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Abstract
TheHighResolutionWavevectorAnalysis (HRWA) is presented and its application illustrated. Extending

the High Resolution Wavenumber Analysis method [1] to 2D signals, it allows the wide-band and local
characterization of the linear elastic behavior of anisotropic plates. The method belongs to the family of
experimental wavenumber-based characterization methods and uses the high resolution signal processing
algorithm ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) and the ESTER
criterion (ESTimation of ERror) to overcome some of the limitation of Fourier-based methods. Three
experimental applications on composite plate specimens are presented. First (i), from the out-of-plane
velocity field of a sandwich plate with a foam core, different wave types (bending, shear and compression) are
extracted. The results are compared with numerical predictions. Second (ii), individual layer contributions
are separated on a honeycomb sandwich plate by means of the observation of the dependence of the
extracted complex wavevectors as a function of wave propagation direction and frequency. Third (iii),
a local wavenumber extraction is performed on a 4-layer carbon-epoxy plate made of fiber patches with
spatially varying orientations. The local specific bending stiffness of the plate is identified from the
extracted wavevectors and compared with theoretical results.

Keywords: Non-Destructive Evaluation, High-Resolution Methods, Wave Propagation, Composite
Structures

1. Introduction

An advanced knowledge of the dynamical behavior of composite materials is needed for a number of
applications, ranging from damage identification [2, 3, 4, 5] to material replacement [6, 7] or structural
optimization [8, 9, 10]. More specifically, the non-destructive evaluation (NDE) of the linear viscoelastic
dynamical behavior of composite structures is an active research field [11].

The whole spectrum of frequencies for which composite structures has to be characterized is usually
divided in three regions: (i) the low frequency regime, where the response of the structure can be well
described by a reduced number of modes; (ii) the high frequency regime, where the wavelength is so small
that the structure can be considered infinite; (iii) the medium frequency regime in which the modal overlap
is high and boundary conditions cannot be neglected.

Usually, NDE techniques involves modal analysis in low frequencies [12, 13, 14] while ultrasonic testing
is performed in the high frequency regime [15, 16]. In the last decades, the development of full-field
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measurement techniques (i.e. high-speed cameras [17, 18] or scanning Doppler laser vibrometers [19, 20])
allowed for the development of NDE methods that perform well in the medium frequency range. Among
these methods, some are based on the knowledge of the properties of the field. One example is the Force
Analysis Technique [21, 22, 23] where the partial derivatives of the field are estimated by means of finite
difference schemes. Hence they are injected in the governing equations of a structure model to identify its
parameters. The variationnal formulation of such approach is the Virtual Fields Method [24, 25], which
uses test functions with the principle of virtual works to characterize the structure.

Some other medium frequency methods approximate the measured field with a set of functions. The
parameters of these functions usually contains key data for the identification of the structure. For example,
Hankel functions are used with the Image Source Method (ISM) to characterize isotropic plates in the steady
harmonic regime [26, 27]. As the Green functions of anisotropic plates are not analytic anymore, plane
waves are used to approximate the field measured on composite plates. A method based on this principle is
the Inhomogeneous Wave Correlation (IWC) method [28, 29].

The latter type of methods is focusing on the identification of guidedwaves propagating in plates. Indeed,
in the medium frequency range (i) the wavelength can be considered large compared to the plate thickness
and (ii) the sources as well as the boundary conditions can be considered far enough from the observed
location to have a reduced impact on the geometry of the wavefront. Hence the plate can be considered
as a waveguide: the wave propagation direction is confined in the plane of the plate and the wavefront
is assumed to be contained in a plane orthogonal to the plate. Under these assumptions, it is possible to
derive the dispersion equation relating wavevectors to the frequency directly from the constitutive materials
and the lay-up of the composite plate (see for instance [30]). It turns out that the parameters of plane
waves travelling in a plate (the complex wavevectors and the amplitudes of the corresponding waves) can be
extracted from a full-field measurement of the plate steady harmonic response. Such extracted wavevectors
reflect the dispersive properties of the plate. By means of an inverse problem, some of its mechanical
properties may be identified from experimentally extracted wave parameters. Contrary to modal analysis,
the smaller sensitivity of the procedure to boundary conditions and sources makes it a good candidate for
in-situ evaluation of structures, when the geometry and the applied loads are not completely known.

The IWC method can be summarized as follows. At a given frequency, a distribution of wave propaga-
tion angles is chosen a priori. For each given angle, a trial plane wave can be synthesized with a complex
wavenumber as parameter. The wavevector is then searched as the complex wavenumer that maximizes the
correlation coefficient between the measured plate harmonic response and the synthesized wave. Conse-
quently the identification problem leads to a non-linear optimization scheme, that has to be solved for each
wave propagation direction, with the real and imaginary part of the complex wavenumber as optimization
parameters. As it is closely related to the Fourier transform, it suffers from the same limitation in terms of
wavenumber resolution. This limits the accuracy of the wavevector extraction when only a few wavelengths
are contained in the signal. Moreover, as the distribution of the wave propagation angles is fixed a priori,
the method may return invalid results, when actually no wave propagates in the searched direction.

In the past few decades, some improved signal processing methods suited for the extraction of the
complex poles (decaying exponentials) of a measured signal have been developed, such asMUSIC (MUltiple
SIgnal Classification) [31], Matrix Pencil [32] and ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques) [33]. Built on a signal model, these methods are named high-resolution, in the sense
that they overcome the intrinsic resolution limitation of the Fourier transform. In particular, the ESPRIT
algorithm takes advantage of an invariance property of the signalmodel to express thewavenumber extraction
as the solution of a closed-form problem. In addition, it makes use of the subspace-decomposition technique
[34] which allows to predict the signal order (number of waves contained in the signal). Subspace-based

2



methods are widely-used in linear system identification, using for example the state-variable framework
[35, 34]. Another example is the ERA [36] (Eigenvalue Realisation Algorithm), which is devoted to
the identification of the modal parameters of a measured system. A wide range of applications of the
ESPRIT algorithm can be found in array processing and radar applications [37, 38], audio processing
[39, 40], characterization of structures through modal analysis [12, 13, 23], musical acoustics applications
[41, 42, 43, 44] and high-resolution spectral analysis [45]. To be fully efficient, the ESPRIT algorithm must
be combined with a criterion dedicated to the the estimation of the signal order, such as the ESTER criterion
[46] (ESTimation of ERror)

In a recent article [1], the authors proposed the High ResolutionWavenumber Analysis method (HRWA).
Using the ESPRIT algorithm with the ESTER criterion, it allows to extract wavenumbers in the harmonic
response of a beam. From these wavenumbers, some equivalent mechanical properties of the beam can be
identified. The enhanced performances of this experimental wavenumber-based characterization method are
demonstrated: the frequency range of validity is wider, a number of beammotions can be separated (bending
and twist), and the wavenumber extraction is faster than in existing methods. However, its application is
limited to wavenumber extraction in 1D structures.

In the present work, the method is extended to 2D signals and thus is renamed High-ResolutionWavevec-
torAnalysis. At a given frequency, it assumes that the harmonic response of a plate is a finite sum of decaying
plane waves. Using the 2D version of the ESPRIT algorithm [38], the complex wavevectors are extracted
from the measured harmonic response of a plate (e.g. velocity or displacement field), or a portion of its
domain. The signal order is estimated thanks to the 2D version of the ESTER criterion [47]. In comparison
to Fourier based wavevector estimation methods, the high-resolution properties of the ESPRIT algorithm
allow the extraction of wavevectors in low frequencies, where the wavelengths are usually large. In addition,
the size of the observation window (partial zone of the measured plate field used as input) can be reduced to
extract local wavevectors that can be used to characterize a local plate behavior. The automated estimation
of the signal order allows the identification and the separation of multiple wave types: bending, shear or
longitudinal waves. No assumption has to be made on the distribution of the wave propagation angles,
as these angles are part of the estimated parameters. Finally, by formulating the wavevector extraction
problem as a closed-form problem, no optimization scheme is involved and thus the wavevector extraction
is computationally efficient and robust.

When the method is applied on beams [1] the signal model corresponds exactly to the harmonic response
of the structure, as long as it can be considered as a waveguide in the frequency range of interest. In two
dimensions, the wavefront is not necessarily a straight line. Therefore, the local 2D signal may not be
represented exactly by a finite sum of decaying plane waves. The influence of this approximation on the
extracted wavevectors is not clear at this time. It was experimentally observed that the impact of a non-
straight wavefront is mostly contained in the imaginary part of the extracted wavevectors. As a consequence,
a criterion based on the spatial decay of the extracted waves is proposed to discard the wavevectors with a
dominant imaginary part and thus diminish the influence of the signal model approximation error on the
identification results.

The paper is organized as follows : in Section 2 theHRWA is presented. In Section 3, several experimental
applications of the method to different composite plates are presented to illustrate its possibilities. First,
from an orthotropic sandwich plate, several kinds of waves are extracted (bending, in plane shear and
compression), and the results are compared to numerical predictions. Second, on a honeycomb sandwich
plate, the bending waves are studied and a particular frequency-dependent anisotropic behavior is observed,
related to the mechanical properties of individual layers. Third, a local wavevector extraction is performed
on a spatially inhomogeneous composite plate made of 36 patches with various fiber orientations. Using the
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Figure 1: Schematic representation of a measurement mesh grid xnm suited for the HRWA. A decaying plane wave is represented,
with its complex wavevector kr = κr + i τr .

Classical Lamination Theory, an inverse problem is formulated, leading to the identification of the equivalent
specific bending stiffness of the plate atmany different patch locations. The potential of themethod to identify
local structural behaviors, given by fiber direction, stacking sequence and material properties is illustrated.

2. High Resolution Wavevector Analysis

Both ESPRIT algorithm and ESTER criterion are well-established in the signal processing community
[38, 48]. As a consequence, minimal details are given in this section. However, both algorithms are
developed in AppendixA in order to give all the content needed for the implementation of the HRWA.

Along this paper, the HRWA is applied to the harmonic response of a plate. Basically, a collection of
harmonic response fields can be obtained by computing the Fourier transform of the measurement of the
time-dependent response field of a plate. The wavevector extraction procedure is then performed for each
given frequency ω. For the sake of readability, the dependence on ω is omitted in the following, unless
required for clarity.

2.1. Signal model
The harmonic response field s(x) of a plate, or a sub-domain of a plate, is modeled as a sum u(x) of R

plane waves and some uncorrelated noise b(x). The signal model is expressed as follows:

s(x) = u(x) + b(x) =
R∑

r=1
ar eikr ·x + b(x) (1)

where R is the signal order and the ar are the complex amplitudes related to the waves. The related complex
wavevector kr is written as:

kr = k1,r e1 + k2,r e2 = κr − i τr (2)

where the two complex numbers k1,r and k2,r are the wavenumbers in each dimension of the signal (see Fig.
1).
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The phase velocity vector cr can be retrieved from the wavevector and the frequency:

cr =
ω

|kr |2
k∗r (3)

as well as the wavelength vector:
λr =

2π
|κr |

2κr (4)

where •∗ denotes the complex conjugate.
The decay of the plane waves along their propagation is related to the imaginary part τr of the wavevector.

Since the decay is not necessarily maximum in the wave propagation direction [49], the real and imaginary
parts κr and τr of the complex wavevector are not necessarily colinear. However, it is of common use to
define the spatial decay ratio γ:

γr =
|τr |

|κr |
(5)

The extracted spatial decay may have several causes. Indeed, three main contributions can be expected:
the first contribution is the energy loss along the propagation of the wave, due to viscous materials or
fluid-structure interaction. Second, some evanescent waves are present close to boundaries, accounting for
the boundary conditions. Third, τr is influenced by the geometry of the sources. For example, a point source
located at xp in an isotropic conservative plate generates a circular wavefront with a spatially-dependent
amplitude ar (x) ∝ |x−xp |

−1/2, which has an influence on the identified wave decay. Evaluating how these
effects contribute to τr is beyond the scope of this article. Therefore, the imaginary part of the extracted
wavevectors is not considered in the applications of the HRWA presented in this paper, except when the
signal corresponds closely to a plane wave (see 3.2).

Let us recall that the signal model is formulated so that a different set of the parameters {ar,kr, R}
will be identified at each frequency. Consequently, virtually any dependence of these parameters can be
identified as a function of frequency, regardless of the wave dispersion in the structure.

2.2. Regular grid mesh of measurements
In order to be able to apply the 2D ESPRIT algorithm [38] (Estimation of Signal Parameters via

Rotational Invariances Techniques), the signal s(x) has to be measured along a 2D regular mesh grid xnm

of step {∆1,∆2} (see Fig. 1):
xnm = x00 + n∆1e1 + m∆2e2 (6)

with (n,m) ∈ [[ 0, L1 − 1 ]] × [[ 0, L2 − 1 ]]. The signal matrix S is formed with the acquired data:

Snm = s(xnm) (7)

and is processed by the ESPRIT algorithm (see AppendixA.1).
Aliasing can lead to an ambiguity about the magnitude of the extracted wavevector. As a consequence,

the Nyquist criterion has to be fulfilled to avoid ambiguities: each individual wave contained in the signal
must have a wavelength larger than twice the grid spacing:

κr · e1 <
π

∆1

κr · e2 <
π

∆2

(8)
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2.3. Wavevector extraction
In the ESPRIT algorithm (summarized in AppendixA.1), the invariance properties of the signal are used

to estimate the wavevectors thanks to matrix operations. As a consequence, the wavevector extraction is
formulated as the solution of a closed-form problem. Knowing the signal order R, the application of the
ESPRIT algorithm results in the identification of the parameters of R decaying plane waves. However, the
signal order is unknown in practice, which could compromise the estimation of the wavevectors.

For the estimation of the signal order R without a priori knowledge, Badeau [46] devised of the ESTER
criterion (ESTimation of ERror), for a 1D signal. The ESTER criterion is based on the error made on the
estimation of the invariance property of the signal by the ESPRIT algorithm, for a given signal order r .
By estimating this error for r ∈ [[ 1, rmax ]], the signal order R is chosen so that it minimizes the estimation
error of the invariance property. Multidimensional extensions of this criterion have been proposed [47],
computing the arithmetic or geometric mean of the errors in the different signal dimensions. Further details
concerning the computation of the criterion are given in AppendixA.2.

The wavevector extraction procedure, implemented in order to achieve the High Resolution Wavevector
Analysis, is summarized in AppendixA.3. An example of application is illustrated in Figure 2. The
procedure is applied to the harmonic response of the orthotropic composite plate sample, studied in 3.1,
at the frequency of 250 Hz (Figure 2.(a)). The ESTER criterion (inverse of the geometrical mean of the
estimation errors) is computed for r ∈ [[ 1, 30 ]] (Figure 2). A maximum of the criterion can be observed for
R = 4. Finally, four wavevectors are extracted with the ESPRIT algorithm (dot marks in Figure 2.(b)).

Thanks to the ESTER criterion, which uses the same theoretical framework as the ESPRIT algorithm,
an automated estimation of the signal order R is obtained, if the truncation error is sufficiently contrasted.
In this signal order determination procedure, the higher hypothetical signal order rmax has to be chosen. In
practice, this parameter must remain low: a high rmax would involve a high computational burden while
increasing the risk of extracting spurious wavevectors originating from noise. Moreover, it is of common
knowledge that the ESPRIT algorithm performs well for a reduced number of poles [50]. This parsimony
requirement seems contradictory with the infinite number of plane waves that would be needed to represent
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Figure 2: Signal order estimation. The signal S(ω,x) (a) is measured on the orthotropic sandwich plate of Section 3.1, at the
frequency of 250 Hz. The ESTER criterion is computed (eqs. A.15 and A.16) for r ∈ [[ 1, 30 ]], and the signal order R chosen at the
local maximum r = 4. Finally, four wavevectors are extracted with the HRWA (markers in (b))
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a given complex physical situation. In practice, the reflection of waves at the boundaries of the plate creates
destructive and constructive interferences responsible for a selection process in the wavevectors. As a
consequence, it was observed that the plate response can be well approximated by a reduced number of wave
components (typically less than a few dozen) if the effect of losses remains low. Special care must be taken
when the damping is high or when the source is close to the observation window in order to keep the signal
order reasonably low (see example 3.2). Therefore, R represents the apparent number of plane-waves in the
observed vibration-field. All along the examples shown in this paper, the parameter rmax was chosen equal
to 30.

2.4. Signal preprocessing
Before the application of the wavevector extraction procedure described before, it is possible to perform

additional preprocessing steps on themeasured signal. Indeed, because of the the signal parsimony needed to
apply the ESPRIT algorithm, only the dominant components in terms of energy (corresponding to the highest
eigenvalues of the covariance matrix) are identified when noise is added to the signal. As a consequence,
waves with a low amplitude can be hard to extract from the signal. To that end, sub-band decomposition
techniques have been proposed [51] as pre-processing steps.

These sub-band decomposition techniques consist in performing some spatial filtering on the measured
signal. In the case of interest here, a 2D Finite Impulse Response filter F (FIR) can be convoluted to the
signal S as follows:

S̃ = S ∗ F (9)

This technique can help to overcome the limitation mentionned above. If the wavevectors corresponding to
high and low amplitude waves are well separated, they can be isolated. Depending on the chosen filter shape
(i.e. band-pass filter with kmin and kmax as parameters), waves with a high amplitude can be filtered so that
applying the ESPRIT algorithm on the signal S̃ allows to extract low amplitudes waves. Moreover, filtering
can also help to reduce the number of component in the signal, thus improving the ESPRIT algorithm
performance. However, this filtering step should be used carefully as it can introduce some artifacts due to
the non-zero signal values at boundaries. Even if a windowing step can be performed before filtering, these
artifacts could lead to the extraction of spurious wavevectors.

As an example, this filtering technique is performed in the following to separate waves corresponding to
in-plane and out-of-plane motion (see Section 3.1).

2.5. Wavevector selection
Most of the energy related to nearly evanescent waves (such that |τr | > |κr |) is contained close to

sources and boundaries, which represents a small part of the overall processed signal. Also, τr is sensitive
to noise. In addition, as discussed above, τr has several contributions that may be difficult to separate and
may be related to signal model errors. Moreover, the uncertainty associated to the wavevectors extracted
with the ESPRIT algorithm increases rapidly for γr > 10% [52]. As a consequence, a selection step must
be performed to keep only the wavevectors with a dominant real part. We choose to keep only the waves
with an equivalent decay factor γr Eq. (5) satisfying:

γr ≤ γmax (10)

This strategy can be used when the observed zone of the plate is small, or close to any source or
boundary, where spurious evanescent waves may be present. Considering plates made of materials with
low loss factors, a reasonable choice for γmax is 10%, corresponding to situations where the effect of losses
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Figure 3: Block diagram of the HRWA. Optional processing steps are in blue.

are small and do not alter the real part. In the present work, it is applied in the local wavevector extraction
performed in Section 3.3.

A block diagram representing the High-Resolution Wavevector Analysis steps is shown in Figure 3. The
procedure can be summarized as follows: The harmonic response field s(ω,x) of a plate, or a subpart of
a plate, is measured on a regular grid of points xnm (Eq. (6)), giving the signal matrix S(ω) (Eq. (7)).
Before the application of ESPRIT algorithm, some spatial filtering can be achieved (Eq. (9)) to separate
different kinds of waves which wavevectors are distinct. Next, the wavevector extraction procedure (see
AppendixA.3), performed at a given given frequency ω, leads to the extraction of a discrete spectrum of R
complex wavevectors kr (Eq. (2)), where R depends on the frequency. Finally, in order to characterize the
properties of the plate with a good accuracy, the evanescent wavevectors can be discarded (Eq. (10)).

Finally, from the collection of obtained wavevectors at all frequencies, discrete experimental dispersion
surfaces are obtained in the (k, ω) space, characteristic of the local plate behavior.

In comparison with Fourier-based wavevector extraction analysis, the HRWA presents some improve-
ments:

1. High-resolution: the HRWA overcomes the resolution limitations of Fourier-based methods. This
improvement allows the extraction of plane waves which wavelength is comparable or even larger than
the observing window size. As a consequence:
(a) the low-frequency limit of wavevector-based observations is reduced, allowing for the charac-

terization of plates in a wide frequency range, from the first modal frequencies and without a
priori limitation on high frequencies (as long as it can be considered as a waveguide).

(b) the observation window can be reduced to characterize local plate behavior by means of lo-
cally extracted wavevectors. Plates with slowly spatially varying mechanical properties can be
characterized.

2. Automated signal order choice: thanks to the ESTER criterion, the number R of waves necessary to
approximate the signal is estimated, in the range [[ 1, rmax ]]. As a consequence:
(a) the wave propagation direction distribution is directly identified: 2R poles are extracted simul-

taneously and paired to form wavevectors, with given propagation directions.
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Material Thickness EL ET GLT νLT ρ

HD PVC Foam 5.2 mm 80 MPa 80 MPa 32 MPa 0.25 86 kg/m3

Prepreg Carbon 150 µm 120 GPa 6.5 GPa 3.5 GPa 0.35 1300 kg/m3

Table 1: Indicative mechanical properties of the materials of plates.

(b) multiple wave types (e.g. bending, in-plane motions) can be separated. This allows for the
characterization of multiple plate strain mechanisms.

3. Linear problem: Thewavevector extraction is formulated as a closed-formproblem. As a consequence:
(a) the robustness of wavevector extraction is ensured.
(b) no assumption is needed neither on the wavevector nature (real, complex, real and imaginary

part colinearity) nor on their dependence as a function of frequency.

3. Applications

Throughout three application cases, the following Section illustrates the interest of the HRWA as a
characterization tool of the linear dynamic behavior of composite plates. The plates were fabricated at the
Laboratoire Navier: two homogeneous sandwich plates with Carbon Fiber Reinforced Polymer (CFRP) skins
and different core materials (HD PVC foam for plate 1 and Honewcomb for plate 2), and one inhomogeneous
4-layers laminated CFRP plate consisting of 36 spatially distributed patches with varying fiber directions.
Carbon prepreg was used. The in-plane mechanical engineering constants of the materials, identified with
static tensile tests, are summarized in Table 1.

For all plate specimens, the out-of-plane velocity field was measured along regular grids with a Scanning
Laser Doppler Vibrometer (SLDV model Polytec PSV-400). The instantaneous velocity of the surface of
the plate is measured by repeating the experience for each point of the grid. A stationary signal (band pass
filtered noise) was used as excitation signal, in order to stimulate a wide range of frequencies. To improve
the signal to noise ratio, the transfer function between the measured velocity and the electrical signal is
taken. Furthermore, multiple realizations of the measurement are performed at each point. The average
over the realizations is taken as data to build the signal matrix processed in the ESPRIT algorithm (see
AppendixA.1).

3.1. Sandwich Plate with foam core
3.1.1. Plate Configuration

The first experimental study focuses on the characterization of a square sandwich plate 60 cm wide, with
a High Density PVC foam core and two thin carbon skins of one layer each. The fibers are oriented in the
90◦ direction. A scheme of the plate is shown in Figure 4. Indicative material properties of the HD PVC
foam and carbon prepreg are summarized in Table 1. Only in-plane engineering constants are shown: out-of
plane constants can be deduced for the HD PVC core, which is isotropic. The transversely isotropic carbon
prepreg is used for the skins (assuming νTT = 0.3), in which in-plane strains and stresses are dominant.
This particular sandwich plate architecture is chosen because of its high anisotropy and the high contrast
between the stiffness of its core and skins. In addition, it is homogeneous in the plate directions, which
allows the comparison of experimental results with numerical predictions of the propagation of plane waves
in multilayered plates.
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Figure 4: Orthotropic sandwich plate with HD PVC foam core. Scheme of the measurement setup with a closeup on the plate
configuration. The two CFRP skins are oriented at 90◦. h = 5.5 mm, b = 60 cm.

3.1.2. Measurement setup
A scheme of the measurement setup is given on figure 4. The plate is excited simultaneously by a shaker

and a piezoelectric disk attached at opposite corners in order to excite a wide range of frequencies: from
100 Hz to 40 kHz. The measuring grid is 175 × 175 points (∆ = 3.4 mm), fulfilling the Nyquist criterion
(Eq. (8)) at the higher observed wavenumber (kmax ≈ 600 rad.m−1, λmin ≈ 10 mm from Eq. (4)). Repeating
the measurement 10 times at each point, the total measuring time duration is approximately two hours. After
the computation of the time Fourier transform of the signal, 1600 plate harmonic responses are available,
for frequencies between 100 Hz and 40 kHz.

3.1.3. SFEM scheme
In this section, the experimental HRWA results are compared with the results of a Spectral Finite

Element Method (SFEM) scheme. Introduced by Shorter [30] for isotropic laminated plates, the SFEM
has been extended to laminated plates made of orthotropic layers with arbitrary orientation [53]. A more
general scheme, for waveguides of arbitrary cross-section, can be found in [54], also referred to as the Semi
Analytical Finite Elements (SAFE) method. At a given frequency ω, and for a given wave propagation angle
φ, the plate displacement field u is assumed of the form:

u(x, t) = U (x3) ei(ωt−k(cos(φ)x1+sin(φ)x2)) (11)

The SFEM uses finite elements to compute the guided modes U (x3), as the result of a quadratic eigenvalue
problem in the wavenumber k. The SFEM predictions shown in this section are computed with the material
properties in Table 1 as input. These properties are assumed independent from the frequency. The SFEM
convergence was verified in the frequency range of interest, with a mesh composed of 3 elements in each
skin and 100 elements in the core (element length ≈ 50 µm). The results shown in the following are obtained
by performing SFEM computations for a given set of wave propagation angles φ and frequencies ω.
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Figure 5: Orthotropic sandwich plate with HD PVC foam core. Wavevector Fourier spectrum corresponding to the measured
harmonic velocity field at the frequency of 28 kHz. Four wave types can be seen: in-plane (compression and shear), bending and
air-coupled waves.

3.1.4. Results
The wavevector Fourier spectrum (result of a 2D spatial Fourier transform applied to the measured

harmonic field) corresponding to the frequency of 28 kHz, is shown in Figure 5. Four high intensity regions
can be distinguished and related to different wave types. From low to high wavenumber: two types of
in-plane motion, bending motion, and air-coupled waves. It can be observed that the higher spatial spectrum
amplitudes corresponding to bending and air-coupled waves are found in the upper-left and bottom-right
regions. This is due to the position of the two sources, at the upper-left and bottom-right corners of the
plate. As a consequence of the wave decay and since the wavelength decreases with the frequency, reflected
waves weaken so that the direct contribution of the sources dominates the response of the plate. This can be
noticed on the HRWA results too (see Figures 6 and 8). By contrast, the in-plane waves show a relatively
large wavelength so that the wave intensity is more equally distributed and the source less visible. More
details are given in the discussion below.

This first study focuses on the conservative behavior of the sandwich plate. Since the damping is low in
this plate, only the real part κ of each wavevector is taken into account in Eq. (3) to compute the vectorial
phase velocity c of each extracted wave. All the experimental results discussed below are extracted from the
same collection of measured plate harmonic responses.

Bending motion. The dominant source of out-of-plane velocity comes from the bending motion. As a
consequence, in the studied frequency range, applying the HRWA to the measured signal without spatial
filtering (Eq. (9)) leads to the extraction of bending wavevectors. The phase velocity c of these waves
is plotted in Figure 6. In Figure 6a, c is represented in a polar diagram for 10 frequencies covering the
frequency range. Hence the dependence of the wave velocity as a function of its propagation direction can
be studied. Numerical predictions (solid lines) are added to the HRWA results (dot marks). In Figure 6b,
the magnitude of the phase velocity of all extracted waves is plotted as red markers. Numerical lowest and
highest phase velocities (SFEM results at 0◦ and 90◦) are added as black lines.
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To interpret the results, the slenderness ratio is defined as the ratio of the wavelength λ over the plate
thickness h. It is is large at low frequencies (λ/h ≈ 160 at 500 Hz) thus the plate behaves as a thin plate.
In this regime, the bending wave velocity is proportional to the square root of the frequency. Moreover,
the bending motion is source of in-plane stresses which are mostly contained in the carbon fiber skins. As
a consequence, the anisotropy of the phase velocity diagram is high and is symmetric with respect to the
fiber direction (90◦). As the frequency increases, the wavelength decreases and the slenderness ratio as well
(λ/h ≈ 8 at 10 kHz, ≈ 4.5 at 20 kHz, ≈ 2.3 at 40 kHz). The plate consequently behaves as a thick plate:
out-of-plane shear strains, mostly contained in the foam core, become more and more significant [55]. As
the foam can be considered isotropic in the frequency range of interest, the bending wavevector magnitude
tends to be independent of the wave propagation angle. In addition, as the shear effects are not dispersive,
the bending velocity tends asymptotically toward a constant value.

In-plane motions. Laminated plates can exhibit coupled behavior between in-plane and out-of-plane mo-
tions, when the symmetry to the neutral plane is not exactly satisfied. Imperfect fabrication or piezoelectric
disk used as source can break the plate mirror symmetry. In addition, longitudinal waves can be the
source of out-of-plane displacement, because of the out-of-plane Poisson effect. Finally, the SLDV velocity
measurement may contain contributions from the in-plane components of the plate motion, when the laser
beam is not exactly normal to the plate surface. When performing modal analysis, these contributions can
be an issue, as they are not separable from the out-of-plane kinematic field, without a proper 3D velocity
measurement. With the proposed HRWA, bending and in-plane motions can be isolated because of their
well separated wavevector magnitudes.

To perform the extraction of in-plane motion waves with the HRWA, the contribution of the bending
waves in the signal has to be removed because of their relatively high amplitude. To this end, a 2D spatial
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Figure 6: Orthotropic sandwich plate with HD PVC foam core. Vectorial phase velocities c of bending waves (m/s). Dot marks:
HRWA results applied on measurements. Solid lines: numerical wavevector results computed with a SFEM scheme ([53]). (a)
Phase velocities at 10 different frequencies between 100 Hz and 40 kHz, as function of the propagation direction. (b) Magnitude
of all extracted phase velocities as function of the frequency. Highest and lowest velocities computed with SFEM (resp. at 90◦ and
0◦) are plotted as solid black lines.
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low-pass filter is applied on the signal (Eq. (9)). As the bending wavevectors were extracted previously, they
are used to tune the cutoff wavenumber of the filter: at each frequency, the cutoff wavenumber is chosen
as a fraction of the minimum bending wavevector extracted at this frequency. Using this strategy, in-plane
motion wavevectors are extracted for frequencies between 28 kHz and 40 kHz.

In Figure 7, the experimentally extracted phase velocities Eq. (3) are plotted as colored dot marks, the
color denoting frequency. The experimental results are compared to velocities computed with the SFEM
scheme (at 34 kHz). Two kinds of waves can be separated: longitudinal waves (P waves) and in-plane shear
SH waves. It can be noticed that a very few wavevectors corresponding to longitudinal waves were extracted
for φ = [60◦, 120◦]. Indeed, the in-plane tensile stiffness of the plate is very high at these angles because of
the carbon fibers oriented at 90◦. Consequently, longitudinal waves travelling in these directions have a low
amplitude and a large wavelength which make them difficult to extract.

As a first approximation, the in-plane motion waves can be considered as non dispersive in the frequency
range of interest: their phase velocity depends only on the wave propagation direction. Again, the polar
diagram displays two symmetry planes at 0◦ and 90◦, corresponding to the plate orthotropy. Looking closer,
some dispersion can be observed in the diagram of the P waves. At the lowest frequencies (blue shade
markers), the phase velocity magnitude is larger than at the highest frequencies (red shade markers). This
dependence is related to the out-of-plane Poisson effect, which tends to increase with the frequency.

Air-Coupled Waves. The out-of-plane motion of the plate is transmitted to the surrounding air, resulting in
an acoustical field which in turn loads the plate. The out-of-plane motion of the plate is transmitted to the
surrounding air, resulting in an acoustical field lightly loading the plate (weak coupling). It is well known
that the plate-air coupling is very weak when the speed of the bending waves is below the speed of sound
in air (subsonic waves, very close to in-vacuo waves) and becomes more efficient (but still in the light-fluid
approximation) when the speed of the bending waves becomes larger than the sound speed. The low mass
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Figure 7: Orthotropic sandwich plate with HD PVC foam core. Phase velocitiy of in-plane motion waves as a function of the wave
propagation direction and for frequencies between 28 kHz and 40 kHz: in-plane shear SH waves (inner contour) and longitudinal
P waves (outer contour). Dot marks: HRWA results applied to measurements, with colors corresponding to frequency. Solid lines:
numerical wavevector results computed with the SFEM scheme at 34 kHz ([53]).
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per unit surface of the sandwich plate (840 g/m2) increases the coupling also. In Figure 6b, the approximate
sound velocity is denoted by a horizontal dashed line. Between 5 kHz and 10 kHz, identified bending wave
phase velocities (red dots) seems to differ from SFEM numerical results, some of the experimental results
being lower than the lowest predicted phase velocity. At these frequencies, the sound velocity coincides with
the velocity of some of the bending waves. As a consequence, some extracted wavevectors may be related
to waves travelling in the surrounding air. At higher frequencies (>10 kHz), bending wave velocity is higher
than sound velocity. Hence their different wavevectors can be separated (see, for example, the result at
28 kHz in figure 5). By applying an appropriate 2D high-pass spatial filter to the velocity field (Eq. (9)), the
wavevectors ka related to air-coupled waves can be isolated. The mean velocity of these particular waves is
identified to be approximately ca = 345 m/s (see Fig. 8), which may slightly differ from the sound velocity
because of the fluid loading (see for example [56], p. 237).

This study shows how different kinds of waves can be separated and identified with the HRWA. Thanks
to its high-resolution aspects, the bending wavevectors are extracted in a wide frequency range (100 Hz to
40 kHz), even when only a few wavelengths are contained in the measured signal. In-plane motion waves
can be extracted and analyzed. Finally, the sound speed is retrieved, as a consequence of the plate coupling
with the surrounding air.

All these experimental results are compared with SFEM predictions computed from the mechanical
properties of the plate constitutive materials and match closely. In this example, no inverse identification of
the mechanical properties was done. However, the good fit between the HRWA and numerical results gives
an insight into the potential of wavevector extraction for anisotropic plate characterization. The wavevectors
could be used to identify the plate constituent properties via an inverse problem, without much attention paid
to excitation sources or boundary conditions. In particular, the ability to separate various plate wave types
may allow to identify each layer properties, as the contribution of individual layers to the overall stiffness
and inertia is different for each wave type.
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Figure 8: Orthotropic sandwich plate with HD PVC foam core. Sound velocity ca (m/s) measured from extracted wavevector for
different frequencies. HRWA results: dot marks ; mean value : solid line
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3.2. Sandwich plate with honeycomb core
A second experimental study is performed on a square sandwich plate 60 cm wide, with carbon fiber

skins oriented at 0° and a honeycomb core (see Figure 9a). The light honeycomb core, with a cell diameter
of approximately 7 mm, separates the two stiff skins, leading to a plate with high bending stiffness to weight
ratio. This architecture is chosen in order to illustrate the ability of the HRWA to capture individual layer
properties: the distinct anisotropic properties of the carbon fiber skins and the honeycomb core result in a
particular dependence of the wavevectors as a function of frequency and wave propagation direction.

The velocity field measurement is achieved with a SLDV on a grid of 157 × 157 points. The Nyquist
criterion, verified a posteriori, is satisfied. As excitation source, a piezoelectric disk is glued near the center
of the plate, which is suspended with two thin rubber bands. Figure 9b gives the measured velocity field at
25 kHz. Because of the significant damping of the plate, few reflections occur and the field is dominated by
the direct emission of the source.

Placing the excitation close to the plate center allows the extraction of wavevectors in the surrounding
of the source. As a consequence, the wavenumber extraction procedure is applied on 100 reduced zones
of the measured field distributed around the source. In Figure 9b, 20 of these zones are represented. The
wavevector extraction is performed for each individual zone. As the zones are chosen at a certain distance
of the source, the field in each zone corresponds closely to a plane wave. Choosing zones closer to the
excitation would yield an imaginary part of the extracted wavevectors more influenced by the rather circular
source wavefront. Sufficiently far from the source, the HRWA allows to identify the decay γ (Eq. (5)) of a
plane wave along its propagation direction.

A large collection of wavevectors is obtained, which are represented as a function of the wave propagation
direction and the frequency in Figure 10a. Both the real and imaginary parts of the extracted wavevectors
are represented as dot marks in 3D. This representation of the results makes the dispersion surfaces of the
structure clearly visible. In order to help the interpretation of the results, an alternative plot is shown in
figure 10b: the magnitude of the real part of the wavevectors ‖κ‖ and the spatial decay γ are represented as
a function of the frequency (y-axis) and the wave propagation direction φ (color of the dot marks). As the
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(a) Scheme of the plate. The two CFRP skins are oriented at 0◦.
h = 5.3 mm, b = 60 cm.

(b) Measured harmonic velocity field at the
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used for the wavevector extraction are rep-
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Figure 9: Sandwich plate with honeycomb core.
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structure is symmetric with respect to the (xOz) and (yOz) planes, only the angles ranging from 0 to π/2
are represented.

These two figures allow a number of observations on the dynamical bending behavior of the structure.
Focusing on κ identified at relatively low frequencies (from 5 kHz to 20 kHz), one can see a transition
appearing between the two principal directions: at 5 kHz, waves propagating at 0◦ (Figure 10b in blue)

(a) Discrete dispersion surfaces. Left: real part κ. Right: imaginary part τ .

(b) Results of the HRWA as a function of frequency (y-axis) and propagation direction φ (marker color). Left:
magnitude of the real part κ of the wavevectors; right: spatial decay γ (Eq. (5)).

Figure 10: Sandwich plate with honeycomb core. Results of the application of the HRWA.
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are the fastest because the plate bending stiffness is governed by the carbon fiber skins. As the frequency
increases, out-of-plane shear effects become significant and the wave velocity is more and more influenced
by the honeycomb core properties. According to the results, the core seems to have its stiffest direction
oriented at 90◦: at 20 kHz, this direction corresponds to the lowest observed wavevector magnitude (in
red). Regarding the extracted spatial decay γ, no significant influence of the wave propagation direction can
be identified: from 10 kHz to 30 kHz, γ slowly decreases from 5% to 3%. As long as the measurement
is sufficiently far from the source, it was observed that the distance as well as the size of the zone have a
reduced influence on the estimation of this spatial decay.

The second important feature made visible by these representations is the presence of a singularity in
the results around the frequency of 34 kHz in both the real and imaginary parts of the wavevectors. Just
below this singularity, the half-wavelength π/‖κ‖ ranges roughly from 6 mm to 8 mm, which corresponds
approximately to the honeycomb cell size. Hence this singularity seems to be related to a resonance of the
cells, drastically altering the propagation of waves and explaining the high spatial decay identified. Above
this singularity, the spatial decay decreases down to approximately 3%.

Giving theoretical predictions of wave propagation in such a sophisticated periodic structure being
outside the scope of the paper, no comparison is given here to confirm the observations or make quantitative
identifications. However, it is clear from the results that the proposed HRWA seems to be a good candidate
for the characterisation of structures with singular frequency-dependant behavior (i.e. for the identification
of band-gaps in metamaterials).

3.3. Inhomogeneous composite plate
The preceding experience shows the possibility of the HRWA to perform a local wavevector extraction

on small zones of the signal. For this third experimental study, this feature is used to identify the local
specific bending stiffness. To this purpose, a 30cm wide laminated CFRP square plate with varying fiber
directions was fabricated. The plate is made of 36 patches with various fiber directions. Figure 11a shows a
top view of the plate, where the fiber directions θ are denoted by thin white lines. The stacking sequence is 4
ply, symmetric: [θ, 90◦]S . The two central plies at 90°, continued on the entire plate, work as a substrate for
the mechanical cohesion of the patches. Material properties of the carbon prepreg, identified from tensile
tests, are summarized in Table 1.

For the measurements, the plate is excited from 500 Hz to 22 kHz with a shaker located in the bottom
left corner. The velocity response is measured with a SLDV on a regular 100 × 100 mesh grid of points,
sufficient to respect the Nyquist criterion.

The HRWA is applied to reduced zones of the measured signal, that correspond to each patch location.
Indeed, the mechanical properties of the plate are homogeneous in each zone. The wavevector extraction is
performed for each of the 1600 available harmonic response fields between 500 Hz and 22 kHz. Hence a
collection of wavevectors is obtained for each patch, as a function of the frequency.

As the zones used for wavevector extraction are small and may be close to plate boundaries, evanescent
waves can be detected. Theoretically such waves may be solutions of the dispersion laws, so could be used
for the identification of the plate. However, in practice, the extraction of evanescent wavevectors is sensitive
to noise. In order to enhance the identification performed afterwards, evanescent waves are removed with
γmax = 10 % (Eq. (10)).

The largest wavevector magnitude extracted over all patches being around 580 rad/m, the minimum
involvedwavelength λ is approximately 11mm, which gives a slenderness ratio λ/h ≈ 18. As a consequence,
the plate can be considered as a thin plate in the frequency range of interest. The dispersion equation of the
bending waves of an anisotropic thin plate can be computed analytically following the Classical Lamination
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Figure 11: Inhomogeneous CFRP plate. Identification of the local specific bending stiffness from HRWA results. (a) Top view of
the plate (stacking sequence: [θ, 90◦]S), which shows the fiber directions θ of the top carbon layer. The zone relative to the figure
11b is surrounded in red. (b) Local specific bending stiffness B(φ) (Eq. (12)): HRWA results (dot marks) ; least-Square fit of eq.
12 (black line) ; indicative theoretical diagram from material engineering constants of Table 1 (blue line).

Plate Theory (CLPT, see AppendixB). Assuming frequency-independent material properties, it can be recast
to write the apparent specific bending stiffness B as a function of the wave propagation direction φ:

B(φ) =
ω2

|κ(ω, φ)|4
=

D(φ)
M

= c4B11 + s4B22 + 2c2s2(B12 + 2B66)

+ 4c3sB16 + 4cs3B26

(12)

with
κ(ω, φ) = |κ(ω, φ)| · [c, s]

= |κ(ω, φ)| · [cos(φ), sin(φ)]
(13)

and
Di j =

1
3

∑
c

(h3
c+ − h3

c−)Q
c
i j

M =
∑
c

(hc+ − hc−)ρc
(14)

where c denotes the layer, Qc
i j are the components of the plane stress stiffness matrix given by the carbon

fiber mechanical properties and the fiber orientations, and (hc+, hc−) respectively denote the position of
the top and bottom boundaries of the layer. From Eq. 12, an inverse problem can be formulated: given
a collection of N real wavevectors κn = κ(ωn, φn) [cn sn]>, extracted with the HRWA in a local zone, the
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vector of unknowns b = [B11, B22, B12 + 2B66, B16, B26]
> is solution of the system:

[a1 . . .aN ]
> b =

[
ω2

1
|κ1 |4

. . .
ω2

N

|κN |
4

]>
(15)

an = [c4
n s4

n 2c2
ns2

n 4c3
nsn 4cns3

n]
> (16)

As the number N of extracted wavevectors is usually of the order of thousands and only 5 unknowns bi
have to be determined, a Least-Square estimation can be performed. Since the right-hand side of Eq. (15) is
strictly positive, B11, B22 and B12 + 2B66 are strictly positive too. By contrast, the coupling components B16
and B26 can be negative. An example of this local identification is shown in Figure 11b: for all frequencies,
the wavevectors are extracted with the HRWA in the zone of the plate surrounded in red in Figure 11a.
Experimental values of ω2/|κ|4 are denoted with dot marks in the polar diagram. The result of B(φ)
obtained with LS fitting (eq. 15) is plotted in black solid line. The identified specific bending stiffness
is in good agreement with theoretical values (blue solid line), computed from material constants given in
Table 1. The scattering in the values of B is mostly due to the amplification of the uncertainty by the fourth
power of |κ| in Eq. 12. In addition, it can be observed that the dispersion of the experimental values is
larger in the directions of high bending stiffness: indeed, in these directions, waves have long wavelengths
(corresponding to small wavenumbers) compared to the width of the zone of interest: as consequence, the
wavevector extraction is more sensitive to noise in these directions.
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Figure 12: Inhomogeneous CFRP plate. Components of the local specific bending stiffness tensor B, for each patch of the plate
(see figure 11a). (a) Identified values from HRWA results (eq 15) ; (b) theoretical predictions from material properties in Table 1 ;
(c) rounded relative errors (%), black is more than 100%.

The same procedure was repeated for each patch location of the plate, in order to identify the local
specific bending stiffness tensor components. The results are shown in Figure 12: experimental values (a)
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are compared with theoretical values (b), and relative errors are given (c). Globally it can be observed that
the identification errors are smaller when the components are larger: for example, coupling components B16
and B26 are more sensitive to noise than diagonal constants (B11 and B22). The relative error is particularly
high (>200%) when theoretical components are equal to zero (black squares in Figure 12(c)). In addition,
some differences can be explained by the uncertainties in the plate fabrication (patch angles and positions),
and mechanical properties that differs from samples used for tensile tests in Table 1.

This last study shows the possibility to identify a local mechanical behavior on inhomogeneous
anisotropic plates with a simple linear inverse problem.

4. Conclusions and Perspectives

The High-Resolution Wavevector Analysis (HRWA) was presented. It allows the characterization of
the elastic behavior of composite plates. The implementation of the method, that makes use of the well-
established signal processing ESPRIT algorithm and ESTER criterion, was summarized. By means of three
experimental applications, the ability of the method to extract useful information from a measured kinematic
field was illustrated. With the dependence of wavevectors as a function of the propagation direction and
the frequency, the anisotropic behavior of the plate can be characterized for frequencies as low as the first
modal frequencies. Various strain mechanisms such as bending, in plane shear or compression can be
separated because of their distinct wavevectors and the ability of the algorithm to estimate the number of
waves contained in the signal. In addition, the possibility to identify a local behavior in inhomogeneous
plates with an inverse problem using extracted wavevectors in a small zone of the plate thanks to the high
resolution of the procedure is shown.

Various applications can be considered. In particular, the extracted wavevectors can be used to formulate
an inverse identification problem of the material properties, with refined plate models. The wide-frequency
domain of validity of the method could be used to identify refined layer and inter-layer properties (individual
lamina behavior, interface stiffness, delamination, etc.). The local wavevector extraction could be used
as a characterization tool in emerging laying technologies, e.g. in Automatic Fibre Placement (AFP)
process [57, 58]. In addition, it could be used to detect local defects in a fabricated plate, like damages or
delaminations. Indeed, the extraction zones in the third example were chosen here to correspond to patch
geometries; in a plate with continuously curved fibers, it could be possible to identify the local equivalent
bending stiffness, by making the extraction zone slide continuously over the plate domain. At the end, a map
of the mechanical properties of the plate could be represented, in order to find its defects.

As for now, a proper estimation of the wave decay can be achieved only in cases where the response field
is close to a plane wave in its shape. This limits the ability to characterize the plate viscous behavior. This
limitation is due to the signal model, which considers plane waves only (or far-field source). High-resolution
algorithms suited for the identification of near-field sources has been developed [59, 60, 61], and could be
used to identify the parameters of waves with a wavefront which is not plane. Moreover, uncertainties in the
wavevector could be quantified by using results of the perturbation analysis of the ESPRIT algorithm [48].
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AppendixA. Wavevector extraction procedure

AppendixA.1. The 2D-ESPRIT method
The 2D-ESPRIT methods deals with the estimation of the parameters kr and ar of the signal model

s(x) of equation 1. In this section, the signal order R is supposed to be known (see AppendixA.2). The
corresponding signal matrix S, of which components are the sampling of s(x) along the grid xnm (equation
6, 7 and Fig. 1), can be expressed as follows:

S = U +B (A.1)

with
Snm = u(xnm) + b(xnm)

=

R∑
r=1

ar zn1,r zm2,r + b(xnm)
(A.2)

whereU andBmatrices respectively denote the pure sumof decaying planewaves and the noise contribution
in the signal and zd,r = eikd,r∆d the complex signal poles, with d = 1, 2.

AppendixA.1.1. Rotational Invariance Property
If the pure signal U is read by line u =

[
U11 , ... , U1L2 , U21 , ... , UL1L2

]>, it can be written in the
form:

u = V a (A.3)

with a =
[
a1, a2, . . . , aR

]>. The Vandermonde matrix V used here is expressed as:

V = V1 � V2 (A.4)

where � denotes the Khatri-Rao product [62] (column-wise Kronecker) and, for d = 1, 2:

Vd =


1 1 · · · 1

zd,1 zd,2 · · · zd,R
...

...
. . .

...

zLd−1
d,1 zLd−1

d,2 · · · zLd−1
d,R

Ld×R

(A.5)

The Vandermonde matrix satisfies a rotational invariance property. In the 2D-ESPRIT method, it is
expressed as two recurrence relations between Vandermonde matrices built from two sub-parts of the signal.
For each of the signal dimensions d :

V ↑d = V ↓d Zd (A.6)

where Zd = diag({zd,1, zd,2, . . . , zd,R}). The superscripts ↓ d and ↑ d respectively denote the truncation of
the first and the last index in the signal, in the direction d. As an example, the V ↑1 = V ↑1 � V2, where the
V ↑1 matrix is built from the (L1 − 1) first lines of S.

As S is a noisy version of U , this invariance property is not exactly satisfied by the measured signal.
However, it can be estimated, which is the main purpose of the ESPRIT algorithm.
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AppendixA.1.2. Autocovariance Matrix
From the nth line of the signal S, one can build the Hankel matrix hn as follows:

hn =


Sn0 Sn1 · · · Sn(K2−1)
Sn1 Sn2 · · · SnK2
...

...
. . .

...

Sn(N2−1) SnN2 · · · Sn(L2−1)

N2×K2

(A.7)

where N2 = L2 − K2.
From the signal S, a Hankel-block-Hankel (HbH) matrixH is built, composed by the L1 matrices hn:

H =


h0 h1 · · · hK1−1
h1 h2 · · · hK1
...

...
. . .

...

hL1−K1−1 hL1−K1 · · · hL1−1

 (N1N2)×(K1K2)

(A.8)

The role of the parameters Kd is discussed in the next section.
This HbH matrix is used to compute the autocovariance matrix of the signal:

CSS =
1

L1L2
H∗H (A.9)

AppendixA.1.3. Subspace decomposition
By computing the eigenvalue decomposition of the hermitian autocovariance matrix, signal and noise

subspaces can be selected:
CSS = P ΓP

−1 (A.10)

Without noise, the matrix CSS would be rank R, but is full rank in the presence of noise. However, as it is
an asymptotically unbiased estimator of the signal autocovariance, its eigenvectors are poorly sensitive to
an uncorrelated noise b. As a consequence, by isolating the R first eigenvectors pr of CSS , corresponding
to its R dominant eigenvalues Γrr , the signal subspaceW = [p1,p2, . . . ,pR] can be selected. The matrix
W spans a signal subspace close to the subspace spanned by the Vandermonde matrix V .

In the HbH matrix construction, (Eq. (A.7)) and (Eq. (A.8)), two parameters {Kd, d ∈ {1, 2}} have to
be chosen. Observing CSS andW leads to the constraint R ≤ K1K2. Kumaresan and Tufts [63] suggested
to use these parameters to add P = K1K2 − R virtual poles in the extraction, their role being to sample a
potentially correlated noise contribution inB, thus permitting to separate its influence in the extracted poles.
In practice, the best strategy [64] consists in choosing a shape ofH so that it is almost square, Kd ≈ Ld/2.

AppendixA.1.4. Poles extraction
Since V and W matrix span close subspaces (not exactly the same because of noise), the transfer

relation V =W T between them can be estimated. By integrating this relation in the rotational invariance
(Eq. (A.6)), it comes:

Zd = T
−1 Fd T (A.11)

with
Fd = (W

↓d)†W ↑d (A.12)

where •† denotes the pseudo-inverse matrix. Therefore, the extraction of the poles zd,r could be achieved
thanks to the diagonalization of the matrices Fd. If the two diagonalizations were made independently, a
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supplementary pairing step of the poles in the two directions would be necessary. Rouquette [38] suggested
to jointly diagonalize the two matrices Fd related to the two signal dimensions, by the diagonalization of a
single matrixK :

K = βF1 + (1 − β)F2 = T DT
−1 (A.13)

where the parameter β, arbitrary, is chosen different from 1/2 (typically 0.55), in order to allow eigenvalues
of multiplicity larger than 1. The wavevector extraction proved to be not sensitive to the parameter β.

Once T has been evaluated from K, the equations A.11 are used to retrieve Zd, and finally the
wavevectors:

kr = −i
[
ln(z1,r )

∆1
,

ln(z2,r )

∆2

]
(A.14)

If needed, the amplitudes ar can be approximated by building the Vandermonde matrix V and solving
the linear system of equations A.3 in the least-squares sense.

AppendixA.2. The 2D-ESTER criterion
The estimations of the two matrices Fd (equation A.12), made in the least-square sense, are sensitive to

a wrong estimation of the signal order R. The ESTER criterion consists in searching the signal order R that
minimizes the two errors of truncation Σd(r), r being a candidate for the signal order:

Σd(r) = | |W ↓d(r)Fd(r) −W ↑d(r)| |2 (A.15)

In the present work, the geometrical mean of the two errors is used, so the two-dimensional ESTER criterion
is expressed as:

R = arg max
r ∈[[ 1,rmax ]]

(∏
d

Σd(r)

)−1/2

(A.16)

In some applications of the ESTER criterion [46, 12, 44], a threshold parameter is added: the signal order
is chosen as the largest value r for which the criterion reaches a local maximum larger than a fraction of the
global maximum. In the present work, this strategy was not used.

AppendixA.3. Implementation of the wavevector extraction procedure
1. The Hankel-block-Hankel matrixH is built (Eq. (A.8)) from the signal S (Eq. (7)), with Kd ≈ Ld/2
2. The autocovariance matrix CSS is computed (Eq. (A.9)) and diagonalized
3. For each trial signal order r ∈ [[ 1, rmax ]]:

(a) The signal subspace matrixW is built from the r dominant eigenvectors of CSS

(b) The matrices Fd, d ∈ {1, 2} are computed (Eq. (A.12))
(c) The two estimation errors Σd(r) are evaluated (Eq. (A.15))

The signal order R is finally estimated thanks to the ESTER criterion (Eq. (A.16)).
4. In order to evaluate the transfer matrix T , the matrixK is assembled and diagonalized (Eq. (A.13))
5. The signal poles Zd are extracted (Eq. (A.11))
6. Finally, the R complex wavevectors are deduced (Eq. (A.14)
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AppendixB. Bending wave dispersion laws given by the Classical Lamination Plate theory.

The fourth-order differential equation of bendingmotion of a thin anisotropic plate, given by the Classical
Lamination Plate Theory, with the out-of-plane displacement u3 as unknown, is as follows:

Dαβγδu3,αβγδ + M Üu3 = 0 (B.1)

with Einstein notation for indices, (α, β, γ, δ) ∈ {1, 2} and D and M defined by Equations 14. In order to get
the dispersion law, the plane-wave approximation is taken. u3 is then expressed as:

u3(x, t) = U3 ei(ωt−κ·x)

Equation B.1 becomes:
κακβκγκδDαβγδ − ω

2M = 0 (B.2)

Using Voigt notation and Equation 13, the bending stiffness can be expressed as a function of the wave
propagation φ:

D(φ) = M
ω2

|κ(ω, φ)|4

= c4D11 + s4D22 + 2c2s2(D12 + 2D66)

+ 4c3sD16 + 4cs3D26

(B.3)
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