
HAL Id: hal-02171334
https://enpc.hal.science/hal-02171334v1

Submitted on 10 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Imaging non-Brownian particle suspensions with X-ray
tomography: application to the microstructure of

Newtonian and visco-plastic suspensions
Stephanie Deboeuf, Nicolas Lenoir, David Hautemayou, Michel Bornert, F.

Blanc, Guillaume Ovarlez

To cite this version:
Stephanie Deboeuf, Nicolas Lenoir, David Hautemayou, Michel Bornert, F. Blanc, et al.. Imaging non-
Brownian particle suspensions with X-ray tomography: application to the microstructure of Newtonian
and visco-plastic suspensions. Journal of Rheology, 2017, 62 (2), pp.643. �10.1122/1.4994081�. �hal-
02171334�

https://enpc.hal.science/hal-02171334v1
https://hal.archives-ouvertes.fr


HAL Id: hal-02171334
https://hal-enpc.archives-ouvertes.fr/hal-02171334

Submitted on 10 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Imaging non-Brownian particle suspensions with X-ray
tomography: application to the microstructure of

Newtonian and visco-plastic suspensions
Stephanie Deboeuf, Nicolas Lenoir, David Hautemayou, Michel Bornert,

Guillaume Ovarlez

To cite this version:
Stephanie Deboeuf, Nicolas Lenoir, David Hautemayou, Michel Bornert, Guillaume Ovarlez. Imag-
ing non-Brownian particle suspensions with X-ray tomography: application to the microstructure of
Newtonian and visco-plastic suspensions. Journal of Rheology, 2017. �hal-02171334�

https://hal-enpc.archives-ouvertes.fr/hal-02171334
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Imaging non-Brownian particle suspensions with X-ray

tomography:

application to the microstructure of Newtonian and visco-plastic

suspensions

S. Deboeuf∗

Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7190,

Institut Jean Le Rond dAlembert, 75005 Paris, France

N. Lenoir

PLACAMAT, UMS 3626 CNRS-Univ. de Bordeaux, Pessac, France

D. Hautemayou and M. Bornert
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Abstract

A key element in the understanding of the rheological behaviour of suspensions is their mi-

crostructure. Indeed, the spatial distribution of particles is known to depend on flow history in

suspensions, which has an impact on their macroscopic properties. These micro-macro couplings

appeal for the development of experimental tools allowing for the rheological characterization of

a suspension and the imaging of particles. In this paper, we present the technique we developed

to image in three dimensions the microstructure of suspensions of non-Brownian particles, using

X-ray computed tomography and sub-voxel identification of particle centers. We also give exam-

ples of the information we can get in the case of Newtonian and visco-plastic suspensions, referring

to Newtonian and visco-plastic suspending fluid. We compute three dimensional pair distribu-

tion functions and show that it is possible to get a nearly isotropic microstructure after mixing.

Under shear, this microstructure becomes anisotropic in the shear plane (velocity-velocity gradi-

ent plane), whereas it is almost isotropic in the two other planes (velocity-vorticity and velocity

gradient-vorticity planes). When changing the plane of shear (from a squeeze flow to a rotation

flow), the microstructure reorganizes to follow this change of shear plane. It is known that for

Newtonian suspensions the anisotropy is independent on the shear rate; we show here that for a

visco-plastic suspension it depends on it. Finally, we study the structuration close to boundaries

and we evidence some particle alignment along both solid surfaces and, more surprisingly, along

free interfaces.

∗ sdeboeuf@dalembert.upmc.fr; http://www.ida.upmc.fr/˜deboeuf/
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I. INTRODUCTION19

Many flowing materials encountered in nature (landslides, debris or lava flows, ...) or20

raw materials produced in industry (concrete, batter, ...) are mixtures of dispersed solids in21

a liquid. These systems are composed of a wide range of materials of various sizes, which22

makes them complex to understand. In order to predict the behaviour and optimize the use23

of these suspensions, a useful step is to identify model systems capable of reproducing the24

phenomenology of interest and to understand the rheology of controlled suspensions. When25

length scales between the coarser and the finer dispersed particles of a suspension are well26

separated, a possible model system is a visco-plastic suspension of solid particles, referring to27

a visco-plastic suspending fluid, i.e. of nonlinear viscosity with a yield stress. Indeed, from a28

rheological point of view, a fresh concrete can be considered as coarse particles (sand, gravel)29

suspended in a visco-plastic fluid (cement paste) [1, 2]. Even more simply, one can consider30

a Newtonian suspension of solid particles as a model system, referring to a Newtonian31

suspending fluid [3]. A lot can indeed be learnt from such materials: studying first the32

interactions of multiple particles in a linear (Newtonian) fluid is crucial to understand their33

interaction in a nonlinear medium [4, 5]. This knowledge can then be applied to materials34

closer to applications such as cementitious materials [2, 6].35

A key element in the understanding of the rheological behaviour of suspensions is their36

microstructure [7, 8]. Indeed, the spatial distribution of particles in suspensions is known to37

depend on the flow history – an anisotropic distribution is induced by shear –, which has an38

impact on their properties [7, 9–14] – an anisotropic microstructure is at the origin of normal39

stress differences and of viscosity variations during transient regimes. These micro-macro40

couplings between microstructure and flow appeal for the development of experimental and41

numerical tools allowing for the characterization of the rheology of a suspension and the42

imaging of its microstructure. A lot of numerical studies used Stokesian dynamics equations43

[8, 15–18]. The existing experimental techniques efficient for non-Brownian suspensions are44

all based on optics. Non-Brownian particles are indeed too large to use scattering techniques45

such as X-ray scattering or coherent diffraction imaging. For non transparent particles in a46

transparent fluid, it is nevertheless possible to image the microstructure only near the free47

surface [10] or near a transparent boundary. As we will demonstrate here, the proximity of a48

boundary (a solid wall or a free interface) influences strongly the microstructure and makes49
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it different from the one in the bulk. The bulk microstructure can be obtained only for50

specific suspensions, where particles and the fluid have the same optical index; a laser sheet51

can then be used to light a plane embedding a fluorescent stain so as to visualize and identify52

particles in two dimensions (2D) [11, 12]. Obtaining a three dimensional microstructure53

then implies to displace the position of the laser sheet. Confocal microscopy can also be used54

for micron-sized particles [18, 19], submitted to Brownian diffusion, that is in competition55

with shear flow, quantified by the Peclet number (being the ratio of hydrodynamic over56

thermal forces). Here we choose to use non intrusive X-ray techniques as a promising tool57

to image in the bulk suspensions in three dimensions (3D).58

In this paper, we present the technique we developed to image in 3D the microstructure59

of suspensions of non-Brownian particles, using X-ray computed tomography (CT) and then60

identifying by image analysis the particle centers with a sub-voxel resolution. All the details61

to duplicate our technique are given. We give examples of the information we can get in the62

case of Newtonian and visco-plastic suspensions. We compute 3D pair distribution functions63

(pdf) and show that it is possible to get a nearly isotropic microstructure after mixing. Under64

shear, this microstructure becomes anisotropic in the shear plane (velocity-velocity gradient65

plane), whereas it is nearly isotropic in the two other planes (velocity-vorticity and velocity66

gradient-vorticity planes). When changing the plane of shear (from a squeeze flow to a67

rotation flow), the microstructure reorganizes to follow this change of shear plane. While it68

is known that for Newtonian suspensions the anisotropy is independent on the shear rate, we69

show that for a visco-plastic suspension it depends on it. Finally, we study the structuration70

close to boundaries and we evidence particle alignment along both solid surfaces and more71

surprisingly along free interfaces.72

In Sec II, we present the principles of our study and we provide the details on the studied73

suspensions and the set-up. Sec III is devoted to the X-ray tomography technique and to the74

method we developed to identify particles center and compute pair distribution functions.75

In Sec IV, we present various examples of the microstructure of Newtonian and visco-plastic76

suspensions.77
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a) b) c)

FIG. 1. X-ray computed micro-tomography set-up (a and b) and dedicated parallel plates set-up

(c). The sketch (a) shows the X-ray source (in white), the imaging device (in green), the rotation

(in red) and translation (in blue) stages and the parallel plates set-up (in yellow).

II. MATERIALS AND METHODS78

A. Goals and general principles79

Our goal is to get enough information at the microstructure scale to guide developments80

of micro-mechanical models for complex suspensions rheology. Thus, we need to image81

particles in a flow cell and to characterize their spatial distribution for various flow histories.82

Our system made of a suspension in a rheometrical set-up should allow for the investiga-83

tion from small to large space scales, from the length of the dispersed particles to the whole84

suspension. The flow cell should be large enough to be representative of a macroscopic shear85

flow, to ensure that the material exhibits a bulk behaviour not influenced by finite size or86

non local effects [20], and to get enough statistics for studying the microstructure. This87

leads us to choose a rheometer equipped with a parallel plates geometry (Fig. 1c). In the88

same time as doing rheology, we want to image the microstructure in 3D, even in the case89

of non matched optical index materials. This leads us to use X-ray CT imaging, which is90

efficient for many suspensions and geometries, as long as there is enough X-ray absorption91

contrast between particles and the fluid.92

The sample to image is placed on a rotating stage between an X-ray source and a 2D93

imaging device (Fig. 1), which monitors the transmission of X-rays through the sample. In94

our case, the imaging device was a PaxScan2520V flat panel detector from Varian, made of95

a CSI scintillator and a matrix of 1920x1536 pixels (among which 1840x1456 are effective),96

with a pixel width of 127 µm. This provides a 2D radiograph, accounting for the total97
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absorption along linear paths through the sample. A series of 2D radiographs for different98

rotation angles of the sample (typically over 360◦ in a lab X-ray CT device) then allows for99

the reconstruction of the 3D map of absorption coefficients [21–23]. If particles and the fluid100

do not have the same absorption coefficient, we can finally achieve to detect the particles.101

This map is discretized over elementary volumes called voxels (i.e. volumic pixels). The102

achievable minimum voxel size is given by the ratio of the size of the imaged sample over103

the number of pixels in the detector width. The typical width of the CCD detectors used104

for X-ray CT is about 2000 pixels. Noting D, the diameter of the parallel plates geometry,105

the minimum possible voxel size is D/2000. To identify precisely the particles center, their106

diameter d should be at least 10 voxels, i.e. d & D/200. The gap size H between the plates107

in the parallel plates geometry should contain at least 10 particles to avoid some finite size108

effects, i.e. H & D/20, which is compatible with the study here but limits the possible109

aspect ratios diameter/gap of the geometry to D/H . 20. We will show later that our110

home-made algorithms allow us to refine particle centers positions at a sub-voxel resolution111

of an order of d/100, that ultimately allows for a fine characterization of the microstructure.112

Here (Fig. 2a), the diameter of the parallel plates geometry id D = 2cm, the gap of the113

geometry is H = 2mm, the size of particles d is between 100µm and 200µm, the size of114

voxels is 12µm and the final accuracy on the particles centers in most cases presented here115

is 6µm, but it can be decreased down to 1µm if necessary.116

X-ray CT imaging may demand a non negligible time for scanning. The time for one scan117

depends of the X-ray set-up, the suspension properties and the chosen spatial resolution (X-118

ray flux, number of radiographs, time exposure, ...). With our X-ray CT device and the119

chosen spatial resolution, the whole sample can be scanned in 20 minutes but with a poor120

signal-to-noise ratio. The results presented here are obtained from 1 hour-scan in order to121

enhance the image quality. During the time of a scan, particles must not move within the122

suspending fluid (i.e. displacement less than 1 voxel or even less, if subvoxel accuracy is123

expected). This leads us to use first a visco-plastic fluid as a suspending fluid ensuring that124

particles do not move as long as stresses are smaller than the yield stress. Then we apply to125

our suspension a given shear history, then stop the flow and image the material at rest with126

a frozen structure, which is supposed to be close to the structure under flow. The underlying127

hypothesis is that relaxation of the microstructure at rest is negligible. This flow-arresting128

technique was already used before for Brownian suspensions [18]. In a second time, we129

6



FIG. 2. (a) Scheme of the parallel plates set-up: D and H are the plates diameter and gap, d is

the particles diameter, Ω and ϑ are the rotational and translational velocities of the top plate. (b)

Schemes of the rotational and squeeze shear flows: the suspension velocity uθ(r, z) and ur(r, z) are

aligned with the azimuthal and radial directions respectively. (c) A picture processed from X-ray

slices showing the rough surface with grooves of the set-up’s plates.

succeed to use a Newtonian suspension with density-matched particles and fluid, to avoid130

any buoyancy effects at rest. In principe, various types of suspensions may be imaged and131

studied with our technique, as soon as particles or suspended objects do not move during the132

time of a X-ray scan. For particles as small as a few µm, Brownian fluctuations may call for133

even quicker X-ray micro-tomograph (e.g. Synchrotron source). In terms of concentration134

of particles, we have successfully image in 3D suspensions at solid fractions as high as 50%135

and it should be possible to go even higher.136

TABLE I. Properties of particles and fluids used for the Newtonian and the visco-plastic suspen-

sions: average diameter d of particles, viscosity η of the Newtonian fluid, elastic shear modulus

G′, yield stress τy and consistency K of the visco-plastic fluid and density ρ of the fluid and

density-matched particles.

PMMA Newtonian Density

d (µm) η (Pa.s) ρ

170± 12 1.3 1.19

PS Yield stress Density

d (µm) G′ (Pa) τy (Pa) K (Pa.s0.5) ρ

138± 8 250 26 5.1 1.05
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B. Suspensions of non-Brownian particles137

Two suspensions are studied here (Table I): one is composed of poly(methyl methacry-138

late) (PMMA) spheres in a Newtonian fluid and the other is composed of polystyrene139

(PS) spheres in a visco-plastic fluid. In both cases, particles and suspending fluids are140

density-matched to avoid any buoyancy effects. The PMMA particles average diameter141

is 170µm±12µm and the PS particles average diameter is 138µm±8µm. These diameters142

were measured from optical pictures of bead samples. With such a size, particles are non-143

Brownian and supposed to be non-colloidal. For all of experiments presented in this work,144

the solid fraction φ of the suspensions was observed to be uniform within our rheological145

set-up.146

The Newtonian suspending fluid is an acrylic double matching liquid from Cargille Lab.147

Its density is 1.19 and its viscosity 1300 mPa.s at 25◦C. The natural contrast of X-ray148

absorption between particles and the fluid is sufficient to separate them in final X-ray CT149

images.150

The visco-plastic fluid, of density 1.05, is a concentrated emulsion of aqueous drops151

dispersed at a 77.5% volume fraction (volume of dispersed phase over total volume) in a152

continuous oily phase. Surfactant SPAN80 is added in dodecane oil at 7.5% in mass (SPAN80153

mass over dodecane mass) and iodine sodium salt is added in water at 15% in mass (NaI154

mass over H2O mass) to stabilize the emulsion and enhance contrast for X-ray imaging. The155

droplets size is of order of 1µm, much smaller than the particles size. This ensures that the156

emulsion is seen as a continuous material – a visco-plastic fluid – by the particles [2, 4, 5].157

The behaviour of the visco-plastic fluid is well described by a Herschel-Bulkley law, relating158

the shear stress τ to the shear rate γ̇, with τy = 26Pa and K = 5.1Pa.s0.5:159

τ = τy +Kγ̇0.5, if τ ≥ τy, (1)

valid in the steady flow regime, i.e. for stresses larger than the yield stress τy. The elastic160

contribution to its behaviour is accounted for by the elastic shear modulus G′ = 250Pa.161

More details on the rheology of both background (Newtonian and visco-plastic) fluids,162

with and without particles, in [5] and [24] respectively.163
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a) b)

c)

FIG. 3. X-ray radiograph corresponding to the transmitted intensity of X-rays through the sample

(the visco-plastic suspension) along one linear path (a), reconstructed horizontal slice encoding for

X-ray absorption of voxels in the shear cell at a solid fraction φ ' 35% (b) and zoom of this slice

(c) corresponding to the white rectangle drawn in (b). The scale bar drawn in (c) is 1mm long.

C. X-ray microtomography164

In this study, we used the X-ray microtomography device of Laboratoire Navier, made165

up of an Ultratom scanner designed and assembled by RX Solutions (Annecy, France) on166

the basis of the specific requests of Laboratoire Navier. Using the commercial software Xact167

developed by this company, based on the filtered retroprojection algorithm adapted to cone-168

beam geometry [25], 3D images encoding for the X-ray absorption field are reconstructed169

from the recorded 2D radiographs. Consistently with the definition of the final 3D images,170

1440 radiographs have been recorded over 360◦. Note that for each rotation angle, 6 radio-171

graphs (with an exposure time for one radiograph of 1/3s) have been averaged to improve172

the signal to noise ratio. The final 3D images had a resolution of 12µm and a definition of173

1840x1840x170 voxels.174

One of the advantages of this technique is that the spatial resolution can be isotropic, con-175

trary to other scanning techniques, such as confocal microscopy, laser scanning or refractive176

index matched scanning [12, 26–29]. This allows to get information on the microstructure177

with the same accuracy in all planes. Figure 3 shows one example of a 2D radiograph of the178

visco-plastic suspension confined between the two parallel plates and 12µm-thick horizontal179

slices of the reconstructed 3D image for a solid fraction φ ' 35%.180
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D. Dedicated rheological set-up181

The suspension is sheared at the macroscopic scale in a parallel plates geometry (Fig. 2a)182

of diameter D = 2cm and gap H = 2mm (aspect ratio D/H = 10), controlled by a rheometer183

(Kinexus, Malvern). The plates of the shear cell (Fig. 2c) are made rough to prevent slipping184

of the suspension at solid boundaries. They have been treated as follow: each PMMA plate185

was roughened thanks to sand-paper of roughness size 150µm, then a grid pattern of grooves186

was imprinted thanks to a file with an edge (triangular lime). In the following, we will187

compare some results with smooth PMMA plates and roughened PMMA plates.188

To image a sample in 3D, 2D radiographs have to be recorded for many different view189

angles, which means that X-rays have to be allowed to propagate through the sample for190

all directions nearly perpendicular to the rotation axis, which would not be possible with191

a standard rheometer (its body would block X-rays when placed between the source and192

the detector). This leads us to build a dedicated parallel plates set-up, made of PMMA to193

ensure a low X-ray absorption by the set-up (Fig. 1c). This set-up can be inserted in the194

rheometer for shearing the material and characterizing its rheological response. After a given195

shear history in the rheometer, it can then be blocked thanks to a chuck, removed from the196

rheometer and carefully moved (to avoid any disturbance) to the X-ray CT set-up, where it197

is put on the rotating stage for imaging. During the whole duration of X-ray imaging, the198

parallel plates set-up is blocked. We checked that our ex-situ experiments (moved from the199

rheometer to the X-ray CT set-up) lead to the same results as in-situ ones (for which both200

shear and imaging are on the spot).201

In a parallel plates geometry, when rotation is imposed to the top plate at a rate Ω202

while keeping fixed the bottom plate (Fig. 2b), the force balance equation and boundary203

conditions (no slip at the two plates) predict a simple shear of the fluid in the orthoradial204

plane (θz), the single non-zero value of the shear rate tensor being:205

γ̇(r) = 2dzθ(r) = Ωr/H, (2)

with an azimuthal velocity:206

uθ(r, z) = Ωzr/H, (3)

(r, θ, z) being the cylindrical coordinates [30]. The rotational shear is not homogeneous but207

depends linearly on the radial direction r. This analysis holds not only for Newtonian fluids,208
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but for complex fluids too.209

In the same geometry of parallel plates, a squeeze flow can be imposed by translating210

vertically one plate at a velocity ϑ (Fig. 2b). It can be approximated by a simple shear211

flow in the radial plane (rz), in the case of a large aspect ratio D/H and of no slip at212

solid boundaries [30–32]. In this case, the shear rate γ̇(r, z) = 2dzr(r, z) is inhomogeneous213

and a priori unknown: it depends on the rheology of the fluid of interest. Nevertheless,214

a convenient approximation of the maximal shear rate, valid for a Newtonian fluid in the215

lubrication approximation, is:216

γ̇ = 3Dϑ/(2H2). (4)

Note that by symmetry, the shear has a different sign in the upper and lower part of the217

suspension through the central surface at z = 0.218

In order to shear the material in a parallel plates geometry, it is first poured on the219

bottom plate, then it is squeezed by the top plate to reach the required gap. So even if the220

interest is in a rotational shear, the material generally experiences first a squeeze flow during221

the loading of the fluid in the geometry, which might affect its initial state. That is why in222

the following, we will investigate the impact of both flows on the suspension microstructure.223

III. IMAGE ANALYSIS224

An accurate identification of particle centers from the obtained 3D images is crucial for the225

computation of pair vectors and pair distribution functions to characterize the microstructure226

of the suspension. Thus, we choose to develop home-made algorithms to be able to identify227

particles center at a sub-voxel resolution.228

In all the text, the 3D images I we work with are fields of absorption coefficients encoded229

as intensity levels without unit measurement. In practice, 16 bits images have been used230

(grey levels between 0 and 216-1).231

Figure 4 shows the typical greylevel profile of a particle: grey levels of all voxels in the232

neighborhood of a particle are plotted against the distance r to the voxel considered to be233

its center. Assuming the density of the particles to be uniform, one would have expected a234

Heaviside-like shape for such plots, with a uniform grey level for r lower than the particle235

radius (of the order of 6 voxels), corresponding to the absorption coefficient of PMMA or236

PS, and another (larger) uniform grey level for larger r, corresponding to the absorption of237
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FIG. 4. Absorption levels (without unit measurement, included between 0 and 216 − 1) of voxels

over one particle and its close neighbourhood in the visco-plastic suspension at a solid fraction

φ ' 40%, as a function of the distance r to its center, from the raw and filtered images I (a) and

If (b)

the fluid.238

Actual profiles first differ from ideal profiles because of natural random image noise, which239

cannot be avoided, especially if fast imaging conditions are required. Such fluctuations are240

indeed observed near r = 0, up to a distance of about 2 to 3 voxels, where grey levels are241

essentially uniform on average but fluctuate randomly.242

The second discrepancy with respect to the ideal situation takes the form of a gradual243

increase of the average grey levels for r varying from about 3 to 7 voxels. While there244

are still fluctuations associated to natural image noise, the smooth progressive increase of245

the average grey level is due to the limited spatial resolution of the CT imaging device.246

Indeed the grey level of a given voxel in the reconstructed image should be considered as247

a spatial convolution of the physical absorption coefficient of the material (relative to the248

spectrum of the polychromatic X-ray beam) with some kernel of small finite size. This249

kernel characterizes the resolving power of the imaging system. For CT imaging systems,250

it is sensitive to various parameters, such as the finite spot size of the X-ray source (which251

can be evaluated to be about 8 µm for our imaging conditions), diffusion effects of the252

scintillator, fill factor of the pixel matrix, blurring effects of electronic device,... A more253

detailed discussion can be found in [33]. In the present setup, and considering the grey level254

profile presented in figure 4, the radius of this kernel is likely to be of the order of 2 to 3255
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TABLE II. Values of the parameters `noise, rneigh, rmin and rsym used for image analyses, with d,

the diameter of particles

`noise rneigh rmin rsym

1 voxel ∼ 7 voxels ∼ 6 voxels ∼ 7 voxels

∼ d/10 0.6d 0.5d 0.6d

∼ 12µm ∼ 83µm ∼ 69µm ∼ 83µm

voxels, which explains that the sharp theoretical particle-matrix interface is degraded into256

a smooth interface with a thickness of about 5 voxels.257

A third discrepancy is for r larger than 7 voxels, where the profile seems to tend on258

average to a uniform grey level, expected to be related to the absorption coefficient of the259

fluid, but with much larger fluctuations than within the particles. This might be due to260

other neighbor particles: the voxels that are close to the latter will exhibit a lower grey level261

than those further away.262

In the following, we will finally take advantage of these (slightly) inhomogeneous grey263

level profiles of particles in order to determine accurately their position.264

Below we describe the successive steps. First, we detect approximately particle centers265

as the local minimum absorption and we get rid of false and multiple detections. Second,266

we refine particle center positions at a sub-voxel resolution by using the symmetry of the in-267

creasing absorption around the center. Finally, we explain how we compute pair distribution268

functions.269

A. Detection of particles270

We process the 3D images with 3D morphological operations within Matlab. We use as271

few as possible filtering operations and we introduce as few as possible tunable parameters,272

whose values are not severely chosen, so that our method depends only slightly on the value273

of parameters and is efficient for various solid fractions without changing the value of any274

parameter.275

First, we smooth the raw 3D image I by filtering high spatial frequency noise with a276
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a) b) c) d)

FIG. 5. Two dimensional (a, b) and three dimensional (c, d) images of the visco-plastic suspension

of length about ∼ 1cm at a solid fraction φ ' 35% : raw images I (a, c) and filtered images If (b,

d)

Gaussian filter of characteristic size `noise = 1 voxel: If = f ∗ I with277

f(x) = exp (−(
x

2`noise
)2)/

∫ ∞
−∞

exp (−(
x

2`noise
)2)dx, (5)

where the symbol ∗ refers to the convolution operator: (f ∗ I)(x0) =
∫∞
−∞ f(x)I(x− x0)dx,278

and If is the image we work with in the following steps (Fig. 4 and 5). This filtering279

operation has a long-range effect even in the case of a small value for the length `noise, due280

to the extended range of integration in the convolution operation; in practice, the integration281

is realized over a size of 21x21x21 voxels, chosen after we checked that a larger size does not282

change the value of If .283

Second, we extract the positions of voxels showing a local minimum of absorption as a284

first estimation of the particle centers.285

False detections corresponding to local extrema in the air, the plates or the fluid, as well286

as multiple detections (several centers for the same particle) are possible. In practice, they287

represent less than 1% of all detections; however, we do get rid of these false and multiple288

detections thanks to the two following steps.289

• We first note that X-ray absorption coefficients of air µair, particles µparticles and290

suspending fluids µfluid are well separated and sorted according to:291

µair < µparticles < µfluid. (6)

To get rid of false detections, we build an histogram of the values of absorption of292

the detected extrema (Fig. 6). In practice, we do not use the value of the extrema,293

but the averaged value over a close neighbourhood around the extrema position, of294
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FIG. 6. Histogram (in fraction) of absorption values (without unit measurement) averaged over a

close neighbourhood of size rneigh around the detected extrema, for the visco-plastic suspension at

a solid fraction φ ' 35%, before selection of extrema identified as real particles.

size rneigh taken equal to 60% of the mean diameter of particles (Tab. II), to avoid295

considering small dust (solid of tiny size). Also, this allows for a better separation296

in the histogram. On the histogram, we clearly distinguish the absorption values297

corresponding to particles, fluid and air. We kept only voxels of averaged absorption298

values between µmin and µmax. In Figure 6, the width of the histogram results from299300

the macroscopic inhomogeneities of absorption in space (due to a phenomenon called301

beam hardening) and likely bears the signature of particle distribution in space. False302

detections corresponding to local extrema in the plates have the same absorption303

value as particles, so a meticulous inspection of slices close to the plates and a manual304

exclusion may be needed if necessary.305

• We compute distances between possible particle center positions to get rid of multiple306

detections. If two possible centers are closer than a threshold distance rmin, we keep307

only the one of minimal absorption. In the case of perfectly monodisperse particles308

and non-noisy images of infinite spatial resolution, rmin could be taken as 100% of309

the diameter of particles. Since particles are slightly polydisperse and at this step310

the accuracy of particle centers is only of ±1 voxel, we choose rmin equal to 50%311

of the mean diameter of particles (Tab. II). Figure 7a shows the apparent volume312

fraction φ∞ far from reference particles, computed from the number of neighbours313

detected by unit volume, for different values of the threshold distance rmin. The314
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FIG. 7. a) Volume fraction φ∞(rmin) far from reference particles, computed from the number of

neighbours detected by unit volume, for different values of the threshold distance rmin (minimal

distance between two centers). b) Distribution of the interparticle distance for the identified first

neighbours for all rmin ≤ 9. The visco-plastic suspension (a, b) has a solid fraction equal to

φ ' 36%.

value of rmin was varied excessively from 1 to 15 voxels corresponding to 0.1d and315

1.3d, with d, the particle diameter. We see that for rmin < 9 voxel, the volume316317

fraction φ∞ is unchanged, and corresponds to the volume fraction of the prepared318

particles in the suspension; for larger values of rmin, the measured volume fraction φ∞319

decreases strongly, showing that some relevant particles are lost. Figure 7b shows the320

distribution of inter particle distances for the identified first neighbors for all rmin ≤ 9.321

All distributions are superimposed, but there is clearly an excess of neighbours at322

small distances for rmin < 6, which likely corresponds to multiple centers for the same323

particle. That is why rmin = 6 finally seems to be a good choice (Table II). Moreover324

we checked that this choice allows to preserve the quality and quantity of the pdf.325

Note that the values of the parameters rneigh, rmin, µmin, µmax (Tab. II) are not severely326

chosen, ensuring no arbitrary exclusion or selection of particles and more importantly a low327

influence of their values on our results. Finally, we do not observe any forgotten particle328

when we systematically check some samples of 3D images.329
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B. Sub-voxel identification of particle centers330

At this stage, the selected centers corresponding to exact voxel positions are identified331

as particles. We then refine their positions at a sub-voxel resolution by using symmetry332

properties of the absorption signal over a particle around its center (Fig. 4).333

First, the filtered image If is linearly interpolated at the chosen sub-voxel spatial resolu-334

tion to give Ivx (the resolution we want for the particles centers). The (tri)linear interpolation335

lays on the following principle: the value of the voxel to interpolate (at the chosen position)336

is taken equal to the average of the values of the (original) crossed voxels, weighted by the337

relative partial crossed volumes.338

Second, an algorithm searches the position (x0, y0, z0) in a range ±(δx0, δy0, δz0), mini-339

mizing ∆I, built to quantify the asymmetry of the signal around this center, defined as:340

∆I2 =
∑

∆r≤rsym

(Ivx(x0 + ∆x, y0 + ∆y, z0 + ∆z)− Ivx(x0 −∆x, y0 −∆y, z0 −∆z))2 (7)

for values of ∆r =
√

∆x2 + ∆y2 + ∆z2 smaller than a threshold rsym, taken as 60% of the341

mean diameter of particles (Tab. II).342

A compromise between precision and computer time leads us to refine successively the343

centers positions at 1 voxel first, then 1/2 voxel, until (1/2)n voxel, with n, the integer such344

that the chosen spatial resolution is reached.345

Figure 8a shows the variations of ∆I with the displacement ∆x of the center in the x-346

direction in the range ±2 voxels, for different couple values (∆y,∆z) of the displacement of347

the center in the y- and z-directions: there is indeed a minimum ∆Imin allowing to identify348

the center. The same holds for ∆y and ∆z in the y- and z-directions. Figure 8b shows the349

decrease of the minimum ∆Imin with n, the step of sub-voxel identification, what confirms350

that the minimization and the sub-voxel refinement have still a physical sense till n = 5,351

allowing to reach a resolution on the particles center position of (1/2)5 voxel = 0.375µm352

' d/100. Note that n = −1 (Fig. 8b) corresponds to the case of no interpolation of the353

images If , so that ∆Imin(n = −1) quantifies the asymmetry of the signal around the minimal354

absorption voxel. For the results presented in this paper, a spatial resolution of 6µm ' d/20,355

i.e. n = 1 is enough.356

Figure 9 shows the original (non interpolated, i.e. at 1 voxel resolution, n = −1) absorp-357

tion signal If (without unit measurement) over one particle as a function of distance from358
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FIG. 8. a) Variations of ∆I (Eq. 7) with the displacement ∆x of the center in the x-direction for

the first step of sub-voxel identification n = 0. Each line corresponds to different couple values of

the displacement of the center (∆y,∆z) in the y- and z-directions. b) Variations of ∆Imin with the

number of steps of sub-voxel identification n. ∆I(n = −1) quantifies the asymmetry of the signal

around the minimal absorption voxel, i.e. without any interpolation of the image If . Note that

here ∆I was normalized by the number of voxels for which it has been computed to allow for a

comparison at different sub-voxel resolutions

the center, for the initial center (determined from the local extrema) (Fig. 9a) and for the359

centers refined successively with n = 0, 1, and 2 in Figure 9b, c and d respectively. We see360

that for ∆r ≤ rsym the scattering of data (or asymmetry of the signal around its center)361

decreases at each step of sub-voxel identification, that is quantified by ∆I. Even at 1 voxel362

resolution (for n = 0), we already note that the center of symmetry (which is used to plot363

Figure 9b) is not always the minimal voxel of absorption (which is used to plot Figure 9a).364

C. Pair distribution functions365

From particle positions within the parallel plates geometry, we are able to study how366

particles are spatially distributed in the suspending fluid. In addition to information on the367

structure of the suspension at the macroscopic scale from global positions of particles within368

the geometry, we do get information on the microstructure of the suspension at the particle369

scale from relative positions of particles (relative to each other) through the computation of370

pair distribution functions [7].371

The pair distribution function g(~r) is the probability of finding a particle pair separated372
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FIG. 9. Absorption levels (without unit measurement) of voxels over one particle and its close

neighbourhood in the visco-plastic suspension at a solid fraction φ ' 40% as a function of the

distance ∆r to its center, through the different steps (n = −1, 0, 1, 2 in a, b, c, d) of sub-voxel

identification based on symmetrisation

by the vector ~r normalized by the mean particle density, so that the asymptotic value of g373

for large values of ||~r|| is:374

g(||~r|| → ∞) = 1, (8)

in the absence of macroscopic structure or long-range correlations. Equivalently, g(~r) is a375

normalized probability of finding a (test) particle located at ~r0 + ~r with another (reference)376

particle located at ~r0. This last definition suggests naturally how to compute g(~r): Nref377

particles are subsequently chosen to be the reference particles; we identify the Npair test378

particles separated by ~r from each reference particle, corresponding to the number of pairs379

characterized by ~r in the region of interest.380

In the following, ~r0 = (r0,θ0,z0) and ~r0 + ~r = (r,θ,z) are the cylindrical coordinates381

(attached to the axis of the rheometer circular plates) of a reference and of a test particle382
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FIG. 10. Histogram (in fraction) of the interparticle 3D (solid lines) and 2D (dashed lines with

crosses) distances for the first neighbours identified in slices of different thicknesses ∆ = d/8, d

and 2 ∗ d, with d, the particles’ diameter. The visco-plastic suspension has a solid fraction equal

to φ ' 38%.

located in M0 and M .383

To avoid any finite size or geometry effect on g(~r), that would introduce some bias –384

for example underestimating the statistics in the direction of a boundary – test particles385

shall be selected around their reference particle within an isotropic region (e.g. that does386

not cross any boundary). To be able to study the microstructure even close to boundaries387

(solid plates or free interfaces), we use adaptative spheres of variable radius, equal to the388

minimal distance between the reference particle and the closest boundary, as the area where389

searching test particles around a reference particle. In this case, we have to update the390

number of reference particles Nref that is no more constant for all values of ~r, especially391

for large values of ||~r||. This choice is an alternative to exclusion of regions of investigation392

as in [14] and to a geometry-dependent correction introduced in the computation of g(~r) as393

in [11].394

The 3D pair distribution function g(~r) is a function of 3 scalar variables of size ∼ N3 in395

the discretized space, with N , the number of voxels in a given direction of space. However,396

for visualization, we generally plot the values of g(~r) taken in three orthogonal slices (data397

of size ∼ N2). As relevant slices, we choose the cylindrical ‘planes’ attached to the axis of398

the rheometer circular plates, as naturally suggested by the cylindrical symmetry of the set-399

up and the flow. So, to reduce computation time, we generally compute only three 2D pair400
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distribution functions: gr in the orthoradial ‘plane’ (θz) normal to r (being a toroidal ring or401

a cylinder), gθ in the radial plane (rz) normal to θ and gz in the horizontal plane (θr) normal402

to z. So, the region where searching for test particles can be reduced to the intersection of403

a sphere and the elementary cylindrical ‘plane’ of interest attached to the reference particle.404

In practice, defining the elementary planes as strictly 2D slices of cylindrical coordinates405

r = r0, θ = θ0 or z = z0 for a reference particle in M0(r0, θ0, z0) does not allow to sample406

enough test particles and get enough statistics, so we affect elementary thicknesses to the407

cylindrical ‘planes’. Whereas the definition of the thicknesses ∆z of horizontal planes (θr)408

and ∆r of orthoradial ‘planes’ (θz) is obvious, the thickness of radial planes (rz) offers409

several choices (see Appendix A). We choose the definition of:410

∆h = r sin(θ − θ0), (9)

corresponding to a constant euclidean thickness (or minimal distance of M from the ra-411

dial direction OM0), because it prevents a non symmetric pattern on the pair distribution412

function gθ (see Appendix A). We checked the influence of the value ∆ of the thicknesses413

of the planes ∆ = ∆z = ∆r = ∆h on our results. Figure 10 compares two distributions:414

the 3D distances (real distance) and the 2D distances (projected in the slice) between first415

neighbours of particles in an elementary cylindrical plane for different thicknesses ∆ be-416

tween d/8 and 2 ∗ d. The 3D distances are always equal or larger than d with a maximum417

probability for d. But the 2D distances are not, because they do not represent well real 3D418

distances in slices of thicknesses larger than d, as demonstrated by the distributions that do419

not super-impose for ∆ > d. This leads us to choose for the thickness of elementary cylin-420

drical ‘planes’ ∆ = d, with d the particle diameter, as a compromise between accuracy and421

statistics. Moreover we checked that this choice allows to preserve the quality and quantity422

of the pdfs.423

Different choices for the characterization of the pair vector ~r ≡
−−−→
M0M (relative coordinates424

between test and reference particles located in M and M0) are possible (see Appendix A).425

Euclidean coordinates can in principle be chosen but we believe that non euclidean coor-426

dinates, curvilinear projected along the cylindrical ‘planes’ aligned with the circular flow427

streamlines, are more relevant to characterize the microstructure induced by a simple shear428

flow. We choose for coordinates of the pair vector ~r = (ρ, `, ξ):429

ρ = r − r0, ` = r(θ − θ0), ξ = z − z0, (10)
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FIG. 11. Two particles M0(r0, θ0, z0) and M(r, θ, z) in the global cylindrical framework and defini-

tion of the pair vector ~r ≡
−−−→
M0M characterizing their separation in curvilinear coordinates (along

circular flow lines): ~r = (ρ, `, ξ) = (r − r0, r(θ − θ0), z − z0)

as shown in Figure 11. This choice does not induce any bias in the symmetry of the pair430

distribution functions gr, gθ or gz (see Appendix A). Note that in the following, when showing431

a 2D pdf g (gr, gθ and gz), we will use alternatively cartesian coordinates (couples among ρ,432

` or ξ) or polar coordinates (ρ2d, φ2d) for a pair of particles in the plane of interest. In the433

(θz), (rz) and (θr) planes, cartesian and polar coordinates are respectively related through434

(ρ2d cosφ2d, ρ2d sinφ2d) = (`, ξ), (ρ, ξ) and (ρ, `).435436

Altogether, with the mean particle density (or number of particles per unit volume):437

n0v = N/V = φ/(πd3/6), (11)

with the total number of particles N , the total volume of the suspension V , the particle438

concentration (or solid fraction) φ, the particle diameter d, the formula for the 2D pair439

distribution functions gr, gθ and gz in the (θz), (rz) and (θr) planes respectively (for spatial440

resolutions δρ and δ`, δξ) are:441

• gr(`, ξ) = Pr(`, ξ)/n0v, with Pr(`, ξ)δVr = Npair
r (`± δ`/2, ξ ± δξ/2)/Nref ,442

• gθ(ρ, ξ) = Pθ(ρ, ξ)/n0v, with Pθ(ρ, ξ)δVθ = Npair
θ (ρ± δρ/2, ξ ± δξ/2)/Nref ,443

• gz(ρ, `) = Pz(ρ, `)/n0v, with Pz(ρ, `)δVz = Npair
z (ρ± δρ/2, `± δ`/2)/Nref ,444

with Nref , the number of reference particles, and (ρ, `, ξ), the coordinates of a pair vector445

defined in Eq. (10). While g refers to a pair distribution function, P refers to a probability446

of finding a pair of particles and Npair to a number of pairs of particles. More precisely,447

Npair
z (ρ±δρ/2, `±δ`/2) is the number of pairs of coordinates (ρ±δρ/2, `±δ`/2) in cylindrical448
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horizontal planes (θr) of thickness ∆z or equivalently the number of test particles in the449

same horizontal plane than the reference particles (at z0), i.e. particles at z0 ±∆z/2 ; the450

same holds for Npair
r (` ± δ`/2, ξ ± δξ/2) and Npair

θ (ρ ± δρ/2, ξ ± δξ/2) with the thickness451

∆r and ∆h of orthoradial plane (θz) and radial plane (rz) respectively. The elementary452

sampling volumes (defining the spatial resolution for g in 2D) are equal to:453

δVr = ∆rδ`δξ, δVθ = δρ∆hδξ, and δVz = δρδ`∆z. (12)

Here, the thickness of the ‘planes’ are chosen as ∆z = ∆r = ∆h = d and usually the spatial454

resolution for pair distribution functions g is chosen as δρ = δ` = δξ = 1/2 voxel. Note455

that these spatial averages may lead to some underestimate of peak values of g whether456

there are large variations of g, that may lead to some discrepancies between theoretical and457

experimental values. Finally, in three dimensions, the expression for the pdf g is:458

g(~r ± δ~r) = Npair(~r ± δ~r)/Npair
∞ with Npair

∞ = Nrefn0vδV, (13)

Npair
∞ being the number of pairs separated by a vector ~r such that ||~r|| → ∞ in the sampling459

volume δV in the space of pair vectors delimited by ~r ± δ~r.460

In the following, the analysis of the microstructure will be generally realized, unless spec-461

ified otherwise, far enough from the free interface and from the solid plates, to ensure not to462

mix possible structurations near boundaries to bulk microstructure. In order to characterize463

the microstructure for a roughly homogeneous simple shear, it has to be computed at a fixed464

radial position R0 in the parallel plates geometry. In practice, to get a good precision of465

the pdf, a toroidal region of sufficient thickness ∆R has to be analysed. As an example (see466

Appendix B for details), if we want a precision ∆g = 10−2 on g(~r) and a spatial resolution467

for the 2D pdf δV = ∆δ2 with ∆ = d = 140µm = 12vx and δ = 1vx = 12µm, for a solid468

fraction φ = 35% (n0v = 244mm−3), we need at least 2. 104 reference particles in the region469

of interest. This leads us to choose R0 = 0.72D/2± 0.12D/2, unless specified.470

In the following, we now illustrate the potential of our technique by analyzing the mi-471

crostructure of our suspensions near the horizontal solid plates, near the orthoradial free472

interface, and in the bulk separately.473
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a) b)

FIG. 12. a) X-ray radiograph of a non sheared drop of a visco-plastic suspension at a solid fraction

φ ' 35%. b) 3D plot of centers of all detected particle (in blue) and reference particles (in green)

for the characterization of the microstructure

IV. MICROSTRUCTURE474

A. Bulk microstructure of a non sheared visco-plastic suspension475

First, we characterize the initial microstructure of a visco-plastic suspension poured on476

the bottom plate of the rheometer, but before any loading and shear history. A suspension477

is prepared by simply mixing ‘by hand’ the particles and the fluid in a cup with a spatula,478

with the goal of achieving a mixing close to chaotic mixing. With this procedure, we aim to479

prepare a material that is homogeneous and isotropic. It is then degased to remove possible480

air bubbles (in a vacuum or in a centrifuge). Upon pouring, the visco-plastic suspension481

has the shape of an irregular drop due to its yield stress (Fig. 12). Here, we analyze the482

microstructure in a toroidal region (R0 = 0.36D/2± 0.30D/2 and Z0 = 2.4H± 1.2H) inside483

the drop far from solid surfaces and free interfaces (Fig. 12b).484

In its initial configuration, we observe that the suspension has at first order an isotropic485

microstructure: the pair distribution function g(~r) does not depend much on the direction486

~r/||~r|| (Fig. 13 and 19). Figure 13 shows gr(`, ξ), gθ(ρ, ξ) and gz(ρ, `): they are roughly487

the same in the three orthogonal 2D ‘planes’, with a circular symmetry in each 2D ‘plane’.488

g(~r) mostly depends only on the distance ||~r||. Figure 14b shows the 1D scalar pdf g(||~r||):489

g(||~r||) = 0 for (and only for) distances ||~r|| . d; it has a maximal value for ||~r|| ' d and a490

second local maxima for ||~r|| ' 2d; then g tends to 1 for larger values of ||~r||.491

Note that a closer inspection of the 2D pdfs (Fig. 13b) shows that they are not exactly492

the same and not exactly isotropic: the averages of gr and gθ for distances ρ2d close to its493

maxima (ρ2d = d± d/6) as a function of φ2d (represented in a polar plot) are not perfectly494
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FIG. 13. a) Three dimensional microstructure of a visco-plastic suspension in a non sheared con-

figuration (drop) at a solid fraction φ ' 35%: 2D pair distribution functions gr(`, ξ), gθ(ρ, ξ) and

gz(ρ, `). b) Polar plots of < g(φ2d) >ρ2d=d±d/6 in the three planes of interest (θz), (rz) and (θr)

a)

❣r✭❵❀ ✾✮

�❂❞
✲✁ ✂✄ ✵ ✶ ✷

☎
✆
✝

✞✟

✠✡

☛

☞

✌

✍

✎

✏

✸

b)
✑
✒✓
✴✔

✕ ✖✗✘ ✙ ✚✛✜ ✢ ✣✤✥ ✦

✧
★✩
✪
✫
✬

✯

✰

✱

✳

♥✹✺

❡✻✼ ✽✿❁ ❃❄❅❆❇❈❉

❊
❋●
❍■

❏ ❑ ▲ ▼

◆
❖P
◗
❘
❙

❚

❯

❱❲

❳❨

FIG. 14. Numerical microstructure from a simulation of finite-size particles following a naive rule

of exclusion and redistribution for a solid fraction φ ' 36%: a) 2D pair distribution function g(`, ξ)

and b) 1D scalar pair distribution function g(ρ2d) super-imposed with the experimental 1D pdf for

a non sheared suspension

circular but bear a signature of a slight over-population of pairs of particles roughly aligned495

with the gravity. This slight micro-structuration is not visible in the (θr) plane (on gz).496

This may be attributed to vertical flows of the suspension when it is poured on the plate.497

This almost isotropic experimental pdf is now compared to the numerical pdf obtained498

when simulating a random distribution of finite-size particles, with a naive rule of exclusion499

and redistribution (Fig. 14). The finite-size effect introduced here, arbitrarily governed500

(i.e. without introducing physical forces), has to be seen as a minimal steric constraint. A501
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FIG. 15. Three dimensional microstructure of a visco-plastic suspension after loading and squeez-

ing in a parallel plates geometry at a solid fraction φ ' 35%: 2D pair distribution functions

gr(`, ξ), gθ(ρ, ξ) and gz(ρ, `) for z < 0 (a) and for z > 0 (b)

random distribution of points (representing particles of zero size) gives obviously a constant502

pdf equal to 1 everywhere. Adding an effect of a finite size by taking away over-lapping503

particles (separated by a distance smaller than their diameter d) and separating them by504

their diameter d in the initial direction (and repeating this until no more particles over-lap505

[34] ) leads to a pdf dependent on ||~r|| (Fig. 14) with the same features as the experimental506

pdf we measure in 3D in a non sheared visco-plastic suspension, in particular local minimum507

and secondary maximum at the same positions. The main visible difference is the width508

and the value of the first peak of g maybe due to the difference of granulometry of the509

particles, to the arbitrary rule of redistribution of over-lapping particles and to a specific510

spatial distribution of particles in a non sheared suspension. Finally, the fluid does not seem511

to have any significant impact on the microstructure during the mixing.512

B. Bulk microstructure of a visco-plastic suspension after a continuous squeeze513

When a suspension is loaded into a parallel plates geometry, it is first poured on the514

bottom plate. The top plate is then translated downwards, thus squeezing the visco-plastic515

suspension between the two plates. The flow induced by this squeeze flow is an inhomoge-516

neous simple shear flow, which has been thoroughly described in the literature [30–32] and517

is briefly discussed in part II D.518

The technique developed here for the 3D characterization of microstructure allows us519
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FIG. 17. Pair distribution functions gr, gθ and gz averaged for distances ρ2d = d± d/6 plotted as

a function of the angle φ2d in polar coordinates after a squeeze flow for z < 0 (a) and for z > 0 (b)

for a visco-plastic suspension at a solid fraction φ ' 35%

to investigate if and how the simple shear in the (rz) plane induced by this squeeze flow520

changes the microstructure of the suspension, initially nearly isotropic as seen above. The521

plane in the middle of the gap, defined by z = 0, is an axis of symmetry of the flow. To take522

into account the different sign of the shear rate (velocity gradient) in the upper and lower523

part of the suspension, we analyse here the microstructure separately in both semi-planes524

z < 0 and z > 0.525

In Figures 15 and 16, we observe that an anisotropic microstructure develops in the shear526

plane (rz) (velocity-velocity gradient plane), while it remains approximately isotropic in the527
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two other cylindrical planes (θz) and (θr) where the suspension does not experience any528

shear. Contrary to the nearly isotropic microstructure observed previously in the initial529

configuration, the pdf g(~r) is no more simply a scalar function of ||~r|| but depends both on530

the distance ||~r|| and the direction ~r/||~r||. As in shear-induced structuration observed in the531

literature in the case of the rotational shear of a Newtonian suspension [7, 9–14], we observe532

here a depletion of particles in close contact (ρ2d ' d) located in the extensional area close533

to the direction of the velocity (near the angles +15◦ and +195◦ for z < 0 and +165◦ and534

+345◦ for z > 0). Moreover, Figure 19 shows the 1D scalar plot of g(||~r||): its maxima is535

larger and tightens (spreads less) in comparison with the case of the non sheared suspension.536

As previously seen, a closer inspection of the 2D pdfs (Fig. 17 and 19) by looking at537

the averages of gr, gz and gθ for distances ρ2d close to its maxima (ρ2d = d ± d/6) as a538

function of φ2d shows a secondary structuration in addition to the depletion of particles in539

the (rz) plane: gr and gz exhibit an ‘hexagonal’ shape, that may be the signature of a more540

complex flow occurring in the parallel plates than a simple shear flow as approximated in541

the framework of lubrification when D/H is large (the flow has also a velocity component542

aligned with the direction of translation of the bottom plate, which might not be negligible).543

As a consequence, a suspension initially characterized by a nearly isotropic microstruc-544

ture in 3D, develops at first an anisotropic microstructure when loaded in the parallel plates545

geometry, even before any imposed shear history. Such impact of loading on the microstruc-546

ture of suspension should be observed in most rheometrical devices (cone-and-plate, Couette,547

Poiseuille, ...). If the characterization of an isotropic structure is needed, a possible rheo-548

metrical tool is the vane in cup geometry, classically used to study gels: isotropy can be549

achieved by chaotic mixing in the cup, and then the insertion of the vane into the cup should550

not affect the material’s structure.551

C. Bulk microstructure of a visco-plastic suspension after a rotational shear flow552

After the loading of the visco-plastic suspension in the parallel plates geometry, a simple553

shear flow in the (θz) plane is imposed thanks to the rotation of the top plate until a554

stationary state is reached in terms of shear stress.555

As already observed for a Newtonian suspension (numerically and experimentally) [7, 9–556

14] and as reported in Ovarlez et al. [5] for a visco-plastic suspension, the microstructure557
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FIG. 18. a) Three dimensional microstructure: pair distribution functions gr(`, ξ), gθ(ρ, ξ), gz(ρ, `)

after a steady rotational shear at a shear rate γ̇ = 10−2s−1 of a visco-plastic suspension at a solid

fraction φ ' 35%. b) Pair distribution function gr, gθ and gz averaged for ρ2d = d± d/6 plotted as

a function of the angle φ2d in polar coordinates.

becomes anisotropic in the (θz) shear plane (velocity-velocity gradient plane), while it is ap-558

proximately isotropic in the two other ‘planes’, as shown in Figure 18 and 19: this anisotropy559

is referred to in the literature as a fore-aft asymmetry. In 3D, it means that the positions560

of particle pairs previously correlated in the (rz) plane due to the squeeze flow, decorrelate561

thanks to the rotational shear and the particles reorganize themselves relatively to each562

other, leading to some new correlations in the (θz) plane.563

These correlations between particles develop at the scale of particle pairs in close contact,564

leading to a depletion of particles in the extensional area, in contrast with the compressional565

area, as well as a primary over-population roughly aligned with the direction of the flow566

(+170◦). This anisotropy can be quantified thanks to the plots of g(φ2d) (the average of567

g(ρ2d, φ2d) for ρ2d = d ± d/6) plotted in polar coordinates in Figure 18b: g(φ2d) has the568

shape of a ‘butterfly’.569

More precisely, Figure 18 shows that for distances ρ2d close to the value of the particles570

diameter, gr has minimal values for the angles +30◦ and +210◦, corresponding to a decrease571

of the number of pairs in the extensional stress domain; and it has maximal values for the572

angles +170◦ and +350◦, corresponding to an increase of the number of particle pairs aligned573

roughly with the flow. These two principal extrema can be referred to as an extensional-574

depletion of particle pairs (for the minima of g) and a flow-alignment of particle pairs (for575

the maxima of g). Whereas the extensional-depletion of particle pairs was already reported576
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FIG. 19. Scalar pair distribution functions < g(ρ2d) >φ2d averaged for all values of φ2d and

< g(φ2d) >ρ2d=d±d/6 averaged for distances ρ2d = d ± d/6 plotted as a function of the distance

ρ2d and the angle φ2d respectively in cartesian coordinates for a visco-plastic suspension at a solid

fraction φ ' 35%. In the first, second and third lines, < g(ρ2d) >φ2d and < g(φ2d) >ρ2d=d±d/6

are computed from gz, gθ and gr in the (θr), (rz) and (θz) planes respectively. Light blue lines

correspond to a non sheared suspension, dark blue ones to a suspension sheared by a squeeze flow

(in the two bottom and top half-planes z < 0 and z > 0) and red lines correspond to a suspension

sheared by rotation.
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in the literature for non-Brownian suspensions, the flow-alignment of particle pairs was not,577

as well as the presence of secondary maxima and minima. By contrast, a flow-alignment was578

observed in numerical simulations of Brownian suspensions at small and moderate Peclet579

numbers, even when which Brownian forces contribute preponderantly over hydrodynamics580

force [8, 15–18].581

To our knowledge, our measurements of 3D microstructure of visco-plastic suspensions582

are the first ones reported in the literature. We have previously presented some of them in583

[5]; we recall briefly their main features in the next section.584

D. Microstructure of the visco-plastic suspension at different shear rates585

Unlike a Newtonian suspension, whose shear-induced microstructure does not depend on586

the value of the shear rate for steady states [24], we could expect a different behaviour for a587

visco-plastic suspension, due to its visco-plastic rheological behaviour. For comparison, the588

microstructure of a Brownian suspension depends strongly on the shear rate through the589

Peclet number (comparing hydrodynamic shear with thermal forces), as well as its rheology,590

that exhibits both shear-thinning, Newtonian and shear-thickening behaviours [8, 15–18].591

Here, we compare the pdfs in the shear plane (θz), where an anisotropic microstructure592

develops when the suspension is rotationally sheared, for two different shear rates: 10−2s−1
593

and 10s−1. For the visco-plastic fluid we used, this corresponds respectively to Bingham594

numbers 1.02 and 1.62 (ratio of the shear stress over the yield stress) and to effective vis-595

cosities 51Pa.s and 1.6Pa.s (computed as (τ − τy)/γ̇). At first order, in both cases, the596

microstructure is anisotropic showing an extensional-depletion of particle pairs and a flow-597

alignment of particle pairs. At second order, we do observe another kind of spatial variations598

of g and a fine difference for the two different shear rates: the depletion of particle pairs599

in close contact is enhanced by high shear rates (Fig. 20), counter-balanced by a growing600

tail of large values of g appearing at a distance close to the particles diameter (ξ ' d) from601

the direction of the flow in the extensional stress domain (for ` & d). This tail is quantified602

and compared for the two shear rates in Figure 20c, where two profiles of the pdf gr(`) at603

different positions (ξ = +d and ξ = −d) are drawn. These fine differences of microstructure604

may have strong consequences on macroscopic rheology; more precisely, it was shown that605

the shear stress at the onset of flow (”static” yield stress) strongly depends on the preshear606
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FIG. 20. a-b) Pdf in the shear plane (θz) for a steady rotational shear of a visco-plastic suspension

at a solid fraction φ ' 35% for a low (γ̇ = 10−2s−1, a) and a high (γ̇ = 10s−1, b) shear rate. c)

Pdf averaged for ρ2d = d±d/6 as a function of the angle φ2d in polar coordinates for the two shear

rates. d) Some profiles of the pdf at different positions: gr(`) for ξ = −d and ξ = d for the two

shear rates

history [5]. This was attributed to the difference in the microstructures jammed at rest after607

the preshear. As a conclusion, the shear-thinning rheology of the suspending visco-plastic608

fluid, the presence of a yield stress or its elasticity may be responsible of the influence of the609

shear rate on the microstructure and the related rheology.610

E. Bulk microstructure of a Newtonian suspension after a rotational shear flow611

We now analyse the 3D microstructure of a Newtonian suspension in our parallel plates612

geometry.613

It is already known from experiments and numerical simulations that an anisotropic614

microstructure develops in sheared Newtonian suspensions [7, 10, 14]. However, in the615
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FIG. 21. 3D pair distribution functions in the shear plane in a parallel plates geometry for a

Newtonian suspension of particles: for φ ' 36% (a) and φ ' 44% (b)

literature, most pdfs are 2D, in the shear plane. The more reliable data were obtained616

in a Couette geometry, which presents a stress inhomogeneity in the shear plane, whereas617

the stress inhomogeneity in the parallel plates geometry we use is in the velocity gradient-618

vorticity (zθ) plane. Another difference between these two geometries is that shear stresses619

and shear rates are imposed in a Couette geometry and in a parallel plates one respectively.620

Endly, whereas the microstructure in [10, 14] is imaged under a flow, we are using a flow-621

arresting technique[18], so there may be some relaxation of the microstructure. In the622

following, we compare our 3D pdf obtained in our parallel plates set-up with 2D data623

obtained in a Couette geometry by Blan et al. [14] for the same Newtonian suspension.624

In the experiments presented here, we focus on steady simple shear flows controlled625

by the rotation of the top plate of the parallel plates rheometer. Figure 21 shows the626

microstructure through pair distribution functions in the three cylindrical ‘planes’ gr(`, ξ),627

gθ(ρ, ξ) and gz(ρ, `): it is not the same in the three planes. gr(`, ξ) becomes anisotropic in628

the shear plane, while it is still nearly isotropic in the two other ‘planes’. Figure 21 shows629

the microstructure of two Newtonian suspensions for two different solid fractions φ ' 36%630

and φ ' 44%: they are the same.631

We can show an extensional-depletion of particle pairs and a flow-alignment of particle632

pairs. Secondary maxima and minima are observed too here and (experimental and numeri-633

cal) results from Blanc [14, 24] show that these two local maxima and minima are visible for634

solid fractions larger than φ ' 30%. For comparison, Figure 22 reports two 2D pdfs mea-635

sured by Blanc et al for φ ' 35% and φ ' 45% for the same suspension but in a different636
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a) b)

FIG. 22. Pair distribution functions in the shear plane from the literature (Blanc et al [14]) in

a Couette geometry (co-centric cylinders) for a Newtonian suspension of particles: in the bulk for

φ ' 35% (a) and φ ' 45% (b). Here a is the particles radius, whereas d is the diameter. Note the

different color scales in a and b.
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FIG. 23. Scalar angular pdf in the shear plane: (a) from Blanc et al in a Couette geometry for

φ ' 35% and φ ' 45% and in our parallel plates geometry for φ ' 36% and φ ' 44% for the same

Newtonian suspension; (b) in our parallel plates geometry for a Newtonian suspension at φ ' 36%

and a visco-plastic suspension at φ ' 37% at a low (10−2s−1) and high (10s−1) shear rate

geometry: they found that the angle of the minima θmin of g changes from 21◦ to 34◦. More637

generally, they observed a strong influence of the solid fraction φ on θmin: 4.5◦ for φ = 5%638

and 37◦ for φ = 56% [14].639

We now compare the values of g(ρ2d, φ2d) averaged close to the particle diameter (ρ =640

d± d/6) as a function of φ2d in the shear plane for Newtonian suspensions and visco-plastic641
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suspensions in Figure 23. The maxima and minima described above are clearly visible in this642

representation. The shape and the position of the maxima/minima in the Blanc experiments643

and in our experiment are in very good agreement. However, there are some quantitative644

differences. We checked that they are not due to the radial thickness ∆ over which data are645

averaged nor to the width δρ = d/6 for the average < g(φ2d) >ρ2d=d±δρ, neither the position646

R0 of the toroidal region where we compute our pdf. To this date, we cannot explain these647

differences.648

We also note that the angular dependence of the pdf < g(φ2d) >ρ2d=d±δρ close to contact649

of particles in visco-plastic fluids is very close to that in Newtonian suspensions. We note650

however that the amplitude of the minimum and of the maximum change with the shear651

rate, which is specific to a nonlinear suspending fluid. It seems that more depletion can be652

obtained in a visco-plastic fluid at a high shear rate than in a Newtonian fluid.653

As a conclusion, in our geometry the main difference of microstructure between Newto-654

nian and visco-plastic suspensions is the dependence on the shear rate for visco-plastic and655

the independence on the shear rate for Newtonian. However, in all cases (visco-plastic or656

Newtonian, parallel plates or Couette geometry), the microstructure becomes anisotropic657

in the shear plane characterized by both an extensional-depletion of particle pairs and a658

flow-alignment of particle pairs at similar angles. Finally, there may be a difference of quan-659

titative values of the pdf (and of the microstructure) of a suspension in a Couette geometry660

and in a parallel plates one, where shear stresses and shear rates are imposed respectively661

and where a stress inhomogeneity is in the shear plane and in the velocity gradient-vorticity662

(zθ) plane respectively. Endly, whereas the microstructure in [14] is imaged under a flow,663

here we are using a flow-arresting technique[18], so there may be some relaxation of the664

microstructure.665

F. Microstructure near solid walls: macroscopic layering666

In our parallel plates geometry, the suspension is confined between two plates and the gap667

is not so large compared to the size of particles (H/d ' 14 for the visco-plastic suspension668

and 12 for the Newtonian one) – this aspect ratio being common for such set-ups. These669

solid boundaries induce some layering of particles, as shown by the solid fraction profiles670

as a function of z for smooth and rough surface plates (Fig. 24). Even when the surfaces671
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FIG. 24. Vertical concentration profiles close to a solid boundary for smooth (a) versus rough (b)

surfaces after a rotational shear of ≈ 5s−1 for a visco-plastic suspension at a solid fraction φ ' 40%.
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FIG. 25. Pair distribution function gr in the shear plane (θz) computed near a smooth solid wall

located in the bottom (a) and in the bulk far from any solid wall (b).

have been roughened (Fig. 2c and 24b), we may observe a few alternate layers of high and672

low solid fraction values, suggesting about 1 layer of aligned particles laying parallel to the673

walls. In comparison with the case of smooth surfaces (Fig. 24a), the layering is reduced for674

rough surfaces (Fig. 24b), and is localized close to the solid boundaries, whereas layering675

comes deep inside the gap for smooth surfaces.676

This macroscopic layering close to solid boundaries is also visible on pair distribution677

functions in the shear plane, when comparing pdfs computed close to solid boundaries with678

pdfs computed in the bulk (far from any solid surface) for smooth solid plates (Fig. 25). A679

periodic pattern of strips is superimposed on the bulk microstructure. This effect was already680

reported by [24, 35] for Newtonian suspensions, so this layering does exist for suspensions681

of different rheology.682

As a conclusion, studying the bulk microstructure imposes to be far enough from solid683
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FIG. 26. Pair distribution function gr in the orthoradial plane (θz) computed in the bulk (i.e.

R0 < 0.60D/2, 1.2H < Z0 < 2.2H) (a) and near the orthoradial free surface (i.e. 0.60D/2 < R0,

1.2H < Z0 < 2.2H) (b) in the non sheared configuration (drop). The later pdf (b) is not observed

anywhere else in the suspension than in the upper part of the suspension drop.
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FIG. 27. a-b) Pair distribution function gr in the orthoradial plane (θz) computed in the bulk

(i.e. R0 < 0.60D/2, 0.5H/2 < Z0) (a) and near the orthoradial free surface (i.e. 0.60D/2 < R0,

0.5H/2 < Z0) (b) in the loaded and squeezed configuration. The later pdf (b) is not observed

anywhere else in the suspension than in the quarter cylindrical part of the suspension near the top

plate.

boundaries, even if they are rough.684
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FIG. 28. Pair distribution function gr in the shear plane (θz) far from (a, c) and close to (b, d)

the orthoradial free interface for a Newtonian (a, b) and a visco-plastic suspension (c, d)

G. Microstructure near free interfaces: alignment of particle doublets with free685

interfaces686

A more subtle structuration is observed here near the orthoradial free interface, probably687

enhanced when coupled with a shear flow (or with a flow in general). This structuration is688

observed both in non sheared (drop) and sheared (by squeeze and rotation flows) suspensions689

(Fig. 26, 27 and 28): this is an alignment of particle doublets (two particles in close contact)690

with the free interface along φ2d ' 0◦ and φ2d ' 180◦. However, whereas this alignment691

is systematically observed for rotational shear experiments, it is less pronounced and more692

localized in experiments of squeeze shear and in non loaded drop. This suggests that the693

occurrence of secondary flows in the squeeze flow (see part IV B) and when pouring the694

non loaded drop (see part IV A) may play a role in this structuration, due to a coupling695

between free interfaces and flows. The pair distribution function exhibits a larger maxima696

in the orthoradial plane gr(`, ξ) for values of ` ' d and ξ ' 0 when computed near the free697
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FIG. 29. Radial profiles of density (number per unit volume) of particle pairs aligned with the

local flow (~eθ) φpair(R0) for a Newtonian (φ ' 45%, a) and a visco-plastic suspension (φ ' 38%,

b), for uniform radial profiles of solid fractions φ(R0).

interface (Fig. 26, 27 and 28), that is not visible on pdf computed in the bulk (far from the698

orthoradial free interface). This maxima of the pdf corresponds to an over-population of699

particle doublets in close contact in the azimuthal (flow) direction; it is counter-balanced700

by the apparition of a minima (drop, squeeze) or by a decrease of the secondary minima701

(rotation), resulting in a modification of the shape of the pdf. This feature may recall the702

flow-induced structural transition (from disorder to order to disorder as the Peclet number703

is increased) observed in numerical simulations of Brownian suspensions [8, 15–18].704

This can be observed at the macroscopic scale by computing φpair, the density (number705

per unit volume, normalized by the solid fraction) of particle doublets in close contact aligned706

with ~eθ in toroidal regions at different radial positions R0 (Fig. 29). This density is found707

to increase close to the free interface in a region of width about D/8 (Fig. 29), despite708

some spatial fluctuations of φpair We may wonder if this local alignment is due to a steric709

constraint of the free interface or to capillary stresses due to the contact lines between air,710

particles and the fluid, and a coupling with solid walls or with some flows.711

We observe this specific microstructure near the free interface both for Newtonian and712

for visco-plastic suspensions in a parallel plates geometry (Fig. 28, Fig. 29). Interestingly,713

this allows us to provide an explanation for the observation of a peak in the flow direction714

for the first experimental pdfs of Newtonian suspensions reported in the literature [10]715

and reprinted here (Fig. 30), which has long been a puzzle. Indeed, pdfs from Parsi et716

al. [10] were computed from optical observations of the first layer of particles on top of717
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a) b)

FIG. 30. Pair distribution functions from the literature in a Couette geometry (co-centric cylinders)

for a Newtonian suspension of particles: a) close to the top free surface for φ = 40% from [10], b)

far from the top free surface for φ ' 35% from [14]; the top free surface being also the shear plane.

a Couette geometry (co-centric cylinders), that is from the observation of particles close718

to the horizontal free interface, which is also the shear plane. Their results contrast with719

the pdfs reported by [14], computed from the particle positions in the bulk of a Couette720

flow and reprinted here (Fig. 30), in which such a peak is absent. The same conclusion721

can thus be drawn from these studies (near and far from the free interface) as from our722

observations: some peak appears in the pdf in the shear plane corresponding to an over-723

population of particle doublets in close contact in the flow direction near the free surface724

(Fig. 28, Fig. 30). Note that in both cases (parallel plates and Couette geometry) the free725

surface is orthogonal to vorticity; no prediction can yet be made from our observations for726

a free surface orthogonal to the velocity gradient, as in a flow along an inclined plane.727

As a conclusion, studying the bulk microstructure imposes to be far enough from both728

free interfaces and solid boundaries; this precludes optical studies on non-index-matched729

suspensions.730

V. CONCLUSION731

In this paper, we present a technique we developed to image in 3D hard particle sus-732

pensions with X-ray tomography. It allows for the three dimensional characterization of733

the microstructure in space – in different planes and at different positions in the set-up734
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– from particle center positions identified at a sub-voxel resolution, thanks to home-made735

algorithms for image processing. An accurate characterization of anisotropic microstructure736

is possible, even for particle pairs in close contact.737

The dedicated set-ups used here for imaging have been built so that they can also be738

used in a rheometer to perform rheological measurements. It is thus possible to correlate739

the 3D-microstructures and the rheological properties for a same shear history (see [5] for740

an example).741

To illustrate the technique presented here, we apply it to two materials: a visco-plastic742

suspension and a Newtonian suspension, meaning that our non-Brownian particles are sus-743

pended in a visco-plastic and a Newtonian fluid respectively. The Newtonian suspension744

is the same as used by Blanc et al. [14], but it is loaded here in a different geometry and745

characterized in 3D, both in the bulk and near the interfaces.746

In principle, all the details of our technique are given so that it should be possible to747

reproduce them. Our method should work for many suspensions (with a contrat of X-ray748

between particles and the fluid), as soon as particles do not move during the time of a X-ray749

scan. This may prevent us from imaging Brownian particles (d . 1µm) with a conventional750

X-ray tomograph but may demand a quicker X-ray source.751

After a rotational shear, we find approximately the same shear-induced anisotropic pair752

distribution function (in the shear plane) in the bulk of the Newtonian suspension as in753

Blanc et al. [14]. Moreover, we find that it is nearly isotropic in the two other planes.754

The visco-plastic suspension is characterized in different configurations. Its microstruc-755

ture is found to be nearly isotropic in 3D after preparation, showing that it is possible to756

design such a nearly isotropic suspension. It becomes anisotropic in the shear plane what-757

ever the shear is (rotational shear or continuous squeeze); loading in any geometry (except758

the vane-in-cup) thus leads to an anisotropic initial state. The shear-induced pair distribu-759

tion function for the visco-plastic suspension is found to be similar to that for a Newtonian760

suspension, except at high shear rates. Indeed, as a consequence of the non-linear nature of761

the visco-plastic fluid (either the yield-stress or the shear-thinning viscosity), the shear rate762

changes the anisotropy of the microstructure.763

For the two hard non-Brownian particles suspensions used here (Newtonian and visco-764

plastic suspensions), we find some layering close to solid walls, especially if they are smooth,765

and a more surprising layering close to the free interface. This latter is not as obvious as766
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FIG. 31. Two particles M and M0 in the global cylindrical framework and four examples for the

definition of the pair vector ~r ≡
−−−→
M0M characterizing their separation: euclidean (~r =

−−−→
M0M) or

curvilinear – along circular flow lines – coordinates, with orthogonal or not orthogonal axis

the former because it is not strikingly visible on macroscopic quantities. It is visible at the767

scale of some particle pairs only: it induces a flow-alignment of particle doublets at close768

contact, in regions of quite large extent close to free interfaces. This effect is likely to be a769

consequence of a coupling between free interfaces and shear; it allows to explain previous770

data of the literature [10].771

Appendix A: Possible geometrical choices to compute pair distribution functions772

Pair distribution functions are computed as normalized probabilities of finding a test773

particle M located at (r, θ, z) from another reference particle M0 located at (r0, θ0, z0) in the774

cylindrical framework attached to the axis of the rheometer circular plates (see Part III C).775

There are several choices for the characterization of the pair vector ~r characterizing their776

separation: euclidean (~r =
−−−→
M0M) or curvilinear (along circular flow lines) coordinates,777

orthogonal or not orthogonal axis (unit vectors dependent on M0 only or both on M0 and778

M). Four examples of possible definitions are shown in Figure 31 : (r cos ((θ − θ0)/2)− r0,779

r sin (θ − θ0), z − z0), (r − r0, 2r sin ((θ − θ0)/2), z − z0), (r − r0, r0(θ − θ0), z − z0) and780

(r − r0, r(θ − θ0), z − z0). Euclidean coordinates can in principle be chosen but we believe781

that non euclidean coordinates, but curvilinear coordinates projected along the cylindrical782

‘planes’ aligned with the circular flow streamlines, are more relevant to characterize the783

microstructure induced by a simple shear flow. We choose for coordinates of the pair vector784

~r = (ρ, `, ξ): ρ = r − r0, ` = r(θ − θ0), ξ = z − z0. This choice does not induce any bias in785

the symmetry of the pair distribution functions gz, as well as of gθ or gr, as shown by the786
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FIG. 32. Influence on the pair distribution function gz computed in (θr) planes (in 2D (a), and

in 1D (b)) of the definition of the pair vector ~r (for the four definitions written in the text). Our

choice, Eq. (10) does not induce any bias in the symmetry of the pair distribution functions between

negative and positive values of ρ

comparison in Figure 32 of gz computed in (θr) planes for reference particles in a toroidal787

ring at a small radius for the four previous different definitions of ~r.788

In order to get enough statistics, we need to define a thickness for the elementary planes789

where we compute 2D pair distribution functions (see Part III C). Whereas the definition of790

the thicknesses ∆z of horizontal planes (θr) and ∆r of orthoradial ‘planes’ (θz) is obvious,791

the thickness of radial planes (rz) offers several choices. Different possible choices for the792

thickness of radial planes (rz) are: constant euclidean thickness r sin(θ−θ0), constant wedge793

angle θ− θ0, or constant arc length r(θ− θ0). Figure 33 shows the pair distribution function794

gθ computed in (rz) planes (in 2D and in 1D) for the three previous different definitions795

of the thickness. Whereas the definitions of a constant wedge angle and of a constant arc796

length show a bias (there is an asymmetry between the left and right sides), the definition of797

a constant euclidean thickness does not. That is why we choose to work with radial planes798

(rz) of thickness ∆h = r sin(θ − θ0).799
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FIG. 33. Influence on the pair distribution function gθ computed in radial (rz) planes (in 2D (a)

and in 1D (b)) of the definition of their thicknesses (for the three different definitions written in

the text). The choice of a constant euclidean thickness ∆h = r sin(θ − θ0), Eq. 9, does not induce

any bias in the symmetry of the pair distribution functions between negative and positive values

of ρ

Appendix B: Statistical precision of pair distribution functions800

Here we discuss the statistics in terms of number of particles required for fine sampling and801

good precision of the pdf g from its following expression (see Part III C), where Npair(~r±δ~r)802

is the number of pairs of particles separated by ~r ± δ~r and Nref is the total number of the803

reference particles:804

g(~r ± δ~r) = Npair(~r ± δ~r)/N∞ (B1)

with:805

N∞ = Nref n0v δV, (B2)

the number of pairs separated by a vector ~r such that ||~r|| → ∞ in the sampling volume δV806

in the space of pair vectors delimited by ~r± δ~r. Note that n0v δ V is the number of particles807

in the sampling volume δV . The precision ∆g on g(~r), or the minimal detected variation,808

corresponding to the variation of the integer ∆Npair = 1, is:809

∆g = 1/N∞ = (Nref n0v δV )−1. (B3)
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FIG. 34. Scalar pair distribution function g(||~r||) for different numbers of reference particles Nref

increasing from arbitrary small values to larger values (but for constant numbers of reference

particles with ||~r||, i.e. non adaptative spheres).

We will usually compute the pdf on toroidal rings of thicknesses ∆R and ∆Z centered810

on R0 and Z0 (of volume ϑ = 2πR0∆R∆Z), so that the number of reference particles is811

approximately:812

Nref ' n0vϑ. (B4)

For a given density n0v and chosen precisions on the spatial resolution δV and on the pdf813

∆g, this prescribes a minimum number of reference particles from Eq. (B3):814

Nref = (n0vδV∆g)−1, (B5)

or equivalently a minimum volume ϑ for the toroidal ring from Eq. (B4).815

As a numerical example, if we want a precision ∆g = 10−2 on g(~r) and a spatial resolution816

for the 2D pdf δV = ∆δ2 with ∆ = d = 140µm = 12vx and δ = 1vx = 12µm, for a solid817

fraction φ = 35% and d = 140µm (n0v = 244mm−3), we need at least 2. 104 reference818

particles in the region of interest. Otherwise, we may see the discrete nature of variations819

of g(||~r||) (Fig. 34). This effect of discretization may appear anyway for large inter-particle820

distances, because of the use of adaptative spheres. As a compromise, these spatial averages821

may lead to some underestimate of peak values of g, whether there are large variations of g.822
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[1] Thrane L. N., L. F. Nielsen, M. Brandl, and M. R. Geiker. On the effect of coarse aggregate828

fraction and shape on the rheological properties of self-compacting concrete. Cem. Concr.829

Aggregates, 24(1):3–6, 2002.830

[2] Mahaut F., X. Chateau, P. Coussot, and G. Ovarlez. Yield stress and elastic modulus of831

suspensions of noncolloidal particles in yield stress fluids. J. Rheol., 52(1):287–313, 2008.832

[3] Denn M. M. and J. F. Morris. Rheology of non-brownian suspensions. Annual Review of833

Chemical and Biomolecular Engineering, 5:203–228, 2014.834

[4] Chateau X., G. Ovarlez, and K. L. Trung. Homogenization approach to the behavior of835

suspensions of noncolloidal particles in yield stress fluids. J. Rheol., 52(2):489–506, 2008.836

[5] Ovarlez G., F. Mahaut, S. Deboeuf, N. Lenoir, S. Hormozi, and X. Chateau. Flows of suspen-837

sions of particles in yield stress fluids. J. Rheol., 59:1449–1486, 2015.838

[6] Hafid H., G. Ovarlez, F. Toussaint, P.H. Jezequel, and N. Roussel. Effect of particle morpho-839

logical parameters on sand grains packing properties and rheology of model mortars. Cem.840

Concr. Res., 80:44–51, 2016.841

[7] Morris J. A review of microstructure in concentrated suspensions and its implications for842

rheology and bulk flow. Rheol. Acta, 48:909923, 2009.843

[8] Nazockdast E. and J. F. Morris. Microstructural theory and the rheology of concentrated844

colloidal suspensions. J. Fluid Mech., 713:420–452, 2012.845

[9] Gadala-Maria F. and A. Acrivos. Shear-induced structure in a concentrated suspension of846

solid spheres. J. Rheol., 24(6):799–814, 1980.847

[10] Parsi F. and F. Gadala-Maria. Fore-and-aft asymmetry in a concentrated suspension of solid848

spheres. J. Rheol., 31(8):725–732, 1987.849

[11] Rampall I., J. R. Smart, and D. T. Leighton. The influence of surface roughness on the particle-850

pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow.851

J. Fluid Mech., 339:1–24, 1997.852

[12] Blanc F., F. Peters, and E. Lemaire. Experimental signature of the pair-trajectories of rough853

spheres in the shear-induced microstructure in non-colloidal suspensions. Phys. Rev. Lett.,854

46



107(208302), 2011.855

[13] Blanc F., F. Peters, and E. Lemaire. Local transient rheological behavior of concentrated856

suspensions. J. Rheol., 55(4):835–854, 2011.857

[14] Blanc F., E. Lemaire, A. Meunier, and F. Peters. Microstructure in sheared non-brownian858

concentrated suspensions. J. Rheol., 57:273–292, 2013.859

[15] Phung T. N., J. F. Brady, and G. Bossis. Stokesian dynamics simulation of brownian suspen-860

sions. J. Fluid Mech., 313:181–207, 1996.861

[16] Foss D. R. and J. F. Brady. Structure, diffusion and rheology of brownian suspensions by862

stokesian dynamics simulation. J. Fluid Mech., 407:167200, 2000.863

[17] Morris J. F.and B. Katyal. Microstructure from simulated brownian suspension flows at large864

shear rate. Phys. Fluids, 14(1920), 2002.865

[18] Gao C., S. D. Kulkarni, J. F. Morris, and J. F. Gilchrist. Direct investigation of anisotropic866

suspension structure in pressure-driven flow. Phys. Rev. E, 81:041403, 2010.867

[19] Cheng X., J. H. McCoy, J. N. Israelachvili, and I. Cohen. Imaging the microscopic structure868

of shear thinning and thickening colloidal suspensions. Science, 333(6047):1276–1279, 2011.869

[20] Goyon J., A. Colin, G. Ovarlez, A. Ajdari, and L. Bocquet. Spatial cooperativity in soft glassy870

flows. Nature, 454(7200):84–87, 2008.871

[21] Maire E., J. Y. Buffiere, L. Salvo, J. J. Blandin, W. Ludwig, and J. M. Letang. On the872

application of x-ray microtomography in the field of materials science. Adv. Eng. Mater.,873

3:539546, 2001.874

[22] Hsieh J. Computed tomography: principles, design, artifacts, and recent advances. Wiley875

Interscience, Bellingham Washington USA, 2009.876

[23] Heindel T. J. A review of x-ray flow visualization with applications to multiphase flows.877

Journal of Fluids Engineering, 133(7):074001, 2011.878
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