax Let us first consider the case where σ ≤
(G1−G0)/εtrmax. During cooling, the evolution is found to be elastic for λ(T ) > −G0.
For λ(T ) ≤ −G0, the solution to (50) is found to be given by θ0(s) = c(s) for all s.

Assume now that the material is cooled down to a temperature such that
λ(T ) < −G0 and subsequently heated. It can be verified that the solution to (50)
is given by θ0(s) = c(s), θ1 = 0 as long as λ(T ) < G0, and that θ0(s) = θ1 = 0 for
λ(T ) > G0, i.e. phase transformation in austenite occurs brutally at λ(T ) = G0.

This evolution scenario holds provided σ ≤ (G1 −G0)/εtrmax, i.e. for sufficiently
small values of the applied stress. Since G1 > G0, this evolution holds in particular
for σ = 0, i.e. under stress-free condition.

3.2.2. Case (G1−G0)/εtrmax < σ < (G1−G0)/εtrmin The cooling is found to be elastic
as long as λ(T ) > σεtrmax −G1. When λ(T ) reaches the critical value σεtrmax −G1, it
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can be checked that the solution to (50) is given by

θ0(s) = 0, θ1(s) = c(s) for s ≤ f(G1+λ(T )
σ

)

θ0(s) = θ1(s) = 0 for s > f(G1+λ(T )
σ

)
(51)

Accordingly the strain ε is given by

ε =
σ

E
+

∫ G1+λ(T )
σ

εtrmax

f ′(x)c(f(x))xdx. (52)

These results can be interpreted as phase transformation into oriented-martensite in
the most favorable orientations. The solution (51) holds as long λ(T ) > −G0. For
λ(T ) < −G0, the solution to (50) can be verified to be given by

θ0(s) = 0, θ1(s) = c(s) for s ≤ f(G1−G0

σ
)

θ0(s) = c(s), θ1(s) = 0, for s > f(G1−G0

σ
)

(53)

so that

ε =
σ

E
+

∫ G1−G0
σ

εtrmax

f ′(x)c(f(x))xdx (54)

The results (53) mean the material state is a mixture of oriented martensite and
self-accommodated martensite.

Assume now that the material is cooled down to a temperature such that
λ(T ) < −G0 and subsequently heated. Omitting the detail of the calculation, the
following evolution is obtained:

• for λ(T ) ≤ G0, the evolution is elastic, i.e. θ0, θ1 and ε are given by (53) and
(54).
• for G0 < λ(T ) ≤ 2G1 −G0, the strain is given by (54) and θ0, θ1 are given by

θ0(s) = θ1(s) = 0 for s > f(G1−G0

σ
)

θ0(s) = 0, θ1(s) = c(s) for s ≤ f(G1−G0

σ
)

(55)

• for 2G1 −G0 < λ(T ) ≤ G1 + σεtrmax, θ0, θ1 and ε are given by

θ0(s) = θ1(s) = 0 for s > f(−G1+λ(T )
σ

)

θ0(s) = 0, θ1(s) = c(s) for s ≤ f(−G1+λ(T )
σ

)

ε =
σ

E
+

∫ −G1+λ(T )
σ

εtrmax

f ′(x)c(f(x))xdx

(56)

• for G1 +σεtrmax < λ(T ), we have θ0(s) = θ1(s) = 0 and ε = σ/E, i.e. the material
is fully in the austenitic phase.
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3.2.3. Case σ > (G1 −G0)/εtrmin As in the preceding case, the cooling is elastic as
long as λ(T ) > σεtrmax −G1. When −λ(T ) reaches the critical value G1 − σεtrmax, the
solution to (50) is given by (51), i.e. phase transformation into oriented-martensite
occurs in the most favorable orientations. In contrast with the preceding case, the
solution (51) holds as long λ(T ) > σεtrmin −G1. For λ(T ) < σεtrmin −G1, the solution
to (50) is given by θ1(s) = c(s) for all s, i.e. all the grains are transformed in oriented
martensite. Accordingly the strain ε is equal to σ/E +

∫ εtrmax
εtrmin

c(s)εtr(s)ds.
Omitting the detail of the calculation, the following evolution is obtained during

heating from a temperature such that λ(T ) < σεtrmin −G1 :

• for λ(T ) ≤ G1 + σεtrmin, the evolution is elastic, i.e. θ1(s) = c(s) and

ε = σ/E +

∫ εtrmax

εtrmin

c(s)εtr(s)ds

• for G1 + σεtrmin < λ(T ) ≤ G1 + σεtrmax, θ0, θ1 and ε are given (56).
• for G1 +σεtrmax < λ(T ), we have θ0(s) = θ1(s) = 0 and ε = σ/E, i.e. the material

is fully in the austenitic phase.

In contrast with the case covered in Sect. 3.2.2, it can be observed that θ0 = 0 during
the whole cycle, i.e. self-accommodated martensite never appears.

Three thermal cycles at constant stress corresponding to the three cases
3.2.1,3.2.2,3.2.3 are represented in Figure 4 for the texture B. Values of the
parameters are εtrmin = 0.01, εtrmax = 0.17, G1 = 4 MPa, G0 = 3.2 MPa, E = 28

GPa. The term λ(T ) is taken in the form (4) with λ0 = 74.2 MPa and T0 = 294.9

K.
The first case (dotted curve in Figure 4) corresponds to an imposed stress which

is too low to trigger phase transformation into oriented martensite during cooling.
As a result, there is no change in the macroscopic strain.

The second case (solid curve in Figure 4) corresponds to an intermediary stress :
the wire stretches during cooling and shrinks during heating. Note the temperature
T at the end of phase transformation during cooling verifies λ(T ) = G0 and therefore
is independent of the applied stress σ. A similar remarks holds for the temperature
at the beginning of phase transformation during heating. The variation ∆ε of the
strain between the cool state and the hot state is given by∫ G1−G0

εtrmax

εtrmax

f ′(x)xdx (57)
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Figure 4. Thermal cycling at constant stress

and therefore increases with the applied constant stress σ. The value ∆ε in (57) is
always smaller than the maximum recoverable strain

∫ 1

0
εtr(s)ds.

The third (dashed curve in Figure 4) corresponds to a high applied stress σ.
Both during heating and cooling, the temperatures at beginning and end of phase
transformation increase. The variation ∆ε of the strain between the cool state and
the hot state is equal to the maximum recoverable strain

∫ 1

0
εtr(s)ds.

3.3. Shape memory cycle

In this section we provide closed-form expressions of the material response during
the shape memory cycle, i.e. when the material is cooled down, deformed in a cooled
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state and subsequently heated in a stress-free state.

3.3.1. Stress-free cooling We consider a stress-free initial state at high temperature,
in which the material is fully austenitic. The stress-free material is then submitted
to a decreasing temperature T . As a special case of the thermal loading studied in
Sect.3.2.1, we have θ0 = θ1 = 0 as long as λ(T ) > −G0. When λ(T ) reaches the
critical value −G0, the volume fraction θ0(s) starts to increase. For λ(T ) < −G0,
we have θ0(s) = c(s) i.e. the material is fully transformed in self-accommodated
martensite. Note by (1) that there is no macroscopic deformation during the phase
transformation. The behavior provided by the model is thus consistent with the
experimental observations on martensitic transformation during stress-free cooling.
We note that taking G0 < G1 is necessary to ensure that this consistency is respected.

3.3.2. Traction in the cooled state Consider now that the material is cooled down
to a temperature T such that λ(T ) < −G0. From that point, the temperature is
kept constant and an increasing strain ε is applied. It is expected that the volume
fraction θ0(s) decreases and that θ1(s) increases with the applied strain, i.e. that
reorientation of martensite occurs. The incremental problem (34) thus specializes as

inf
θ0,θ1

w(ε, T, θ0, θ1) +

∫ 1

0

−G0θ0(s) +G1θ1(s)ds (58)

Let F be the functional to be minimized in (58). Since λ(T ) < G0, it can easily
be verified that F (ε, c − θ1, θ1) < F (ε, θ0, θ1) for any positive (θ0, θ1) such that
θ0 − θ1 < c.The problem (58) thus reduces to

inf
0≤θ1(s)≤c(s)

w(ε, T, c− θ1, θ1) +

∫ 1

0

−G0(c(s)− θ1(s)) +G1θ1(s)ds (59)

i.e. the minimization is restricted to fully martensitic states. The problem (59)
is almost identical to the incremental problem (46) obtained for traction at high
temperature, so that the solution to (59) is easily adapted from (47). We obtain

ε =
σ

E
for 0 ≤ σ ≤ G0+G1

εtrmax

ε =
σ

E
+

∫ G0+G1
σ

εtrmax

f ′(x)c(f(x))xdx for G0+G1

εtrmax
≤ σ ≤ G0+G1

εtrmin

ε =
σ

E
+

∫ εtrmin

εtrmax

f ′(x)c(f(x))xdx for G0+G1

εtrmin
≤ σ

(60)
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In contrast with the case of a high temperature, the stress-strain curve at low
temperature is the same for all values of T (provided that λ(T ) < −G0). Eq. (60)
gives the stress-strain curve during loading, i.e. for increasing values of the strain ε.
Let θmax1 be the value of θ1 at the end of the loading, i.e. when the applied strain
ε reaches its maximum value εmax. If the applied strain is subsequently decreased
while keeping the wire under traction (σ ≥ 0), it can be verified that the unloading
is elastic. In particular, when the material reaches its stress-free state, there remains
a residual strain given by

∫ 1

0
θmax1 (s)εtr(s)ds.

3.3.3. Heating in the stress-free state Starting from the stress-free state given by
(60), we now assume that the material is heated. The equations of evolutions are
similar to those obtained in Sect. 3.3.1 and can be solved in a similar manner. We
obtain that 

θ0 = c− θmax1 , θ1 = θmax1 for λ(T ) ≤ G0

θ0 = 0, θ1 = θmax1 for G0 ≤ λ(T ) ≤ G1

θ0 = θ1 = 0 for G1 ≤ λ(T )

(61)

For high temperature (G1 ≤ λ(T )), the material is fully transformed in austenite.

4. Experimental validation

In this Section are reported some results of three types of experimental tests:
a differential scanning calorimetry (DSC) test, mechanical traction tests at fixed
temperature, and thermal cyclings at fixed stress. All those tests have been
performed on a straight annealed 0.5mm diameter Nickel-Titanium wire, supplied
by Memry Corp. (USA). The investigated alloy is Ni50.4Ti49.6 (at.%). We use the
experimental results to discuss the identification of the model parameters as well as
the validity of the model.

4.1. Calorimetry

A DSC test has first been carried out in order to identify the model parameters
T0 and λ0 in (4). Phase transition temperatures and enthalpies of transition have
been measured. The test equipment was a DSC 250 (TA Instruments). The DSC
experiments were performed at a 10 K per minute temperature variation speed, under
an inert Nitrogen environment (purge gas). A 7.9 mg sample of a 0.5mm diameter
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virgin Ni-Ti wire has been tested. The test has been performed as detailed in Table
3.

Table 3. Experimental protocol
1 Test start at 293 K ; Heating up to 523 K (austenitic initial state)
2 Cooling down to 183 K ; Re-heating up to 523 K (first DSC cycle)
3 Cooling down to 183 K ; Re-heating up to 523 K (second DSC cycle)
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Figure 5. DSC test

The DSC chart is represented in Figure 5. The measured values are listed in
Table 4. Two peaks are observed during cooling. Peak 1 (around 313 K) corresponds
to the Austenite to R-phase transformation. Peak 2 (around 268 K) corresponds
to the R-phase to Martensite transformation [23]. During heating, a single peak,
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representing the Martensite to Austenite transformation, is observed. We choose not
to model the R-phase here, because it tends to disappear under stress [24]. In this
study, mechanical tests were always be performed on samples which had previously
been heated up to 373 K and then cooled down to 253 K, in order to ensure that
the material was in a martensitic state without R-phase at the beginning of the
mechanical loading.

Table 4. DSC : Measured values
Peak Temperature Enthalpy
Formation of martensite 268.6 K 11.5 J/g
Formation of austenite 321.3 K 22.9 J/g

Using the results of Sect. 3.2.1 with the expression (4) of the latent heat, the
phase transformation temperatures at zero stress are :

TA = T0 −
T0G0

λ0

(cooling)

TB = T0 +
T0G0

λ0

(heating)

(62)

It follows that
T0 =

1

2
(TA + TB) (63)

Using Eq. (63) with the values of TA and TB reported in Table 4 yields T0 = 294.9 K.
In (4), the parameter λ0 represents the volumic phase transformation enthalpy. We
choose to measure it experimentally from the mass phase transformation enthalpy
on the martensite formation peak at low temperature. Adopting a density of ρ =

6.45 mg/mm3 for Nickel-Titanium [25], we obtain λ0 = 11.5 × 6.45 10−3 J.mm−3 =

74.2 MPa .

4.2. Traction tests under controlled temperature

Performing traction tests on SMA wires requires a careful experimental design.
The phase transformation indeed induces some self-heating, so thermal conditions
and loading rate strongly influence the results. For this reason, a specific testing
chamber has been set up in order to perform the traction tests in water, with
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Figure 6. Experimental setup for mechanical tests at a controlled temperature

a strain measurement by Digital Image Correlation (DIC). The testing chamber
is made of PMMA and contains a volume of water which is pumped into the
chamber by a heating and cooling apparatus (see Figure 6) and goes out by overflow.
The tested part of the wire finds is immersed in water, and its upper end is
clamped on a displacement controlled ADAMEL DY31 testing machine. Two type
K thermocouples monitor the water temperature at two different locations inside the
water volume. The force in the wire was recorded using a 100N load cell and the
local deformation in the wire was measured by DIC on images acquired by a Pike
F421B camera (Allied Vision Technologies). A Matlab routine has been set up to
record simultaneously the deformation images and the force values.

We set up the applied strain rate to remain reasonably low (10−4 s−1) in order to
minimize temperature changes in the wire. This value is often found in the literature
on SMA [26] and can be justified from thermomechanical simulations [27]. The
experimental protocol described allows us to approximate isothermal conditions: the
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temperature in the wire is considered as uniform and equal to the water temperature.
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Figure 7. Homogeneous strain in the wire during phase transformation

The first traction tests performed on a virgin SMA wire usually do not exhibit
a homogeneous strain: some localization is observed. In order to reach a stabilized
thermomechanical behavior, the tested wire was submitted to 20 cycles of traction
loading up to 30 N followed by unloading and heating. Before the first cycle and
between each of those 20 cycles, the wire was unloaded and heated up to 373 K in a
furnace with no imposed stress. It was then cooled down to 253 K, in order to reach
self-accommodated martensite state with no R-phase at the beginning of the next
cycle. After that ’training’ procedure, the resulting stress-strain curve was found
to be reproducible. Accordingly, a homogeneous strain was observed along the wire
as illustrated in Figure 7 showing the average axial strain and the corresponding
standard deviation of the axial strain field on the wire. This data has been obtained
with the software GOM Correlate. As can be observed in Figure 7, the strain field
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is homogeneous during the whole experiment, including phase transformation.
An example of stabilized stress-strain curve is shown in Fig. 9 at 298 K.

Assuming that the test temperature is sufficiently low for the condition λ(T ) < G0

to be fulfilled, the stress-strain curve predicted by the model is given by Eq (60). It
notably depends on the material parameters E, G0+G1, εtr(s), c(s), the identification
of which is now discussed.

Consistently with Eq. (60), we first observe that the modulus E can be identified
from the slope at the beginning of the curve, yielding E = 28000 MPa. Regarding
the density c(s) and the function εtr(s), we make use of some background information
on the texture of NiTi wires. Such wires indeed show an oriented fiber texture in
which the 〈111〉 crystallographic direction in each grain is along the axis of the wire
[28, 29, 30]. A perfect fiber texture would correspond to a constant function εtr(s).
In a true specimen, the 〈111〉 direction in most grains is not perfectly aligned with
the axis of the wire. Moreover, there can be a small fractions of grains whose 〈111〉
direction differ significant from the axis wire. Recalling that the function εtr is
decreasing, the function εtr in a true specimen is expected to be qualitatively of the
shape depicted in Fig. 8, i.e with an almost flat plateau in its central part (stemming
from a privileged orientation in the polycrystal) and larger fluctuations near s = 0

and s = 1. To model such a texture, we adopt the parameterized expression

εtr(s) = (εtrmax − εtrmin)

(
1− tanh(β(tan(π(sγ − 1

2
))))

2

)
+ εtrmin (64)

where (β, γ) ∈ R2
+. The functions εtr in (64) is monotonically decreasing and varies

from εtrmax to εtrmin as s varies from 0 to 1. The parameters β et γ in (64) control
the length and the slope of the central part. The function shown in (8) correspond
to Eq. (64) with the parameters β and γ set to 0.02 and 1, respectively. The value
c(s) = 1 is adopted.

Applying Eq (60) for calculating the stress-strain response of the model requires
the expression of the inverse function of εtr and its derivative. To that purpose, we
note that the inverse function of εtr(s) in (64) is :

f(x) =

[
1

2
+

1

π
arctan

(
1

β
arctanh

(
1− 2

(
x− εtrmin

εtrmax − εtrmin

)))]1

γ (65)
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Figure 8. Example of function εtr corresponding to a non perfect fiber texture.

Setting

H(x) = arctanh

(
1− 2

(
x− εtrmin

εtrmax − εtrmin

))
, (66)

we have

f ′(x) =
β

2γπ

[
1

2
+

1

π
arctan

(
H(x)

β

)]1

γ
− 1

1

(εtrmin − x)(β2 +H(x)2)

1

1−
(

x−εtrmin
εtrmax−εtrmin

)
(67)

Adopting (64), the function εtr is determined from 4 scalar parameters. In
principle, εtrmin and εtrmax can be obtained from the crystallographic theory of
martensite. This calculation, reported in Appendix B, gives εtrmax = 0.107 and
εtrmin = 0.024. According to Eq. (60), the threshold stress for the beginning of
phase transformation is (G0 +G1)/εtrmax. By tracking the end of linearity at the
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beginning of the stress-strain curve, it is thus possible to identify G0 + G1. For the
isothermal traction shown in Figure 9, the linear elastic domain ends for the stress
σlin = 50 MPa, yielding G0 +G1 = σlinεtrmax = 5.35 MPa.
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Figure 9. Model parameter identification - Texture C - Isothermal traction test
at 298 K

The texture parameters β and γ are identified by trial and error, seeking for the
best fit between the experimental curve and the analytical solution. The obtained
parameters for this NiTi wire are listed in Table 5. The corresponding texture is
labelled as texture C, and the resulting curve is plotted in Figure 9. A good fit is
obtained for strains up to ε = 5%. However, the predicted phase transformation ends
for about ε = 5%: beyond that value, the model gives a linear elastic behavior. This
is in contradiction with the experiments, which show that phase transformation still
takes place for strains up to 6.5% (this is indicated by the fact that the experimental
loading and unloading curves do not overlap in the high strain domain). This
discrepancy between the model curve and the experimental curve partially stems
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from the elastic interaction between the grains, which has not been considered in the
model.

Table 5. Model parameter identification - Texture C
E 28000 MPa
λ 74.2 MPa
T0 294.9 K
εtrmin 0.024

εtrmax 0.107

β 0.3

γ 0.32

G0 3 MPa
G1 3.5 MPa

An attempt at obtaining a better fit between the analytical curve and the
experimental curve has been made by relaxing the parameters εtrmin and εtrmax: instead
of using the values provided by the crystallographic theory, we consider εtrmin and
εtrmax as free parameters. This allows to get a better fit with the experimental curve,
especially in the high strains domain as shown in Figure 10. The material parameters
of the corresponding texture (labelled as texture C*) are listed in Table 6.

Table 6. Model parameter identification - Texture C*
E 28000 MPa
λ 74.2 MPa
T0 294.9 K
εtrmin 0.014

εtrmax 0.131

β 0.25

γ 0.35

G0 3 MPa
G1 3.5 MPa
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Figure 10. Model parameter identification - Texture C* - Isothermal traction test
at 298 K

In Figure 11 is plotted the function εtr(s) for texture C*. With texture C*,
most transformation strains are found to fall between 4 and 7 %. This can be
interpreted as the result of a privileged grain orientation in the wire. It is insightful
to interpret the model stress-strain response in Fig. 10 in terms of the corresponding
distribution of transformation strains shown in Figure 11. Firstly, the rounded part
at the end of the linear elastic portion corresponds to the transformation of the grains
parametrized by s close to 0. They are very favorably oriented with respect to the
loading axis and transform first. Secondly, the stress-strain curve features an almost
flat plateau, which corresponds to the transformation of the predominant grains with
transformation strains in the range 4–7%. Finally, the end of the stress-strain curve
features a significant nonlinear hardening, corresponding to the phase transformation
of the less favorably oriented grains in the polycrystal. These grains present a low
εtr(s) value.
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Figure 11. Function εtr(s) for the texture C*.

Compared to texture C, the function εtr(s) corresponding to texture C* yields
a better match with the experimental results, but it probably deviates more from
the real texture of the material. This all falls down to the simplified form of the free
energy (3): Allowing the function εtr to deviate from the real texture partially makes
up for the fact that modeled energy does not exactly correspond to the true energy
of the material.

4.3. Thermal cycling under constant stress

At this point, all the material parameters have been identified, except for G0 and G1.
More precisely, the sum G0 +G1 is known but the value of G0 (and consequently G1)
is not known. Its value can be obtained from thermal cyclic under constant stress,
as is now explained. The SMA wire is mechanically loaded in the testing chamber
at a water temperature of 358 K, up to a traction stress of 127 MPa (25N). This
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stress is then maintained constant in time with the help of a PID controller included
in the TestWorks software, which is used to control the electromechanical machine.
Thermal loadings were carried out by varying the water temperature in the testing
chamber between 283 and 363 K.
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Figure 12. Thermal cycle at a constant stress σ = 127 MPa.

In Figure 12, the experimentally measured strain in the wire is plotted as a
function of the water temperature. We can now calculate the parameter G1 by
measuring the temperature difference ∆T between the heating and the cooling curve
at a fixed strain. Using equations (52) and (56) as well as the expression (4) of the
latent heat, we have indeed

∆T =
2G1T0

λ0

.

For ε = 0.03, we measure ∆T = 27.8 K which leads to G0 = 3.0 MPa and
G1 = 3.5 MPa. We can note that the condition G0 < G1 introduced in Sect. 2.2 is
fulfilled. Moreover, with the values obtained in Sect. 4.1 for λ0 and T0, the condition
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λ(T ) < G0 is satisfied at 298 K. This justifies using Eq. (60) to plot the stress-
strain curve. All model parameters are now identified, and the analytical solution
for thermal cycling, established in Eqs. (51), (53), (55) and (56), is plotted in Figure
12. That curve is in relatively good agreement with the experimental results, which
contributes to validate the model.

4.4. Superelastic regime
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Figure 13. Texture C* - Isothermal traction test at 353 K

In Fig. 13(solid line) is plotted the experimental stress-strain curve obtained at
353 K (which is about the maximum temperature that can applied in the designed
testing chamber). At such temperature, the material enters the superelastic regime.
The stress-strain curve for texture C* is shown in dashed line. There is clearly a
discrepancy between the experimental curve and the curve corresponding to texture
C*. This is not entirely surprising because the martensitic microstructures that
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appear in the superelastic regime are much different from those that appear in the low
temperature regime. It could be possible to identify a function εtr(s) that would yield
a good fit at high temperature, but then the corresponding fit at low temperature
would be poor. This is a limitation of the model: using a single function εtr(s)

is probably not sufficient to describe accurately the nonlinear phase-transformation
hardening at all temperatures.

5. Conclusion

The proposed model is based on a three-dimensional micromechanical expression
for the free energy, using the wire geometry to perform some simplifications.
In particular, the internal variables are reduced to two scalars per orientation
(corresponding to the volume fractions of self-accommodated martensite and oriented
martensite). Such simplifications allows analytical solutions to be obtained for
the material response under typical loadings of interest. The obtained solutions
depend on the polycrystalline texture through the functions c and εtr representing
the volumic density of crystalline orientations and the distribution of transformation
strain, respectively. The identification of the material parameters have been discussed
in detail and can take advantage of the presented analytical solutions. The model
could be used for designing SMA actuators. Although a satisfactory fit with
the experiments is obtained for the loadings corresponding to the shape memory
effect (traction at low temperature, thermal cycling a constant stress), it would be
interesting to refine the model by taking the elastic interaction between the grains
into account. This would typically result in an additional term in the free energy. It
would also be interesting to improve the model by using different elastic moduli for
the austenite and the martensite. We also note that the proposed model could be
extended to SMA rods (loaded in traction and compression) by adding an additional
internal variable representing the volume fractions of the most favorably martensitic
variant in compression.
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Appendix A. Variational principle for monotonic evolution

We denote by v(f) the sign of variation of a given monotone function f , i.e. v(f) = 1

if f is increasing and v(f) = −1 if f is decreasing. For a given history (ε(t), T (t))

on a time interval [0, τ ], we are interested in finding a solution to the evolution
equation (33) such that θi(s, t) is monotonic in time and v(θi(s, .) = εi(s) where
εi(s) ∈ {−1, 1} is given. To that purpose, for any t in [0, τ ], consider a solution
θ̃i(s, t) to the minimization problem

inf
θ0,θ1

w(ε(t), T (t), θ0, θ1) +

∫ 1

0

G0ε0(s)θ0(s) +G1εi(s)θ1(s)ds (A.1)

If θ̃i(s, t) satisfies v(θ̃i(s, .)) = εi(s), we claim that θ̃i(s, t) is a solution to the
evolution problem defined by Eqs (30), (32) and (33). For any fixed t, the stationarity
conditions in (A.1) indeed read as 0 ∈ ∂w + (ε0G0, ε1G1) + ∂IT i.e.

0 = −λ(T ) + ε0(s)G0 + z(s)− a0(s)

0 = σεtr(s)− λ(T ) + ε1(s)G1 + z(s)− a1(s)
(A.2)

where (z(s), a0(s), a1(s)) are submitted to conditions (32). Let Bd
i (s) = εi(s)Gi.

Since v(θ̃i(s, .)) = εi(s), the value Bd
i (s) thus defined satisfies (30). Hence (A.2) can

be rewritten as
0 = −λ(T ) +Bd

0(s) + z(s)− a0(s)

0 = σεtr(s)− λ(T ) +Bd
1(s) + z(s)− a1(s)

(A.3)

where (z(s), a0(s), a1(s)) and Bd
i (s) satisfies the conditions (32) and (30). The

evolution equation (33) is thus satisfied at each time, which proves the claim.
A similar result can be obtained for stress-driven loading by replacing the

Helmoltz free energy w with the Gibbs free energy w∗ in the reasoning.

Appendix B. Transformation strains in NiTi

NiTi alloys obey a cubic to monoclinic-I phase transformation. In such case, there
are 12 martensitic variants with transformation strains listed in Table B1. Values of
the lattice parameters for NiTi49.75 alloys are α = 0.0234, β = −0.0437, δ = 0.058,
ε = 0.0426 [31].
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Table B1. Cubic to monoclinic-I transformation
etr1 etr2 etr3 etr4 α δ ε

δ α ε

ε ε β


 α δ −ε

δ α −ε
−ε −ε β


 α −δ −ε
−δ α ε

−ε ε β


 α −δ ε

−δ α −ε
ε −ε β


etr5 etr6 etr7 etr8 α ε δ

ε β ε

δ ε α


 α −ε δ

−ε β −ε
δ −ε α


 α −ε −δ
−ε β ε

−δ ε α


 α ε −δ

ε β −ε
−δ −ε α


etr9 etr10 etr11 etr12 β ε ε

ε α δ

ε δ α


 β −ε −ε
−ε α δ

−ε δ α


 β −ε ε

−ε α −δ
ε −δ α


 β ε −ε

ε α −δ
−ε −δ α



Adopting the notations of Sect. 2, the uniaxial transformation strain εtr(s) in
orientation s is

εtr(s) = max
1≤i≤12

n ·R(s)etri R(s)T · n (B.1)

where R(s) is the rotation corresponding to orientation s. It follows from (B.1) that

εtrmin ≤ εtr(s) ≤ εtrmax

where
εtrmin = min

R∈SO3

max
1≤i≤12

n ·Retri R
T · n,

εtrmax = max
R∈SO3

max
1≤i≤12

n ·Retri R
T · n

(B.2)

The calculation of εtrmax can be done in closed-form. Swapping the order of the two
maxima indeed yields

εtrmax = max
1≤i≤12

max
R∈SO3

n ·Retri R
T · n

As R varies in SO3, the vector R ·n varies on the unit sphere S2 = {m ∈ R3 : ‖m‖ =

1}. Hence εtrmax = maxi maxm∈S2 m · etri ·m. For a given i, maxm∈S2 m · etri ·m is
equal to the maximum eigenvalue of etri . The transformation strains listed in Table
B1 all have the same maximum eigenvalue which can be expressed in terms of the
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lattice parameters as (α + β + δ +
√

(α− β + δ)2 + 8ε2)/2. In conclusion, we have

εtrmax =
1

2
(α + β + δ +

√
(α− β + δ)2 + 8ε2)

For NiTi, we obtain εtrmax ' 0.107.
The calculation of εtrmin in (B.2) is tricky to perform in closed-form. Using

numerical optimization to solve the min-max problem defining εtrmin yields εtrmin '
0.024.

References

[1] F. Auricchio, R.L. Taylor, and J. Lubliner. Shape-memory alloys: macromodelling and
numerical simulations of the superelastic behavior. Computer Methods in Applied Mechanics
and Engineering, 146(3):281 – 312, 1997.

[2] J.G. Boyd and D.C. Lagoudas. A thermodynamical constitutive model for shape memory
materials. part i. the monolithic shape memory alloy. International Journal of Plasticity,
1996.

[3] S Leclercq and Ch Lexcellent. A general macroscopic description of the thermomechanical
behavior of shape memory alloys. Journal of the Mechanics and Physics of Solids, 44(6):953–
980, 1996.

[4] Y. Chemisky, A. Duval, E. Patoor, and T. Ben Zineb. Constitutive model for shape memory
alloys including phase transformation, martensitic reorientation and twins accommodation.
Mechanics of Materials, 43(7):361 – 376, 2011.

[5] A.C. Souza, E.N. Mamiya, and N. Zouain. Three-dimensional model for solids undergoing
stress-induced phase transformations. European Journal of Mechanics - A/Solids, 17(5):789
– 806, 1998.

[6] K. Tanaka, S. Kobayashi, and Y. Sato. Thermomechanics of transformation pseudoelasticity
and shape memory effect in alloys. International Journal of Plasticity, 2(1):59–72, 1986.

[7] W. Zaki and Z. Moumni. A three-dimensional model of the thermomechanical behavior of
shape memory alloys. Journal of the Mechanics and Physics of Solids, 55(11):2455–2490,
2007.

[8] M. Peigney, J.P. Seguin, and Eveline Hervé-Luanco. Numerical simulation of shape
memory alloys structures using interior-point methods. International Journal of Solids and
Structures, 48(20):pp. 2791–2799, 2011.

[9] G. Sagar and E. Stein. Contributions on the theory and computation of mono-and poly-
crystalline cyclic martensitic phase transformations. ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 90(9):655–681, 2010.

[10] D. Bernardini and T. J. Pence. Models for one-variant shape memory materials based on
dissipation functions. International Journal of Non-Linear Mechanics, 37(8):1299–1317, 12
2002.



A Micromechanics-based Model for Polycrystalline Ni-Ti Wires 40

[11] S. Govindjee and C. Miehe. A multi-variant martensitic phase transformation model:
formulation and numerical implementation. Computer Methods in Applied Mechanics and
Engineering, 191:215–238, 2001.

[12] S. Stupkiewicz and H. Petryk. Modelling of laminated microstructures in stress-induced
martensitic transformations. Journal of Mechanics Physics of Solids, 50:2303–2331, 2002.

[13] F.A. Nae, Y. Matsuzaki, and T. Ikeda. Micromechanical modeling of polycrystalline shape-
memory alloys including thermo-mechanical coupling. Smart Materials and Structures,
12(1):6, 2003.

[14] A. Kelly, A. P. Stebner, and K. Bhattacharya. A micromechanics-inspired constitutive model
for shape-memory alloys that accounts for initiation and saturation of phase transformation.
Journal of the Mechanics and Physics of Solids, 97(C), 2016.

[15] G. Song, Q.P. Sun, and H. Kehchic. Effect of microstructure on the hardening and softening
behavIors of polycrystalline shape Memory alloys Part I: Micromechanics constitutive
modeling. Acta Mechanica Sinica, 16:309–324, 2000.

[16] L. Anand and M. E. Gurtin. Thermal effects in the superelasticity of crystalline shape-memory
materials. Journal of Mechanics Physics of Solids, 51:1015–1058, 2003.

[17] R. Abeyaratne, S. Kim, and J. Knowles. A one-dimensional continuum model for shape-
memory alloys. Int. J. Solids Struct., 31:2229–2249, 1994.

[18] K. Hackl and R. Heinen. A micromechanical model for pretextured polycrystalline shape-
memory alloys including elastic anisotropy. Continuum Mechanics and Thermodynamics,
19(8):499–510, 2008.

[19] M. Peigney. A non-convex lower bound on the effective free energy of polycrystalline shape
memory alloys. J. Mech. Phys. Solids, 57:970–986, 2009.

[20] M. Peigney. On the energy-minimizing strains in martensitic microstructures-part
1:geometrically nonlinear theory. J. Mech. Phys. Solids, 61:1489–1510, 2013.

[21] B. Halphen and Q.S. Nguyen. Sur les matériaux standard généralisés. Journal de Mécanique,
14:39–63, 1975.

[22] M. Frémond. Non-Smooth Thermomechanics. Physics and astronomy online library. Springer
Berlin Heidelberg, 2001.

[23] T. W. Duerig and K. Bhattacharya. The influence of the r-phase on the superelastic behavior
of niti. Shape Memory and Superelasticity, 1(2):153–161, 2015.

[24] T. W. Duerig, A. R. Pelton, and K. Bhattacharya. The measurement and interpretation of
transformation temperatures in nitinol. Shape Memory and Superelasticity, 3(4):485–498,
2017.

[25] C.B. Churchill, J.A. Shaw, and M.A. Iadicola. Tips and tricks for characterizing shape memory
alloy wire: Part 4 – thermo-mechanical coupling. Experimental Techniques, 34:63 – 80, 03
2010.

[26] K. Kim and S. Daly. Experimental studies of phase transformation in shape memory alloys.
In Tom Proulx, editor, Application of Imaging Techniques to Mechanics of Materials and
Structures, Volume 4, pages 267–269, New York, NY, 2013. Springer New York.

[27] M. Peigney and J.P. Seguin. An incremental variational approach to coupled thermo-
mechanical probles in anelastic solids. application to shape memory alloys. International



A Micromechanics-based Model for Polycrystalline Ni-Ti Wires 41

Journal of Solids and Structures, 50:pp. 4043–4054, 2013.
[28] P. Thamburaja and L. Anand. Polycrystalline shape-memory materials: Effect of

crystallographic texture. Journal of the Mechanics and Physics of Solids, 49(4):709–737,
4 2001.

[29] G. Laplanche, T. Birk, S. Schneider, J. Frenzel, and G. Eggeler. Effect of temperature and
texture on the reorientation of martensite variants in niti shape memory alloys. Acta
Materialia, 127:143 – 152, 2017.

[30] K. Bhattacharya. Microstructure of Martensite: Why it Forms and how it Gives Rise to the
Shape-memory Effect. Oxford Series on Materials Modelling. OUP Oxford, 2003.

[31] K. Knowles and D. Smith. Crystallography of the martensitic transformation in equiatomic
nickel-titanium. Acta Materialia, 29:101–110, 1981.


