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Liquid foam exhibits remarkable rheological behavior although it is made with simple fluids: it 
behaves like a solid at low shear stress but flows like a liquid above a critical shear stress. Such 
properties, that have been proved to be useful for many applications, are even enhanced by adding 
solid particles. Depending on their hydrophobicity and their size, the particles can have different 
geometrical configurations at the mesoscopic scale, i.e. at the air-liquid interfaces, in the films or the 
interstices between the bubbles. In this review, we present rheological studies performed on 
granular rafts and films, on spherical armored interfaces, on gas marbles and on aqueous foams 
laden with hydrophilic grains. 
 
 
Introduction 
 

Since the pioneer works of Ramsden [1] and Pickering [2], it is known that the stability of oil-
in-water emulsion can be drastically increased by using hydrophobic solid particles. For more than 
one century, many applications, from cosmetic, medical to food industries, have been developed on 
the principle that particles can adsorb at fluid interfaces to create armor-like protective layers, either 
for single droplets encapsulation purposes or for stabilizing assemblies of droplets or bubbles, i.e. 
as emulsions or foams respectively. Such a stabilization mechanism can be used to produce aerated 
materials without resorting to conventional carbon-based surfactants [3]. In this context, 
understanding the interfacial rheological behavior of armored interfaces is a major issue as it 
determines the physical properties of particle-laden systems, such as their deformation induced by 
external mechanical stress or their aging driven by intrinsic capillary stress [4,5]. Our purpose is to 
present studies performed on rheology of particle films and foams. Although foams and emulsions 
are very similar systems, gas bubbles are usually larger than liquid droplets, which allows for a wide 
range of particle sizes to be used in foam.   
 

Last decade, many works [6–9] have clarified the influence of particle contact angle with 
respect to both dispersed and dispersing phases, i.e. oil/water or air/water: if the particles are not 
fully wetted by neither of the  two fluid phases, they encapsulate the less wetting phase [6].  In 
Pickering concentrated emulsions and foams, drops and bubbles are separated by particulate films 
(cf. Figure 1-a). Those films can be made of two particle monolayers (cf. Figure 1-a top) or of one 
single particle monolayer (cf. Figure 1-a bottom). The former configuration is made of two 
particulate interfaces, one at each interface of the film. The later configuration can be obtained for 
intermediate particle wettability, which allows for the particles to be shared by both interfaces, i.e. 
to bridge the interfaces of two neighbor bubbles (or droplets) (cf. Figure 1-a bottom). Horozov et al. 
[8] showed that the bridging configuration is obtained mostly when repulsive forces exist between 
the particles. More recently, Timounay et al. [10] created free-standing particle films, by dipping and 
removing a frame through a particle raft (Figure 1-b), for which the particles can arrange in bilayer 
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or monolayer configurations depending on particle sizes and geometry of the frame. They showed 
that the particle configuration influences the bursting dynamics of armored liquid films. Within the 
bridging configuration, when a hole is created at the center of the armored film, it opens 
intermittently and the opening process can be stopped. For the other cases, constant retraction 
velocities are observed.  
 

Stability and rheology of Pickering systems are expected to be closely related to the 
mechanical properties of the armored interfaces and films. Whereas appropriate surfactants can be 
chosen to prevent bubble coalescence events, long-term stability against both coalescence and 
ripening seems to be the strong feature of Pickering systems, provided that the particles are robustly 
attached to the interface and form a dense layer [11]. It is to say that applied shear has a 
catastrophic impact on Pickering foam stability, so a comprehensive study of their rheological 
behavior is still lacking. Some understanding can however be found with concentrated Pickering 
emulsions (although they are also subjected to coalescence [12]): they were found to exhibit both 
shear-thickening and shear-thinning behaviors depending on the particles used and the 
physicochemical parameters [13,14]. Shear-thinning can be understood by the shear-stress induced 
droplet elongation, which suggests that the particle armor is not strong enough. On the other hand, 
shear-thickening is reminiscent of rigid particle suspensions, which suggests that the particle armor 
can also behave like a solid shell. 

 
 

 
 
Figure 1 : Sketch of the different configurations for solid particles in liquid films and foams : (a) particles at the 
interfaces of a single liquid film, in the bilayer configuration (top) and monolayer, i.e. bridging, configuration 
(bottom); (b) solid particles on a single flat liquid interface, also called particulate raft; (c) solid particles at 
the curved interface of a bubble in liquid, also called armored bubble; (d) solid particles at the curved interface 
of a liquid droplet, also called liquid marble; (e) solid particles at the double-interface of a soap bubble, also 
called gas marble; (f) foam laden with small hydrophobic solid particles covering the interfaces; (g) foam laden 
with small hydrophilic solid particles that are dispersed in the continuous liquid phase ; (h) foams laden with 
large hydrophilic solid particles. 
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Hydrophilic particles do not attach to fluid interfaces but they can be trapped between the 
numerous interfaces that are formed within foams. Whereas large particles (i.e. larger than 1 µm) 
are rapidly squeezed out of contact areas between bubbles, smaller particles can form transient 
steric barriers against coalescence [15–17]. As far as we know, direct film rheology has never been 
performed on such films. On the other hand, study of foams made with hydrophilic colloidal particles 
suspension has shown that drainage can be significantly reduced, or even stopped, thanks to the 
high shear viscosity, or even the yield stress, of those suspensions [18–22]. Such particulate foams 
belong to the class of complex fluid foams and their rheology is expected to be understood from the 
intrinsic rheological behavior of the interstitial continuous material [23–31]. Larger particles or large 
aggregates of small particles can induce specific and interesting effects as soon as their size is 
comparable to the constrictions formed by the foam network. Criteria for capture of single particles 
or collective jamming of concentrated suspensions have been given in link with foam drainage 
properties [32–34]. Recent work has provided a consistent physical picture for the rheology of foams 
laden with hydrophilic particles [35–38]. 
 

In the following, we will focus on results involving solid spherical particles with radius  𝑎 ≳
1 µm. We will first review interfacial rheological studies for single armored fluid interfaces, as planar 
rafts and drops/bubbles (figure 1 - b-c-d). Second, we present recent work on rheology of granular 
films and gas marbles (figure 1 - a-e). Finally, we report on recent advances on the rheology of 
aqueous foams laden with hydrophilic grains (figure 1 g-h). 
 
 
I – Interfacial Rheology of Particulate Interface 
 

Few works have recently reviewed the rheology of particle laden interfaces [39,40], from nano 
to microparticles at water/oil or water/air interfaces with various salt concentrations tuning the long 
range particles interactions. In the present review, we will focus on the specificities of micro-particles 
at water/air interfaces also called granular rafts. 
 
Modeling 
 

Single liquid interfaces laden with hydrophobic particles are known to exhibit properties of 
both liquid interfaces and solid membranes. As for other complex interfaces [41], their interfacial 
rheological behaviors are described by the relation of the surface deformation to the surface stress. 
A general expression for the surface stress is given by: 𝜎௦ = 𝛾𝐼 + 𝜏 where 𝛾 is the interfacial or 
surface tension, which depends on particle surface fraction (𝜑), 𝐼 is the surface unit tensor and 𝜏 is 
an extra stress. For a liquid-like viscous interface, following the Boussinesq-Scriven model, the extra 
stress 𝜏  is a viscous stress 𝜏௩  and writes [42]: 𝜏௩ = [(𝜉௦ − 𝜂௦)𝛻௦ ∙ 𝑣]𝐼 + 2𝜂௦𝐷௦  where 𝜉௦  is the 
surface (or interfacial) dilatational viscosity,  𝜂௦ is  the surface (or interfacial) shear viscosity, 𝛻௦ is the 
surface gradient operator, 𝑣 is the surface velocity vector and 𝐷௦   is the surface deformation rate 
tensor. For a solid-like elastic interface, following a linear elastic model [43], the extra stress 𝜏 is an 
elastic stress 𝜏௘ and writes: 𝜏௘ = [(𝐸௦ − 𝐺௦)𝛻௦ ∙ 𝑢]𝐼 + 2𝐺௦𝑈௦ where 𝐸௦ is the surface (or interfacial) 
dilatational modulus, 𝐺௦ is the surface (or interfacial) shear modulus, 𝑢 is the surface displacement 
vector and 𝑈௦  the  surface deformation tensor.  
 Finally, note that liquid-gas interface (simple interfaces laden with tensioactive molecules or 
complex interface laden with large “molecules” or particles) can exhibit elasticity if any change of 
the surface concentration changes its surface tension. In the case of an insoluble monolayer, which 
is usually the case for particles, this elasticity is characterized by the Gibbs modulus 𝐸ீ = −𝐴𝑑 𝛾 𝑑𝐴⁄  
where 𝐴 is the area of the interface. 
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 Finally, as particle raft has a finite thickness 𝑡 close to the particles size, a possible approach 
to characterize its mechanical behavior is to assimilate it to a thin elastic sheet with Young Modulus 
𝐸ଷௗ and Poisson coefficient  [44]. In such a case, the surface parameters are the following [45]: the 
stretching modulus 𝐸௦ = 𝐸ଷௗ𝑡 2(1 − 𝜈)⁄ , the shear modulus 𝐺௦ = 𝐸ଷௗ𝑡 2(1 + 𝜈)⁄  and the flexural 
(bending) rigidity 𝐵 = 𝐸ଷௗ𝑡ଷ 12(1 − 𝜈ଶ)⁄ . 
Dedicated instruments, apparatus and methods have been used to measure these properties for 
particles laden interfaces of constant or changing area. In the following we will present results 
obtained on Langmuir trough, pendant drop / rising bubble experiments, for which the surface area 
is compressed, and rheometrical shear flows experiments. 
 
 
Particle rafts: Compression 
 

Since the pioneer work of Aveyard [46] for microparticles at water/oil interface, many authors 
[47,48] have used a Langmuir trough equipped with Wilhelmy plates to measure the surface tension 
(𝛾) of monolayers whose surface area (A) is varied by moving barriers  while the quantity of particles 
is fixed. The surface pressure Π = 𝛾଴ − 𝛾 , where 𝛾଴ is the surface tension of the particle-free 
interface, characterizes the resistance to compression of the monolayer.  Typical behavior is reported 
on figure 2 – a where Π is plotted as a function of 𝐴. Along a compression experiment, from large to 
low surface areas, the observed behavior can be described as follows:  at large surface area (low 
particle concentration) the surface pressure tends to zero; as the surface area decreases (the particle 
concentration increases), there is a first critical point (𝐴∗) for which the surface pressure increases 
steeply; then, there is a second critical point 𝐴௖, from which the surface pressure increases only 
slowly and tends to saturate, i.e. Π௖ ≈ 𝛾଴ − 𝛾௖ . The change around 𝐴∗  can be interpreted as a 
change of particle interaction from long range to short range [39], whereas the transition at 𝐴௖ is 
associated to the buckling of the monolayer and thus to the liquid-like to solid-like transition. Cicuta 
et al. [48] showed that the pressure Π௖ depends on the aspect ratio of the surface area (𝑙/𝑤 = length 
between the moving barriers / width of the trough): at low aspect ratio Π௖ ∼ 𝛾଴, then Π௖ decays 
exponentially with 𝑙/𝑤. Moreover, they measured a different surface pressure for Wilhelmy plate 
oriented parallel or orthogonal to the moving barriers. Using arguments based on the analogy with 
parietal friction observed in 3D granular silos, i.e Janssen effect [49], they were able to describe the 
exponential decay for the surface pressure. Recently, Saavedra et al. [50] have shown that the 
screening of the pressure stress within particle raft is even much stronger than expected. 
 

For large compression (i.e. 𝐴 < 𝐴௖), particle rafts exhibit buckling characterized by wrinkling 
wavelength 𝜆, as for thin elastic sheets. As shown by Vella et al. [44] this analogy allows to deduce 
the bulk (Young) modulus 𝐸ଷௗ of the equivalent thin sheet: 𝜆 = 𝜋(16 𝐵 𝜌⁄ 𝑔)ଵ ସ⁄ . Their experimental 
results showed that 𝐸ଷௗ ∼ 𝛾଴ 𝑎⁄  within the range of investigated particle sizes, i.e. from 2.5 µm to 6 
mm. Recently, Jambon-Puillet et al. [51] showed that the elastic description for granular raft 
compression is powerful to describe wrinkle wavelength, wrinkle-to-fold transition, and the fold 
shape at large compression, but it does not capture finer details such as secondary wave length and 
hysteretic behavior that are associated to solid friction. In the same trend, but in a dynamic regime, 
Planchette et al. [52] studied wave propagation along a particle raft.  They measured the relation 
between celerity and wavelength for different particle diameters (within the range 30 to 160 µm) 
and contact angles 𝜃 , and deduced the bending stiffness 𝐵  by fitting their data according to the 
theory of thin elastic sheets [45]. They confirmed the scaling 𝐵 = 𝑓(𝜃) × 𝛾𝑎ଶ  [44,46,53] with 
𝑓(𝜃) = 2 for 𝜃 = 𝜋 2⁄  [46,53]. More recently, Petit et al. [54] explored the buckling of bidisperse 
particles rafts, and evidenced that the wavelength 𝜆  does not increase continuously with the 
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proportions 𝜓 of large particles but rather exhibits a sharp transition. This result was explained by a 
percolation behavior with force chains supported only by the small particles. 
 
Shrinkage of armored spherical bubbles and drops 
 

Xu et al. [55] and Monteux et al. [47] have studied the collapse of millimeter drops coated with 
micrometer-sized spherical PS particles, with particle-to-bubble size ratio 𝑎 𝑅⁄ < 0.003. The drops 
were forced to shrink in size through progressive removal of their bulk liquid while their internal 
pressure ∆𝑃 was measured. A typical result is presented in figure 2-b: below a given volume 𝑉଴ (and 
a corresponding drop radius 𝑅଴ ) the drop pressure deviates from the expected Laplace pressure 
2𝛾଴ 𝑅⁄  and instead decreases down to vanishing values. This transition was attributed to the strong 
particle interactions induced by the contraction of the interface during drop shrinkage. The pressure 
value at collapse was measured to be close to zero, which means that the mechanical equilibrium of 
the drop was maintained provided the applied (forcing) pressure was below ∆𝑃௠௔௫  such 
that ∆𝑃௠௔௫ (2𝛾଴ 𝑅଴⁄ )⁄ ≈  0.8-0.9. This result can be understood as follows: Any bulk pressure 
reduction (with respect to the capillary pressure 2𝛾଴ 𝑅଴⁄ ) induces an increase of the surface pressure 
𝛱  within the monolayer [56]. Equivalently, the effective surface tension 𝛾 = (𝛾଴ − 𝛱)  decreases 
when the drop shrinks. When 𝛾 ≈ 0 there is strong compressive stress in the monolayer but the 
internal pressure is now too small to maintain the spherical shape, leading the destabilization 
(collapse) of the drop. 
 

Later, Pitois et al. [57] have studied the collapse pressure of millimeter drops covered by 
monolayers of spherical PS particles, with 𝑎 𝑅଴⁄   within the range 0.01-0.2. Whereas 
∆𝑃௠௔௫ (2𝛾଴ 𝑅଴⁄ )⁄ ≈ 0.9 was measured for the smallest 𝑎 𝑅⁄  values, in agreement with [47,55], the 
armor strength was found to increase significantly for 𝑎 𝑅଴⁄ >  0.1, which means that negative 
internal pressures can be reached in this regime (the free interface is negatively curved between the 
particles). Actually, ∆𝑃௠௔௫ (2𝛾଴ 𝑅଴⁄ )⁄ ≈ 2 for 𝑎 𝑅଴⁄ ≈ 0.2, which means that the internal pressure 
reaches −2𝛾଴ 𝑅଴⁄  at collapse. 

 
More recently, Taccoen et al. [58] have designed an experimental setup to study the behavior 

of armored bubbles (instead of drops, see figure 2-c). They reported that the collapse behavior of 
such bubbles is such that ∆𝑃௠௔௫ ∝ 1 𝑅଴⁄ , independently of the particle size. It is to say that this 
result is fully consistent with previous results: within the range of investigated values for the particle-
to-bubble size ratio, i.e. 𝑎 𝑅଴⁄ ≤ 0.05, the reduced collapse pressure is almost constant (see figure 
2-d). Therefore, the collapse behavior of armored bubbles is similar to the behavior described above 
for drops. Several studies have confirmed such a behavior, whatever the particle size, particle shape, 
i.e. dumbbell [59] and ellipsoidal [4] shapes, particle nature [4,59], or bubble/drop size. We stress 
that all the results from literature can be gathered on the same graph by plotting the reduced 
collapse pressure ∆𝑃௠௔௫ (2𝛾଴ 𝑅଴⁄ )⁄    (which is equivalent to Π௠௔௫ 𝛾଴⁄  ) as a function of 𝑎 𝑅଴⁄   (see 
figure 2-d). We show here that all the data can be described as follows: ∆𝑃௠௔௫ (2𝛾଴ 𝑅଴⁄ )⁄ ≈ 0.8-1 
for 𝑎 𝑅଴⁄ ≲ 0.1, which is similar to results obtained on Langmuir thought (i.e. Π௠௔௫ 𝛾଴⁄ ≈ 1), and 
∆𝑃௠௔௫ (2𝛾଴ 𝑅଴⁄ )⁄ > 1 for 𝑎 𝑅଴⁄ > 0.1.  
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Figure 2: (a) sketch of surface pressure  as a function the surface area (A) of a particle monolayer. (b) Typical example 
for the evolution of internal pressure ∆𝑃 of armored drops/bubbles as a function of their volume 𝑉. The effect of the 
armor can be observed when 𝑉 is decreased below a reference value 𝑉଴, for which the corresponding capillary pressure 
is 2𝛾଴ 𝑅଴⁄ . Red continuous line: experimental results for a drop covered with micrometer-sized PS particles (adapted from 
[47]). The particle-to-drop size ratio is about 0.003. Circles and crosses: Simulated internal pressure and repulsive energy 
between the particles for an armored bubble with particle-to-drop size ratio equal to 0.15 (adapted from [60]). The two 
pictures show the armored bubble at ∆𝑃 (2𝛾଴ 𝑅଴⁄ )⁄ ≈ 1 and 0 respectively. The collapse pressure ∆𝑃௠௔௫  measures the 
pressure variation from the initial equilibrium state towards the irreversible collapse. (c) Shrinkage rate of an armored 
bubble as a function of the applied (forcing) pressure ∆𝑃௘௫௧  (adapted from [58]). This shows that there exists a pressure 
value ∆𝑃௠௔௫  below which the bubble dissolution is arrested. The pictures show a stable bubble (left) and a collapsed 
bubble (right). (d) Reduced collapse pressure ∆𝑃௠௔௫ (2𝛾଴ 𝑅଴⁄ )⁄  (or equivalently the reduced surface pressure Π௠௔௫ 𝛾଴⁄ ) 
as a function of the particle-to-bubble (or drop) size ratio 𝑎 𝑅଴⁄  , for several results from literature (data of the referred-
to articles have been used to calculate the presented parameters, and in some cases only average values are plotted for 
the sake of clarity). For data from Timounay et al., the presented reduced collapse pressure is ∆𝑃ି (2𝛾ା 𝑅଴⁄ )⁄  (see the 
main text for more details). Images show armored drops at collapse for the three identified collapse regimes, i.e. 
crumpled, faceted and arch regimes. Each regime is associated to a range of collapse pressures and to the corresponding 
range of size ratio (adapted from [57]). (e) Viscoelastic shear moduli : storage G’ (plain) and G” loss (hollow) for different 
particle surface concentrations and of salt concentrations, adapted from [61]. 
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The observed behavior for the collapse pressure has been thought to result from the basic 
elasticity properties of the monolayer. Actually, the collapse of spherical shells is an old problem in 
elastic theory. It is known that the spherical shape is unstable for pressures larger than the critical 
pressure 𝑃஼ = 4 ඥ𝐸௦𝐵 𝑅଴

ଶൗ   [45]. For particle monolayers, we have 𝐸௦ ∼  𝛾଴  and 𝐵 ∼  𝛾଴𝑎ଶ , so the 
critical pressure writes 𝑃஼ ∼  𝛾଴𝑎 𝑅଴

ଶ⁄ , and the reduced collapse pressure is therefore expected to 
be 𝑃஼ (2𝛾଴ 𝑅଴⁄ )⁄ ∼  𝑎 𝑅଴⁄ . This behavior is not in agreement with experimental results presented in 
figure 2-d, which suggests that the classical model for elastic collapse should be adapted to the case 
of armored bubbles and drops. Dedicated physical models have been proposed to describe both the 
collapse pressure and the crumpled shape of the drop/bubble at collapse [56–58]. The basic idea is 
that as stress increases in the monolayer due to interface contraction, particles are pushed out of 
the plane by forces at contact, resulting in an accordion or a sinusoidal shape for the interface. In 
the same time capillary restoring forces restrain those motions and set the magnitude of the elastic 
modulus. Applying this approach Taccoen et al. [58] have derived an expression for the threshold 
pressure ∆𝑃௠௔௫  above which mechanical stability is lost: ∆𝑃௠௔௫ (2𝛾଴ 𝑅଴⁄ )⁄ ≅ 0.8 . This value falls 
within the range of measured collapse pressures at small 𝑎 𝑅଴⁄   values. Moreover, it has been 
suggested that out-of-plane motions are prevented for larger size ratios [57]. The underlying 
mechanism is the entanglement of particles through their contact network at the curved interface, 
leading to the formation of stable particle arches. This mechanism has been shown to modify the 
armor shape at collapse with respect to the crumpled shape observed for 𝑎 𝑅଴⁄ ≪ 0.1: faceted 
shapes were observed for 𝑎 𝑅଴⁄ ≈ 0.1 [57,60] and spherical (i.e. undeformed until sudden collapse) 
shapes were observed for 𝑎 𝑅଴⁄ ≈ 0.2 [57]. 

 
The collapse of armor bubbles has been studied through numerical simulations performed by 

using the Surface Evolver software [60]. Due to the small number of particles that could be simulated, 
the study was focused on rather large particle-to-bubble size ratio, i.e. 𝑎 𝑅଴⁄ ≈ 0.1-0.2. The authors 
were able to reproduce the so-called faceted regime described above, associated to negative 
internal pressures at collapse (see figure 2-b), or equivalently Π௠௔௫ 𝛾଴⁄ > 1. Note that the simulated 
collapse threshold is in agreement with measured collapse pressure in this regime [57]. Moreover, 
it was clearly shown that while the internal pressure decreases, the repulsive energy between 
particles increases (see figure 2-b), or equivalently the compressive stress increases in the monolayer. 

 
Particle rafts: Simple shear flow 
 

Different tools have been developed to characterize interfacial shear rheology for particle 
monolayers with fixed area and to measure the complex shear modulus 𝐺∗ = 𝐺௦ + 𝑖𝜔𝜂௦. 
 

The magnetic rod rheometer [62,63] consists in imposing oscillatory shear to the interface 
between a fixed channel and a needle which is displaced by an electromagnetic force F. For 
microsized PS latex spheres forming aggregates at air/water interface due to salt addition in the 
subphase, Reynaert et al. [62] have estimated 𝐺∗ from the force 𝐹 and the needle displacement 𝑧: 
𝐺∗ = (𝐹/𝑧)((𝑤 − 𝑏)/(2𝐿))  where 𝑤  and 𝐿  are respectively the width and the length of the 
channel and b the radius of the needle. The shear modulus is deduced by assuming a simple 
superposition of the effect of the particle monolayer with the particle-free interface. 
 
 2D equivalents of classical 3D Couette geometries can be instrumented in standard 
rheometers using bicone or ring geometries. Their inherent sensitivity is lower than magnetic needle 
rheometers, but they enable usage of the wide range of experimental protocols and the choice 
between stress or strain control [64]. With this geometry, Barman et al. [61] have measured shear 
viscoelastic moduli for microsized PS spheres at the air-water for different aqueous salt 
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concentrations and particle surface concentrations. Similar experiments have been conducted with 
nanoparticles [65,66]. The linear interfacial rheological signature of G’ and G” versus strain is 
characteristic of soft glassy material [67] (figure 2 - e): at low strain, G’>>G” and G’ and G” are 
expected to be constant for large enough particle surface fractions; for strain approaching a critical 
(yield) strain, G’ decreases whereas G’’ increases slightly and G’ and G” are of the same order of 
magnitude; at large strain, G’ and G” both decrease and G’<G”.  The magnitude of the shear modulus 
increases with the particle concentration [61,62] and with salt concentration [61]. The complex 
viscosity of the monolayer 𝜂௦ = 𝐺∗(𝑖𝜔) , that may account for possible viscoelastic responses, is 
found also to increase with the particle concentration and to diverge when non-aggregated particles 
reach the packing surface fraction [62]. Note that as salt is added to the liquid phase, it induces 
aggregation of the charged particles [61,62,68] and thus changes the microstructure. Thanks to a 
careful study of the microstructure coupled with rheometry,  Barman et al. showed that the 
magnitude of 𝐺∗ is set locally by the degree of restricted particle motion (due to both interparticle 
attraction induced by capillarity and caging effect caused by local microstructure), but elasticity and 
yielding are rather linked to the mesostructural organization:  large area of aligned particles along 
hexagonal packing is the signature of elastic interfaces; at large strains, a transition to viscous-like 
behavior is characterized by the breakup of these large domains into smaller domains that can move 
at the interface. Therefore, particle aggregation (which can be tuned by the chemistry of the solution) 
appears to be an efficient way to create complex interfacial systems with larger resistance to shear 
and to promote the stability of foams or emulsions. In addition, particle geometry and particle 
roughness [69] could be other parameters to be explored. For instance, ellipsoids increase the 
monolayer resistance to shear (larger G and 𝜂 even at low particle coverage) [70]. 

 
 
II - Rheology of Granular Films and Gas Marbles  
 

Interpretation of rheometry experiments performed on armored air-water interface is 
nontrivial because bulk and interfacial flows have to be decoupled. Rheometry performed on 
particulate films is therefore of interest because it gets rid of the bulk/interfacial flow coupling and 
because it measures the mechanical properties of the elements present in foams [71,72].  
 

The viscosity of free-standing particle laden films have been studied for particles within the 
bridging configuration [73] (see figs 1-a,bottom and 3-a). Retraction experiments of such granular 
films have been performed on rectangular frames: a mobile stick was placed on the rectangular 
frame, parallel to the short edge, and then the film was ruptured on one side, which induced the 
rapid motion of the stick.  Local velocities were measured by PIV during the unstationary regime, i.e. 
right after the beginning of the retraction process (Fig 3-b). The equation for 2D momentum 
diffusion was solved by assuming inertial and viscous balance, and the comparison with the 
experimental velocity profiles has provided the 2D viscosity 𝜇ଶ஽ as a function of the particle surface 
fraction 𝜑, as shown in figure 3-c. The 2D granular film behaves like a 2D suspension for which the 
viscosity diverges at the critical particle surface fraction equal to the random close packing, i.e. 𝜑௖ ≈
0.84 . Actually, the experimental data can be described by models accounting for the viscous 
dissipation induced by individual particles motions in the liquid film. Similarly to 3D non-colloidal 
suspensions, the 2D dynamic viscosity follows a Krieger-Dougherty law [74] 𝜇ଶ஽ = 𝜇ଶ஽଴(1 −

𝜑 𝜑௖⁄ )ି௞ఝ೎   with 𝑘 ≈ 1 and 𝜇ଶ஽଴ ≈ 8. 10ିହ𝑃𝑎. 𝑠. 𝑚  (figure 3c).  At low 𝜑 , 𝜇ଶ஽  tends to  twice the 
interfacial dilatational viscosity of the liquid/air interfaces ( 𝜉௦ ≈ 7. 10ିହ𝑃𝑎. 𝑠. 𝑚 ), which is 
consistent with Trapeznikov’s approximation [75] that states 𝜇ଶ஽଴ = 2𝜉௦ + 2𝜂௦ + 𝑒𝜇ଷ஽, where the 
film thickness 𝑒 ≈ 40. 10ି଺𝑚 , the bulk dynamical 𝜇ଷ஽ ≈ 10ିଷ𝑃𝑎. 𝑠  and 𝜂௦ ≈ 10ି଺𝑃𝑎. 𝑠. 𝑚 . 
Assuming that viscous energy is dissipated at the fluid interfaces around the particles, the model of 
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Mills and Snabre [76] adapted to our 2D geometry gives µଶ஽ = µଶ஽଴ 𝜑 ൫1 − ඥ𝜑 𝜑௖⁄ ൯⁄ , which is also 
consistent with the experimental data (figure 3-c).   
 

Starting from the above-described particle film, a granular bubble (a so called gas marble) of 
radius 𝑅଴ can be formed when the film detaches from the frame and closes over itself (see figure 3-
d). These “hollow” objects were named in reference to the liquid marbles, but they appeared to be 
much stronger than their liquid counterpart [77]. The pressure of the bubble, 𝑃௜௡௡௘௥ , was measured 
to be equal to the pressure outside, 𝑃௢௨௧௘௥, which means that the effective surface tension of the 
granular shell is equal to zero, as discussed above for armored drops. Their strength can be 
characterized as follows: By inflating or deflating the gas marble, Y. Timounay measured the maximal 
overpressure 𝛥𝑃ା = 𝑚𝑎𝑥(𝑃௜௡௡௘௥ − 𝑃௢௨௧௘௥)  that the bubble can resist without fracturing its 
granular shell and the minimal underpressure 𝛥𝑃ି = 𝑚𝑖𝑛(𝑃௜௡௡௘௥ − 𝑃௢௨௧௘௥) that the gas marble can 
resist without collapsing. In figure 3-d, the normalized extremal values for 𝛥𝑃ି 𝛥𝑃଴⁄  and 𝛥𝑃ା 𝛥𝑃଴⁄  
are plotted as a function of the size ratio 𝑎/𝑅଴, where 𝛥𝑃଴ = 4 𝛾଴ R଴⁄   is the Laplace pressure of the 
corresponding particle-free bubbles with two interfaces. The gas marble can undergo both large 
overpressures and under-pressures, i.e. ten times larger than 𝛥𝑃଴. This behavior was attributed to 
the capillary-induced cohesion of the grains, which magnitude can be related to the mean radius of 
curvature 𝑟 describing the liquid-gas interface within the monolayer pore space: 𝜎௖௔௣ = 𝛾଴ 𝑟⁄ . Such 
capillary stress provides exceptional cohesion properties for the gas marble’s shell, which can be 
described by an effective surface tension 𝛾ା~10 × 𝛾଴ , or equivalently 𝛥𝑃ା 𝛥𝑃଴⁄ ~10 . Moreover, 
the resistance to collapse during deflation of gas marbles showed the existence of a high pressure 
threshold, i.e. |𝛥𝑃ି|~10 × 𝛥𝑃଴. By analogy with the collapse behavior of elastic shells, the expected 
threshold is equal to 16𝐸(𝑎 𝑅଴⁄ )ଶ,  which gives 𝐸 ≈ 20 𝑘𝑃𝑎 , that is to say 100 times larger than 
the values reported for particles rafts [44,52] and classical armored drops [57]. On the other hand, 
a consistent link can be made with the collapse pressure of classical armored bubbles by considering 
that the reference pressure is 4𝛾ା 𝑅଴⁄   (i.e. instead of 4𝛾଴ 𝑅଴⁄  ), providing a normalized collapse 
pressure 𝛥𝑃ି (4𝛾ା 𝑅଴⁄ )⁄ ≈ 1, which falls within the expected range of values (see figure 2-e). 
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Figure 3: (a) profile view of granular film with particle of 140µm, (b) top view of granular film where the mobile stick is 
on the left and move to the right, PIV images shows that velocities propagate through the film from left to right, (c) 
dynamic viscosities µ2D versus surface fraction of particles for two diameters (590µm and 250 µm), the dotted curve 
corresponds to µଶ஽ = µଶ஽଴ 𝜙 ൫1 − ඥ𝜙 𝜙௖⁄ ൯⁄   and Krieger-Dougherty law for k = 1 corresponds to the solid curve, (d) 
Normalized critical overpressures (ΔP+/ΔP0) and underpressures (ΔP-/ΔP0) measured for gas marbles within both inflation 
and deflation conditions, respectively, as a function of bubble diameter Db. Laplace pressure ΔP0= 4γ/R0 is the pressure 
at equilibrium of the corresponding particle-free bubbles with two interfaces. The stability range of gas marbles is 
between the two horizontal dashed lines. The image n°1 is a side view of a gas marble within its stability range, the image 
2 is a view of a gas marble after fracturing its granular shell, the image 3 is a view of a gas marble after collapsing. 
 
 
 III – Rheology of Particle Foams  
 

The rheology of foams loaded with hydrophilic particles has not been studied so far before the 
pioneer work of Cohen-Addad et al. [35]. Later, Gorlier et al. [36–38] have performed a series of 
experiments with well-controlled systems over a wide range for the particle-to-bubble size ratio, 
providing a global physical picture for the elasticity and the yield stress of such complex fluid foams. 
 
Shear elastic modulus 
 

Cohen-Addad et al. [35] have investigated the viscoelastic properties of foams made from a 
stable foam (Gillette shaving cream) and solid particles of average radius 𝑎, mainly glass and carbon 
beads, but also talc platelets. The particle-laden foams were obtained by whipping the Gilette foam 
and the particles. The bubble radius 𝑅  was measured to be 14 µm and the reported particle-to-
bubble size ratio 𝑎 𝑅⁄   was within the range 0.3-5. Cone-plate or plate-plate cells were used to 
measure the complex shear modulus of foams laden with the different kinds of particles as a 
function of solid volume fractions 𝜙௣ ≲ 0.5. For low strain amplitudes, they observed a linear regime 
and predominantly elastic behavior characterized by an elastic modulus denoted 𝐺൫𝜙௣൯ which was 
found to increase drastically with 𝜙௣. The enhancement of 𝐺൫𝜙௣൯ is all the more pronounced that 
𝑎 𝑅⁄   is small. The authors analyzed their results in terms of rigidity percolation threshold: they 
assumed that the presence of capillary bridges, whose typical range is denoted 2𝑑, allows for the 
transmission of force necessary for rigidity percolation. According to the authors, the particle-laden 
foam could be compared to a dispersion of effective rigid elements of enhanced radius 𝑎 + 𝑑 that 
occupy a volume fraction 𝜙௣

௘௙௙
= 𝜙௣(1 + 𝑑 𝑅⁄ )ଷ . Under these conditions, the value for 𝜙௣  at 

threshold, denoted 𝛷௣௖, is reached when a percolating cluster of effective rigid elements is formed, 
at volume fraction 𝛷௣௖

௘௙௙ . In the limit of small particle volume fractions, the threshold 𝛷௣௖  was 
determined by fitting the relation 𝐺൫𝜙௣൯ 𝐺(0)⁄ ≈ 1 ൫1 − 𝜙௣ 𝛷௣௖⁄ ൯⁄  on the data, as shown in the 
inset of figure 4-f. Values obtained for 𝛷௣௖ as a function of 𝑎 𝑅⁄  are presented in figure 4-f, showing 
good agreement with predicted values assuming that 𝛷௣௖

௘௙௙
≈ 0.42 ± 0.04  and ℎ ≈ 3.8 ± 1.0 µm, 

which was claimed to be within the expected range of capillary interactions. 
 

Gorlier et al. [36,38] have studied the elastic behavior of foams produced with a dedicated in-
line mixing method of precursor aqueous foam with polystyrene particle suspension. The foamy 
mixture was let to drain in the vane-cup rheometry cell before measurement of the shear elastic 
modulus within oscillatory conditions in the linear regime. Figure 4-d presents the results obtained 
for the reduced elastic modulus 𝐺൫𝜙௣൯ 𝐺(0)⁄ , where 𝐺(0) is the elastic modulus estimated for the 
reference aqueous foam, i.e. the particle-free foam with same gas volume fraction 𝜙  and same 
bubble size. The investigated range for the particle-to-bubble size ratio covered small values down 
to 0.01 which revealed that, for each 𝜙௣  value, 𝐺൫𝜙௣൯  reaches an upper limit 𝐺௠௔௫൫𝜙௣൯  at small 
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𝑎 𝑅⁄   values. It was also shown that for each 𝜙௣  value, 𝐺൫𝜙௣൯  reaches a lower limit 𝐺௠௜௡൫𝜙௣൯  at 
large 𝑎 𝑅⁄  values. This behavior could be interpreted in terms of a threshold 𝛷௣௖, as shown in figure 
4-f. However, a natural description for the effect of 𝑎 𝑅⁄  was proposed as a transition for the elastic 
modulus 𝐺൫𝜙௣൯ between the two limits 𝐺௠௔௫൫𝜙௣൯ and 𝐺௠௜௡൫𝜙௣൯, which physical meaning has been 
clarified as follows. 
 

The strong enhancement observed for 𝐺௠௔௫൫𝜙௣൯ has been attributed to the intrinsic elasticity 
of the interstitial skeleton made of packed particles, which has been proved to form only for small 
𝑎 𝑅⁄  values (see figure 4-a). The elastic contribution of the solid foam-shaped skeleton was assumed 
to superimpose to that of the bubble assembly 𝐺(0) . According to this approach, the elastic 
modulus of the bulk granular packing, which forms the skeleton, was expected to be at least two 
orders of magnitude larger than 𝐺(0). This was confirmed by rheometry experiments performed on 
the bulk granular packing [38], and the authors showed that the small pressure 𝑃௖௢௡௙ exerted by the 
foam bubbles on the confined granular packing is responsible for this effect. For 𝐺௠௜௡൫𝜙௣൯, it was 
recognized that in the regime of large 𝑎 𝑅⁄   values, isolated large particles are embedded in the 
elastic foam medium (Figure 4-c) and the corresponding strengthening effect has been deduced 
from previous work on solid particles embedded in continuous matrix [78]. This approach showed 
full agreement with the data (see figure 4-d). 
 

In order to highlight the transition behavior between 𝐺௠௔௫൫𝜙௣൯ and 𝐺௠௜௡൫𝜙௣൯ over the whole 
range of particle volume fractions, a normalized elastic modulus has been introduced: 𝐺෨ =

(𝐺 − 𝐺௠௜௡) (𝐺௠௔௫ − 𝐺௠௜௡)⁄ , which measures the magnitude of 𝐺൫𝜙௣൯ with respect to both upper 
and lower bounds, for which 𝐺෨ = 1 and 𝐺෨ = 0 respectively. It has been shown that, for all 𝜙௣ values, 
𝐺෨decreases from 1 over two orders of magnitude as 𝑎 𝑅⁄  increases from 0.01 to 1, following a power 
law behavior: 𝐺෨ ∼ (𝑎 𝑅⁄ )ିଵ.ହ. An example for such a behavior is shown in figure 4-g, where data 
from Cohen-Addad et al. [35] have been successfully included within this description. Note that the 
decrease is not observed from the smallest 𝑎 𝑅⁄  values, for which 𝐺෨ ≈ 1. This behavior has been 
attributed to the fact that particles can pack between bubbles until their size become larger than 
the size of interstices between bubbles, then further increase of 𝑎 𝑅⁄   results in the progressive 
exclusion of the particles from the bulk foam network (Figure 4-b-c). This transition appeared to be 
better described by the so-called confinement parameter 𝜆, which has been introduced initially to 
predict the capture of single particles within the foam network [34], and which has been proved to 
be a control parameter for the drainage of particle-laden foams [79–81]. Finally, it has been shown 
that the normalized parameter 𝐺෨  follows the same behavior than the counterpart normalized 
parameters for drainage and mechanics of particle-laden foams [81,82].  
 
Yield stress 
 

As far as we know, the issue of how the yield stress of aqueous foams is modified by solid 
hydrophilic particles has been considered only in the paper from Gorlier et al. [37]. Yield stress 
𝜏௬൫𝜙௣൯ was measured from start-flow curves at low shear rates for the systems presented above. 
The reduced shear stress 𝜏௬൫𝜙௣൯ 𝜏௬(0)ൗ  was measured to increase as a function of both 𝜙௣ and the 
inverse of the particle size. The authors have analyzed their results with the same basic idea than for 
the elastic modulus: the yield stress of particle-laden foams exhibits a transition behavior between 
two limit values, i.e. 𝜏௬,௠௔௫൫𝜙௣൯ for small 𝑎 𝑅⁄  values and 𝜏௬,௠௜௡൫𝜙௣൯ for large 𝑎 𝑅⁄  values. 
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Figure 4: (a,b,c) Images from [37] showing solid spheres configuration in aqueous foam with bubble radius 𝑅 = 225 µm. 
Particle radius 𝑎 = 10 µm (a), 70 µm (b) and 250 µm (c). (d) Elastic modulus 𝐺൫𝜙௣൯ of particle-laden foam, divided by the 
elastic modulus 𝐺(0) of the reference particle-free foam (𝑅 = 225 µm), as a function of the particle volume fraction 𝜙௣ 
for several values of the particle-to-bubble size ratio 𝑎 𝑅⁄   [36]. Solid curves indicated by 𝐺௠௜௡  and 𝐺௠௔௫   correspond 
respectively to regimes for large and small 𝑎 𝑅⁄  values (see main text for details). (e) Yield stress 𝜏௬൫𝜙௣൯ of particle-laden 
foam, divided by the yield stress 𝜏௬(0) of the reference particle-free foam (𝑅 = 225 µm), as a function of the particle 
volume fraction 𝜙௣ for several values of the particle-to-bubble size ratio 𝑎 𝑅⁄  [37]. Solid curves indicated by 𝜏௬,௠௜௡ and 
𝜏௬,௠௔௫  correspond respectively to regimes for large and small 𝑎 𝑅⁄   values (see main text for details). (f) Rigidity 
percolation threshold 𝛷௣௖  as proposed in [35] as a function of the particle-to-bubble size ratio 𝑎 𝑅⁄  (𝜙௣ = 0.07). Data 
from [35] (circles represent spherical particles and the square represents talc particles) and [36] are presented together, 
showing the existence of a lower limit for 𝛷௣௖   at small 𝑎 𝑅⁄   values (indicated by the dotted line). The solid line 
corresponds to 𝛷௣௖ = 𝛷௣௖

௘௙௙(1 + 𝑑 𝑅⁄ )ିଷ with parameters 𝛷௣௖
௘௙௙ = 0.42 and 𝑑 = 3.8 µm [35]. Inset: Illustration of how the 

parameter 𝛷௣௖  is determined from the plot of the inverse of the reduced elastic modulus as a function of the particle 
volume fraction, by fitting the equation 𝐺(0) 𝐺൫𝜙௣൯⁄ ≈ 1 − 𝜙௣ 𝛷௣௖⁄ . (g) Normalized elastic modulus 𝐺෨ [36] (𝜙௣ = 0.07) 
and normalized yield stress  𝜏̃௬ [37] (𝜙௣ = 0.05) (see main text for more details) as a function of the particle-to-bubble 
size ratio 𝑎 𝑅⁄ . Data from [35] are also presented (circles represent spherical particles and the square represents talc 
particles). The dashed line corresponds to 𝐺෨ ∼ (𝑎 𝑅⁄ )ିଵ.ହ and the solid line corresponds to 𝜏̃௬  ≈ 𝑒𝑥𝑝(−2𝑎 𝑅⁄ ). 
 

In the regime of large particles embedded in aqueous foam, micro-mechanical approach 
suggests that the yield stress can be deduced from the knowledge of the elastic modulus [83–85]. 
Applying this result to particle-laden foam gave the following relation: 𝜏௬,௠௜௡൫𝜙௣൯ 𝜏௬(0)ൗ =
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ቀ൫1 − 𝜙௣൯ 𝐺௠௜௡൫𝜙௣൯ 𝐺(0)⁄ ቁ
ଵ ଶ⁄

 , which was found to describe accurately the yield stress in this 
regime (see figure 4-e). On the other hand, the yield stress in the regime of small 𝑎 𝑅⁄  values is much 
more difficult to describe because it involves the shear-induced rupture of the granular packing 
confined between the bubbles. Rupture of bulk granular solids is known to be described by the 
Mohr-Coulomb criterion, where the shear stress at rupture is proportional to the confinement 
pressure: 𝛵௬ = µ𝑃௖௢௡௙ , where µ  is the so-called internal friction coefficient. By resorting to yield 
stress measurements with foams made with calibrated yield stress fluids [37], the authors were able 
to propose a simple relation to describe the yield stress of particle-laden foams in the regime of 
small 𝑎 𝑅⁄   values (see figure 4-e): 𝜏௬,௠௔௫൫𝜙௣൯ 𝜏௬(0)ൗ = 1 + 𝑐𝜙௣

ସ ଷ⁄
𝐶𝑎௬

ଶ ଷ⁄  , where 𝑐 ≈  200 is a 
numerical coefficient and 𝐶𝑎௬ = 𝛵௬𝑅 𝛾⁄  is the Bingham capillary number. This relation means that 
the foam’s yield stress is governed by the Mohr-Coulomb condition for the interstitial granular 
skeleton. 
 

The transition regime was considered similarly to the case of the elastic modulus and the 
normalized yield stress was introduced:  τ෤௬ = ൫𝜏௬ − 𝜏௬,௠௜௡൯ ൫𝜏௬,௠௔௫ − 𝜏௬,௠௜௡൯ൗ . In contrast to 𝐺෨,  τ෤௬ 
was not found to follow a power law behavior, but instead it follows an exponential decay (see figure 
4-e), i.e.  τ෤௬ ≈ 𝑒𝑥𝑝(−2𝑎 𝑅⁄ ) . Such a difference has been attributed to bubble rearrangement 
involved by yielding (i.e. the so-called T1 topological events [86]), which can be significantly 
prevented by particles if the average distance between neighboring particles is less than one bubble 
size. Actually, bubbles bridging neighboring particles possess yielding properties which are related 
to the Rayleigh-Plateau instability [87], which contrasts with yielding of bulk foam bubbles. 
 
 
 
Conclusion  

 
Results presented in this review highlight the different ways solid particles can be used to 

influence the rheological behavior of films and foams. Small hydrophobic particles can adsorb to the 
liquid-gas interfaces and form the so-called armored interfaces and Pickering foams. Whereas long-
term stability against both coalescence and ripening seems to be the strong feature of Pickering 
foams, applied shear has a catastrophic impact on their stability, and their rheological behavior has 
not been studied so far. On the other hand, studies performed on the rheology of the armored 
interfaces, either particle rafts, either particle films or armored bubbles, allow those stability issues 
to be understood. 

 
Shear modulus magnitude of “loose” particle raft increases with average particle surface 

fraction and is set locally by the degree of restricted particle motion, but  yielding are rather linked 
to the mesostructural organization. Approaching the random close packing of the particles in 2D, 
the transition to jamming is observed by the divergence of the viscosity for both particle raft and 
granular film. A “dense” particle raft compression can be modeled by continuum theory of thin 
elastic sheet whose moduli are particle size dependent for monodisperse raft, but the granular 
character has to be accounted for confined geometry or for bidisperse systems due to wall friction 
and granular chain forces. 

 
Studies on shrinkage of single armored bubbles are consistent with those performed on 

particle rafts. Moreover, they give significant understanding on how attached particle layers can 
oppose the capillary-driven foam ripening process if they are within the jammed regime. This 
property, which can be quantified by the bubble collapse pressure, appears to be significantly 
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influenced by the particle-to-bubble size ratio. At large particle-to-bubble size ratio, the pressure 
collapse can overpass the reference Laplace pressure of the bubble due to entanglement of particles 
at the curved interface, leading to the formation of stable particle arches and the faceting of the 
shell, instead of crumpling observed at collapse for small size ratio. For bubbles armored by a 
granular film, i.e. Gas Marbles, the collapse pressure is one order of magnitude larger than for 
classical armored bubbles due to the capillary cohesion between the particles that support the 
bubble liquid film. 

 
For hydrophilic particle laden foams, the elasticity and yielding under shear are strongly 

dependent of the particle-to-bubble size ratio as well as the particle volume fraction. The smallest 
particles organize through the network between the gas bubbles and form a granular skeleton. Such 
a structure with tightly packed particles is responsible for the strongly enhanced elasticity observed 
in this particle-to-bubble size regime. Moreover, yielding is governed by the classical Mohr-Coulomb 
criterion. For large particle-to-bubble size ratio, the particles are excluded from the bulk foam 
network, and the rheological properties of the foam are only weakly enhanced.  
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