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Abstract

In this paper phenomenological observations of the creep rupture under maintained combined traction

and torsion loading are first presented. They show the importance of the matrix’s behavior in the long-term

durability of the material. Understanding and foreseeing creep rupture of unidirectional fiber reinforced

polymers (UD FRP) involves comprehension at the fibers’ scale of various time-dependent interactions

among the fibers and between the matrix and the fibers. Shear-lag models have been successfully applied in

the modeling at the micro-scale of these interactions, some of them even introducing time dependence. Long-

term durability of macro-scale structure demand further developments of such models to be able to predict

the macro-damage cluster and their evolution. The aim of the present contribution that is an extension from

existing models is to investigate the progressive damage of a 0o UD composite material subjected to combined

shear-traction loading including a high number of interacting fibers, with a viscoelastic matrix, debondings

and random distribution of fiber flaws. Results of simulations including different loadings and matrix

viscoelastic properties will be shown and discussed for a better comprehension of the role of composite’s

components in the creep rupture phenomenon. In particular, the long-term influence of matrix’s shear

stiffness on the material’s lifespan is shown, and the impact of an additional uniform shear stress is studied.

This combined shear-traction loading is of interest in real-scale structures where shear stress can result

from torsion or shear forces (such as those due to anchor points, misalignment and coupling). Moreover,

this model is a first step to approach the long term failure of 0o composites subjected to torsion-bending

loading, what is shown decisive in the second section of this work. Further experimental works in combined

traction-torsion loadings are needed to validate this simulations with a specific attention on the identification

of required parameters.

Keywords: Shear-lag model, stochastic fiber strength, viscoelastic matrix, debonding, stress transfer

mechanism, damage cluster, stress redistribution, matrix shear stiffness, combined shear-traction loading,
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1 Introduction1

Advantages of composite materials need no more presentation. Their ability to combine light weight,2

anisotropy and high performances are well known and their scope of applications is currently covering a wide3

range of fields from highly specialized aeronautical to widely spread civil engineering and construction. In4

load bearing functions composite materials are however combined with more traditional materials. Although5

long-term durability data and feedback on field applications of composite materials combined with other6

materials become available nowadays [1, 2], the application and development of composite materials as main7

load-bearing material is still strongly dependent on the durability studies and construction of valid models8

capable of predicting with a sufficiently high level of confidence the lifespan of a given composite, that is a9

given combination of a matrix, fibers and fiber-matrix interface treatment, subjected to a loading.10

In the civil engineering and construction field, pultruded unidirectional composites are widely used11

and still offer a great potential. Construction manuals and calculation codes (EUROCOMP for example)12

prescribe 30% maximum loading to guarantee security and safety in long-term applications where permanent13

loading or aggressive environments are applied (Karbhari et al. [3], 2003). Where greater loads are to be14

supported, composites are used in combination with other materials such as steel, concrete or wood [4–6].15

All-composite structures have also been developed exploiting their durability and mechanical characteristics16

such as resistance to corrosion and humidity and high stiffness-to-weight or strength-to-weight ratios. For17

example Wu and his colleagues presented in their article (Wu et al. [7]) a bridge deck system made of18

pultruded tubular FRP profiles.19

To make the most of the composite materials’ characteristics, new structures needed to be developed.20

They make use of the anisotropy and combine high strength and flexibility. They are not a mere transpo-21

sition of steel structures typologies to composite applications but are specifically designed for them. Bows,22

snowboards and skis in sport applications, pop-up tents (for example QuechuaR© tents are experimentally23

investigated in this paper) and hybrid beams (Hillman [8]) are good examples of such structures already24

developed and commercialized. Other applications are currently being studied: gridshell structures for light25

covering and building envelopes (Douthe et al. [9], Douthe et al. [10]).26

One of the issues in the study of long-term behavior of composite materials is the almost infinite number27

of combinations between matrices and fibers leading to sometimes dramatically different performances. On28

the other hand, very low probabilities of failure are expected for engineering applications (up to 10−9) making29

experimental studies extremely expensive. Simulation and modeling are therefore essential in the forecast of30

a new material’s lifespan. To make reliable models, the precise role of each component must be understood31

and validation procedures revealing this role must be defined. In composite materials’ applications the32
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load bearing elements are fibers but matrix’s behavior can lead to completely different rupture mechanisms.33

Influence of different material parameters on creep and creep rupture need to be clearly identified. Models’34

sensitivity to these parameters also need to be adjusted accordingly. In the first following part, original35

experiments which have motivated this numerical developments are shown. In a second part a review of36

existing modeling is proposed, leading to the presentation of the used model in a third part. It is an37

adaptation of different approaches that we have combined and extended with a debonding including time-38

dependent friction. Finally, results of stochastic simulations including a high number of fibers, different39

loadings and matrix viscoelastic properties will be shown and discussed. In particular, the long-term influence40

of matrix’s shear stiffness on the material’s lifespan is shown, and the impact of an additional uniform shear41

stress is studied. This combined shear-traction loading is of interest in real-scale structures where shear stress42

can result from torsion or shear forces (such as those due to anchor points, misalignment and coupling).43

2 Experimental study and phenomenological observations44

Creep rupture is closely related to the viscoelastic properties of the matrix. In order to better understand45

the role of the matrix and the influence of its properties on the creep rupture, a series of experiments that46

highlight matrix’s role has been lead (for further details see Kotelnikova-Weiler [11]). This was accomplished47

through direct loading of the resin via torsion on glass fiber reinforced vinylester composite unidirectional48

cylindrical 0 degree rods used in the pop-up tents QuechuaR©. Indeed, torsion results in shear stresses acting49

on the resin. Static rupture in pure and combined torsion, compression and traction were first studied.50

These tests revealed three different rupture modes (figure 1). Material Data are given in table 1. Resin51

properties was given by the constructor and composites properties was tested on four samples.52

Material Derakane 470 Derakane 441 GF + Derakane 470 GF + Derakane 441

Tensile strength 85 Mpa 90 MPa 846.4 ± 27 MPa 602.13 ± 24 MPa

Tensile Elongation 3-4% 5-6% 2.311 ± 0.06% 1.616 ± 0.07%

Tensile Modulus 3.6 GPa 3.3 GPa 36.1 ± 0.04 GPa 37.7 ± 0.09 GPa

Table 1: Material Data of both vinylester resins and both composite rods

In pure compression the classic kink-band mode was observed. The sample stayed whole, the two edges53

of it remaining linked by the buckled band (figure 1 (a)). When combined torsion and compression were54

applied, at the rupture point, the sample crushed quasi-instantaneously leaving an almost clean fracture55

surface (figure 1 (b)). In torsion-traction, the material is subjected to longitudinal cracking (figure 1 (c)) in56

the manner of pure torsion rupture. The rupture mode resulting from combined compression-torsion loading57
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(a) Compression

(b) Combined torsion-compression

(c) Combined torsion-traction

Figure 1: Static rupture modes for different pure and combined loadings.

kept our attention. In this mode rupture is highly localized in a given material’s section. Next long-term58

testing was performed to see if this localized rupture mode could occur in time.59

For long-term testing a special device was designed. Pultruded cylindrical rod unidirectional 0 degree60

composite samples of 5mm of diameter, used for the structure of the pop-up tent QuechuaR© were provided61

by the constructor, for testing under sustained combined torsion and bending (loaded samples have the62

shape of Euler’s elastica: figure 2 (a)). Two different vinylester matrix systems were used. The stress state63

combines torsion-compression and torsion-traction. On the figure 2 (a), the point A allows free rotation64

around the axis perpendicular to the picture plane and the point B represents the location of the maximum65

loading. Loading levels in bending range between 40% and 70% of initial static strength and to each bending66

load level several different torsion loading levels were combined. Thus pairs of bending/torsion loadings are67

obtained. Torsion loading levels range between 31% and 110% of initial torsion elastic limit. Tests were68

carried out at ambient and elevated temperatures (60◦C). Rupture occurs after a certain period of time. The69

fracture surface is presented in the figure (2 (b)). This rupture mode can be compared to the pure bending70

creep rupture mode given in the figure (2 (c)). The pure bending creep rupture resembles the well-known71
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brush-like static bending rupture mode of UD composite materials. Superimposing torsion to the bending72

loading changes the rupture mode from the progressive brush-like (fig. 2 (c)) to the abrupt mode (fig. 273

(b)).

(a) Torsion-bending testing device

(b) Creep rupture in torsion-bending

(c) Creep rupture in pure bending

Figure 2: Long-term testing in combined torsion-bending.

74

Main results of this experimental study will be summarized in this section.75

• On the whole, results show that for a given testing temperature, the lifespan decreases with increasing76

torsion loading.77

• It can also be clearly seen that torsion loading has a greater influence on the lifespan than bending78

loading. For example the lifespan of samples tested at 60◦C at 50% bending loading and 62% torsion79

5



loading is greater than 17000 hours whereas samples tested at 50% bending and 77% torsion loading80

have a mean lifespan lower than 1 hour.81

• Elevated temperature also diminishes the lifespan of samples tested in the same loading conditions.82

For example samples tested at 50% bending and 77% torsion loading at 60◦C have a lifespan lower83

than 1 hour and those tested at ambient temperature have a lifespan greater than 19000 hours.84

• These global trends are observable on both resin systems which seems to indicate that they are not85

specific to one given material composition.86

Torsion specifically loads the matrix, these results therefore highlight matrix’s role in the creep rupture87

of composite materials. When torsion is added to the bending test, it superimposes a shear stress to the88

material subjected to either traction or compression and accelerate the creep rupture process.89

The model proposed in this paper will specifically interest on a combined traction torsion loading and the90

influence of torsion load level on the long term durability of composites with viscoelastic matrix.91

3 Creep and creep rupture of UD composites, literature overview92

Creep rupture was observed in various configurations from model composites to large-scale structures.93

Prestressed concrete tendons and rebars (Ceroni et al. [12]), pultruded frame (Bank and Mosallam [13]) as94

well as rod composite samples (Kim et al. [14]) and model laboratory samples with a few fibers (Zhou et al.95

[15]) failed at a stress level below their initial strength. Subject to constant load, the material undergoes a96

progressive damage: successive fiber breaks occur. Initially sparse, they tend to form a cluster just before97

composite’s failure. This cluster formation was also experimentally observed in the elastic case through high98

resolution CT in (Scott et al. [16]). This phenomenon is due to the time-dependent behavior of composite’s99

components, especially the matrix. Indeed, fibers’ creep can generally be neglected in comparison with ma-100

trix’s, even if their mechanical characteristics are still evolving and even if they are vulnerable to corrosion101

which causes the diminution of their strength and potentially rupture(Numerous defects are present in glass102

fibers [17] and several mechanisms creating these defects [18])103

As mentioned before, the load bearing component in unidirectional fiber reinforced polymers (referred to104

as UD FRP in what follows) are fibers but according to matrix’s behavior, long-term performances of the105

whole composite may differ tremendously. Indeed, matrix is responsible for load transfer between fibers.106

Due to its viscoelasticity, load transfer lengths are increasing in time thus provoking general creep of the107

composite, and deferred fiber ruptures that could eventually result in composite’s failure. Matrix creep108

depends on stress level and can be modified by environmental conditions such as humidity or temperature.109

In some conditions matrix located between adjacent fibers can yield, creating inelastic zones where matrix’s110

load transfer capacity is altered [19]. Matrix’s yielding is related to its intrinsic properties (yield strength,111
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stiffness...) but also to fiber spacing and globally applied load. The state of the fiber-matrix interface is112

determinant in the load transfer process. Interface treatment and fiber coating are therefore important fac-113

tors in long-term durability of the composite and widely influence the debonding sensibility. To understand114

the debonding process, two aspects need to be treated: interface strength criterion that is appropriate to115

be applied and the residual stress state at the interface after debonding. Fibers mechanical (production116

and handling) and chemical treatment has a primary influence on the matrix-fibers adhesion. Among these117

treatments, the choice of sizing in a given fibers-matrix configuration is one of the most decisive. A study118

of the damage micromechanisms around a broken fiber with different sizings embedded in epoxy matrix [20]119

demonstrated that the optimal interface is not necessarily the strongest. As a matter of fact when the in-120

terface is too weak, the stress transfer is not performed properly: fiber ineffective lengths are too important121

which weakens the composite. On the other hand when the interface is too strong, stress from broken fibers122

is transferred to the intact neighbors in a very localized manner. As a result of this stress concentration,123

the strength of the material is diminished. An interface enabling a good stress transfer but able to absorb124

fiber break energy through debonding and cracking is a good compromise.125

Debonding is not the only inelastic behavior that can be observed at the fiber-matrix interface. Plasticity,126

where matrix has yielded and irreversibly sheared, can also occur. Experimental observations of graphite127

fibers embedded in an epoxy matrix, presented in [21] and [19] as well as [22] suggest that the type of128

inelastic zone obtained depends on the fiber spacing, material system and fiber surface treatment. With129

low fiber volume fractions, slip occurs, whereas with elevated fiber volume fractions, matrix tends to yield.130

Under quasi-static conditions, inelastic zones initiate and grow when a critical shear stress is reached. The131

remaining yield shear stress or frictional shear stress is lower than this critical value.132

The mechanism of creep rupture at the fibers’ scale is generally admitted to be the following:133

1. When load is applied to the material a few fibers may break instantaneously even if the applied load134

is lower than the global strength of the material. This is due to the fact that fiber’s strength is not135

constant on its entire length: weakening defects are randomly located on the fiber.136

2. Around fiber breaks matrix is locally loaded in shear. This shear stress enables the broken fiber to137

recover progressively its initial load far from the broken site. Close to the rupture site the load initially138

supported by the broken fiber is redistributed to its surrounding neighbors also via matrix’s shear.139

3. Even if a constant global load is applied to the material, several time-dependent phenomena take140

place. The first one is the time evolution of the fibers’ strength. Preexisting defects in the fibers141

can be activated by the applied load (lower than fiber’s strength). Stress corrosion cracking can then142

occur (in the case of ceramic fibers) leading to fiber’s progressive rupture or at least to the reduction143

of fiber’s strength.144

4. The second time-dependent phenomenon is due to the viscoelasticity of the matrix. Around fiber145
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breaks, matrix shear stress relaxes in time, increasing stress recover length and broadening overstress146

profiles on the neighboring fibers.147

5. While broadening, overstress profiles due to several fiber ruptures on an intact fiber will overlap thus148

leading to locally increasing axial fiber stress which might result in a new break.149

6. Inelastic zones around the fiber break tend to develop depending on fiber spacing and applied load150

intensity. Fiber-matrix debonding and/or matrix plasticity can occur modifying load transfer length.151

These basic micromechanical mechanisms of creep rupture have been identified through various experi-152

mental studies and modelled using different approaches (Mishnaevsky and Brøndsted [23]). Shear-lag models153

are one of the most often used approaches as they capture the main features of stress redistribution in a154

composite with broken fibers and are easily implemented [15, 19, 21, 24–39]. These analytical models enable155

to understand the damage evolution process in a composite subject to a loading. In shear-lag models fibers156

are 1D tension-spring elements surrounded by matrix. Generally matrix’s axial stiffness is neglected and157

the entire axial load is carried by the fibers whereas matrix supports exclusively shear stresses (a detailed158

discussion of classical shear-lag assumptions was made in 1997 by Nairn [30]). When a fiber breaks, its load159

is redistributed to its immediate neighbors via matrix’s shear (Local Load Sharing models, LLS) or to all of160

the remaining fibers (bundle models or Global Load Sharing models, GLS).161

Cox in 1952 was the first one to develop the load transfer model around a single short fiber imbedded in an162

elastic matrix (Cox [24]). Then Hedgepeth developed an elastic shear-lag model in its presently well-known163

form. In his technical note of 1961, he gave the static and dynamic solution to the problem of n aligned164

fiber breaks in an elastic matrix (Hedgepeth [25]). Rosen in 1964 introduced stochastic distribution of fibers’165

strengths into the shear-lag model. His experimental observations also contributed to the understanding of166

FRP’s strength and failure (Rosen [26]). In his model the ineffective fiber length after its failure is calculated167

using shear-lag analysis. Both the elastic and elastic-plastic behavior of the matrix are considered. Then168

a bundle model is combined with weakest-link statistics to estimate the rupture stress of the composite169

given its constituent’s characteristics. In his model the effect of stress concentration due to fiber breaks was170

ignored (as GLS model was used) but in 1968 Zweben introduced this effect in the Rosen’s model (Zweben171

[27]). Van Dyke and Hedgepeth [28] in 1969 investigated the influence of fiber-matrix debonding and matrix172

yielding on the stress concentration factor due to a single fiber break in a finite and an infinite lamina, both173

in 2D and 3D fiber arrangements.174

Staggered fiber breaks bring new difficulty that was solved with the development of Break Influence175

Superposition (first introduced by Sastry and Phoenix [29] in 1993) and alternatively the use of Green’s176

functions (Xia, Curtin, and Peters [40]).177

Influence of fiber-matrix slipping, uneven fiber spacing and matrix axial stiffness were investigated in 1999178

by Landis and McMeeking [33] in the elastic case. These models allowed the evaluation of composite’s static179
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strength. Other models aimed specifically at simulating the micromechanism of composite’s degradation180

and rupture [34, 36]. Alternatively to the shear-lag models, 3D FE models were also developed. The model181

developed in Blassiau et al. [41] takes into account matrix’s axial stiffness and fibre-matrix debonding in the182

elastic case. Experimental and simulation results were compared in Scott et al. [42] for a composite with a183

fiber volume fraction of 60%. Another more recent comparison between experiments and simulations using184

shear lag model and stochastic fibers strength were provided through the case of 2D bamboo fiber reinforced185

polymer matrix composites [43].186

Recently concerns about long-term durability of composite materials subject to constant load have arisen.187

This involves taking into account matrix’s viscosity. Several models consider a viscoelastic matrix. In [44]188

the evolution of overstress profiles with n aligned fiber breaks in a viscoelastic matrix was investigated.189

The evolution of the stress state in a composite with a unique fiber break and a viscoelastic matrix was190

studied in [35] using two different models for matrix’s behavior. In 1998 Beyerlein et al. [31] studied the191

time evolution of the stress field in a 2D unidirectional composite with several staggered fiber breaks. In192

Beyerlein et al. [19], Zhou et al. [21], Koyanagi et al. [38] inelastic zones of fiber-matrix debonding were193

also modelled. These models give a good approximation of composites with large fiber spacings. The finite194

element model presented in [41] is further developed to take into account matrix’s viscoelastic and plastic195

behaviors in Blassiau et al. [45]. Finally, we can also report a recent model developed by Monfared and196

Mondali [46], in order to study the creep strain rate in short fiber unidirectional composite.197

The main drawback of shear-lag models is their computation time for large-scale composites. When the198

strength of a large-scale sample is to be evaluated, multi-scale models can be employed such as the one199

proposed by Xia, Curtin, and Peters [40] or Guedes, Morais, Marques, and Cardon [47]. In Mahesh and200

Phoenix [48] a shear-lag model is used to predict long-term damage evolution of a small-scale composite,201

then weakest link scaling is used to determine the behavior at a larger scale. Finite Element models have202

also been successfully combined with the multi-scale models to model the rupture of macro-scale composite203

structures (Blassiau et al. [49]). Micro-scale models such as shear-lag models provide with damage evolution204

laws that can be integrated in continuous mechanics models such as the one proposed by Nedjar [50], or205

more recently [51], for the evaluation of long-term behavior of composite structures. Macro-scale models206

that do not account for phenomena on the fibers’ scale need the results from such micro-scale models to207

identify long-term behavior of the material resulting from matrix relaxation and fiber breaks. Another way208

to make a link between micro and macroscale is proposed by Na et al. [52]. Using statistical approach and209

the stress concentration factor relative to the interface shear strength and the geometry of surroundings210

obtained by 3D FEM analysis, they are able to predict the strength of a given composite.211

212

Under steady-state creep conditions, where interfacial shear stress relaxes in time, inelastic zones still213

initiate and grow which means that a constant stress criterion is no longer appropriate and a strain-based214
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criterion is therefore more realistic. It was shown in [21] that the interfacial shear strength decreases inversely215

with the square root of matrix’s compliance.216

In this same article a single fiber shear-lag model is developed. Its results are compared to experimental217

observations obtained using micro-Raman spectroscopy under steady-state creep conditions. In the experi-218

ments, several fiber volume fractions and strain levels are tested. The developed single fiber shear-lag model219

assumed a shear strain-based criterion for debonding propagation. Comparison with experimental data220

confirmed the applicability of this criterion.221

In another experimental study by Koyanagi et al. [38], a single-fiber composite is tested under constant222

strain duration. In order to do so, a composite, consisting of carbon fibers embedded in a vinylester resin,223

with a very low fiber volume fraction is used. Then micro-Raman spectroscopy is applied to assess fiber224

axial strain. Shear-lag approximations, based on the model developed by Beyerlein et al. [19], then enable225

to derive matrix shear stresses and interpret the experimental results. But, Instead of assuming a constant226

frictional/yielding shear stress in the fiber-matrix debonded region as it was done in [19], this condition is227

modified in order to take into account Coulomb’s friction influenced by the time-dependent relaxation of the228

matrix?s radial stress. Moreover, instead of using a strain-based criterion, a stress-based debonding criterion,229

also assumed to be enhanced by Poisson’s contraction stress around a fiber break, was implemented in the230

analysis. Therefore this critical stress decreased in time as a result of matrix’s relaxation. An empirical231

expression of the debonding shear stress is derived. Finally, using this model and the described modifications,232

an expression of the ineffective fiber length is derived. Then a GLS (global load sharing) model is used to233

derive the time-dependent degradation of the tensile strength of the whole material. Experimental and234

analytical results being in close agreement, authors conclude that the degradation of tensile strength under235

constant strain is caused by the degradation of the interfacial stress-transfer capacity.236

In a subsequent work this GLS model is further developed [53]. In the GLSV (Global Load Sharing237

Viscoelastic model), a time-dependent frictional stress is derived. It is related through Coulomb’s law to238

the radial stress in the matrix, which in turn is related to the axial stress in the matrix through Poisson’s239

effect. Indeed, compression occurs at the fiber-matrix interface around a broken fiber: when elongation is240

applied to the material, the material shrinks in the transverse direction. Around the fiber break, the fiber is241

unloaded, its longitudinal strain is therefore low compared to that of the matrix. Since the unloaded fiber242

does not shrink in the radial direction, it applies a compressive load on the surrounding matrix.243

Following experimental investigations [54, 55] showed that a distinction has to be made between the244

”pure” interfacial strength, independent of time and temperature and the apparent interfacial strength245

enhanced by the previously described Poisson’s ratio effects. These effects relax in time which leads to246

an apparently diminishing interfacial strength. However matrix’s strength is time-dependent which could247

cause premature loss of fiber-matrix cohesion. FEM simulations [56] including this representation of the248

fiber-matrix interface were implemented and compared to micro-Raman spectroscopy results on single-fiber249
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composites. A good agreement was found between the model and experimental observations confirming250

model’s validity.251

In previously described models, time-dependent debonding was simulated in low fibers volume fraction252

composites where interactions between fiber breaks are neglected. In the elastic case, a model presented253

in [57] (a development of 1995’s model introduced in [58]) combines the effects of debonding and stress254

concentrations due to the local load sharing between the fibers. Time-dependent effects were not taken into255

account in this model.256

It is the objective of the present paper to combine developments of this literature and propose a model257

that would include time-dependent effects of local load sharing as well as time-dependent debonding and fric-258

tion thus extending the application of viscoelastic shear-lag models to the case of unidirectional composites259

with elevated fiber volume fractions. In order to do so, the model introduced in Beyerlein et al. [58], which260

allows to treat debonding in the elastic case is developed in the viscoelastic case and is combined with the261

model described in Beyerlein et al. [31] devoted to the time evolution of stress redistribution in a composite262

with several cracks and without debonding. A shear strain-based debonding criterion and a time-dependent263

friction are introduced in a similar way to that presented in Zhou et al. [21] and Koyanagi [53], linking it264

through Coulomb’s law and the Poisson’s effect to the axial stress in the matrix. Finally, these numerical265

developments proposed in this paper predict an increase of the lifespan of the material subjected to com-266

bined traction-torsion loading. A future model should interests in combined compression-torsion loading to267

explain the decrease of lifespan observed in combined bending-torsion loading.268

4 Theoretical basis of the model269

In order to model fibers’ breaks and debondings evolution in time in a unidirectional composite mate-270

rial subjected to a constant traction load with, linear elastic brittle fibers, frictional interfaces and a linear271

viscoelastic matrix , a shear-lag type approach highly based on the models of Beyerlein et al. which are272

thoroughly presented in Beyerlein et al. [31] and Beyerlein et al. [58] is used. The first step in solving this273

problem is to model the evolution of stress distribution for a given rupture pattern.274

Considering an infinite unidirectional composite material with elastic fibers imbedded in a viscoelastic matrix275

subject to constant tension load applied in the longitudinal direction, they proposed a mechanical solution276

involving multiple fiber breaks and delaminations. This defines the general problem P1, figure 3. For that,277

they used a superposition technique described in Beyerlein et al. [31] for the study of fiber breaks accumu-278

lation and in Beyerlein et al. [58] for the description of the debonding. The general problem, here P1, can279

be seen as a combination of two subproblems SP1 and SP2. The first one corresponds to a multi-damaged280

material where a unitary compressive load is applied at the tips of every broken fiber (sites marked with281

a −1 in the figure 3, SP1), a given frictional stress (τ , figure 3, SP1) is imposed in the debonded regions282
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and zero load is applied at the far field. The second subproblem SP2 consists of an undamaged material283

subjected to a uniform stress state. The solution to the subproblem SP2 is trivial and one needs to find the284

solution to the subproblem SP1.285

To obtain the solution to the general problem P1, these two solutions (SP1 and SP2) are superimposed.286

In the subproblem of the damaged material (SP1), the stress state in the material results from a weighted287

superposition of the individual influences of each fiber break site and matrix debonded region in the material.288

If fiber breaks are solely considered the stress state results from a weighted superposition of the influences of289

fiber breaks only. Each of which is a solution to the auxiliary problem A1, see figure 3, treated in Beyerlein290

et al. [31]. Ki represents the influence of each fiber break on the whole composite. Among other results291

of this analysis, shear stress in the matrix is obtained. In order to take debonding into account, the idea,292

introduced in [58], is to modify this shear stress profile in order to locally obtain a uniform frictional stress293

in the debonded region. This shear stress is then used to rectify the shear stress profile in the debonded294

region obtained around a broken fiber. This procedure is represented in the figure 4: a fiber break creates a295

shear stress concentration in the neighboring matrix (red τ curve). If the associated shear strain is greater296

than the critical debonding shear strain, debonding occurs. In the debonded region a uniform frictional297

stress is established (blue dotted curve). In order to impose this shear stress, the shear stress profile due to298

the fiber break is modified by superimposing to it the solution to the auxiliary problem A2.299

300

Firstly, to solve A1 and determine the stress distribution due to an isolated fiber break Beyerlein et al.

[31] the local equilibrium equation of a fiber’s element n is consider. It can be written as given in the

equation (1). σn(x, T ) is the axial stress in the fiber n at the longitudinal coordinate x and at time T .

τn(x, T ) is the shear stress in the matrix band n and h is the fiber’s diameter.

∂σn(x, T )

∂x
+
τn(x, T ) − τn−1(x, T )

h
= 0 (1)

A perfect bonding between the matrix and fibers is here assumed, fibers are considered to be linear301

elastic, and matrix is assumed to be linear viscoelastic and its shear stress depends on the history of the302

shear strain, via a the matrix’s relaxation function G(T ) and the charcateristic time Tc. A power law303

expression of the following matrix’s creep function J(T ) = 1
G(t) is used.304

J(T ) = Je(T/Tc)
α (2)

To make variables and equations dimensionless, some normalization constants are introduced as ξ the nor-305

malized longitudinal coordinate ξ = x√
wEfAJe

h

and t, the normalized time t = T
Tc

. It leads to the following306

differential equation (3) (Beyerlein et al. [31]).307

∂2Un
∂ξ2

+

∫ t

−∞
G(t− t′)

∂

∂t′
(Un+1 − 2Un + Un−1)dt′ = 0 (3)
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Figure 3: General problem P1 as a superposition of the subproblems SP1 and SP2. The subproblem SP1 is obtained through

a weighted superposition of the auxiliary problem A1 and A2

which gives a relation between normalized axial displacements of the n, n+ 1 and n− 1 fibers.308

309

When multiple fiber breaks are considered, each fiber break taken individually will cause over-load on310

surrounding fibers including other fiber break sites. And yet, at all time step, zero stress condition on the311

fiber tips must be satisfied in the general problem P1. Which is equivalent to have unit compressive load312

at each fiber break site in the subproblem SP1. Therefore the influence stress fields due to individual fiber313

breaks (resulting from A1) must be multiplied by a time-dependent coefficient (called weight function Ki(t))314

and the solution of the general problem P1 of an infinite lamina subjected to unit traction at the far field315

and zero stress at the broken sites may be given.316

317

To take debonding into account, the subproblem A2 has to be solve. It was proposed in Beyerlein et al.318

[58] for the elastic case. An improvement is developed here, since a matrix’s viscoelastic behavior is taken319

into account for our simulations.320

This auxiliary problem A2, consists of an infinite undamaged lamina where two fiber elements surrounding321

a central matrix element are subjected to equal and opposite traction loads (marked with ±1/2 in the figure322

3, A2). This load state results in a locally applied unitary shear stress on the central matrix element (1 on323

the figure 3, A2). The auxiliary problem can be summarized by the diagram presented in the figure 5. In324
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Figure 4: Modification of the matrix shear stress profile to take debonding into account through the use of the superposition

technique.

Figure 5: Auxiliary problem A2: infinite undamaged lamina where two fiber elements surrounding a central matrix element

are loaded with equal and opposite loads.

this figure n gives the fiber or matrix band number and m gives the fiber/matrix element number in the325

longitudinal direction. In this problem a central matrix element with m = 0, located in the matrix band326

number 0 is subjected to a shear stress resulting from axial forces applied to the fiber elements surrounding327

the considered central matrix element (on the figure 5, 1/2 and −1/2 applied to fibers number 1 and 0328

respectively).329

Remains of fibers are elastic and brittle, and the solution to the A2 problem in the elastic case can be330

found in Beyerlein and Phoenix [57] and Beyerlein et al. [58]. For the purpose of our work this approach331

was developed to the viscoelastic case in a very similar way that for the isolated fiber break in [31]. It leads332

to the same differential equation (3) on normalized axial displacements of the n, n+ 1 and n− 1 fibers but333

with a different set on boundary conditions.334

Finally, when multiple debonded matrix element are considered, each of it will affect on the surrounding335

fiber and matrix elements including broken and debonded one. Then, in the same way as the subproblem336

SP1, the influence stress due to the debonding matrix element must be multiplied by a time-dependent337

coefficient (called weight function Kj). We detailed nether the calculations of solutions of A1 and A2338

problem nor ones of weigth functions (Ki and Kj) in this paper since they are quite complex and may339

be find combining the methodology described in Beyerlein and Phoenix [57] and Beyerlein et al. [58] with340
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the viscoelastic development used in [31] for A1 problem (isolated fiber break). The next part details341

the strategies to simulate the progressive damage of a composite with fiber breaks and delaminations. In342

particular, we will describe in 5.2 the way to take into account viscoelastic effect on debonded part, in a343

similar way than Koyanagi [53].344

5 Progressive time-dependent damage345

In order to compute the time-dependent damage of the material including fiber breaks and debonding,346

following steps are required:347

1. A sample is generated, that is random values of fibers strengths are allocated to every fiber element.348

2. At the first time step, the load is uniform as no damage sites are present. The axial stress in the fibers349

and shear strain in the matrix are computed.350

3. The most overloaded element is determined. It could either be a fiber element for which the applied351

axial stress is compared to its attributed strength or it could be a matrix element whose applied shear352

strain is compared to the constant shear strain debonding criterion (see following section 5.1).353

4. When an element breaks the stress and strain state of the material is recalculated including this break,354

5. Using this new stress and strain state, the most overloaded element is determined again.355

6. The process is repeated until no additional broken element needs to be generated for the stress/strain356

state obtained for this given time step, then time increases by one step.357

To increase the computational speed in the simulations presented in this paper, several most overloaded358

matrix elements debonded at each iteration instead of one at a time (fiber breaks were still treated individ-359

ually).360

5.1 A shear-strain debonding criterion361

When initially undamaged material is subjected to constant strain (when a constant axial stress is applied362

to the elastic fibers at the far field), fiber breaks occur. Around these fiber breaks matrix is subjected to363

shear. As matrix’s shear stress relaxes in time, corresponding shear strain increases. In the present model,364

when this shear strain reaches a limit value γlim, constant in time, debonding occurs. In the debonded region,365

a frictional shear stress is imposed in the fiber-matrix interface (represented by the matrix elements). It is366

done through the superposition of the time-dependent solution found in the auxiliary problem A2, described367

previously, to the solution of a material where multiple fiber breaks exist. This solution is also time-368

dependent and matrix’s strain keeps increasing in time. When new matrix elements reach the constant369

shear-strain criterion, debonding progresses.370
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5.2 Time-dependent frictional shear stress371

When debonding occurs in a matrix element, a given frictional stress is imposed on it. This frictional372

stress is taken time-dependent according to the literature. The article Koyanagi [53] gives a methodology373

to take into account the influence of the matrix’s relaxation on the value of the frictional shear stress. This374

methodology will be adapted to the presently developed model. Originally this methodology was applied in375

a Global Load Sharing context which implies certain hypothesis and results in approximations in the present376

model.377

• Frictional stress is considered to depend entirely on the radial compressive stress in the matrix (due378

to Poisson’s effect) and the frictional coefficient of the fiber-matrix broken interface.379

• The value of this compressive stress is dependent on the relative shrinkage of the matrix and the fibers380

as well as fibers arrangement and volume fraction.381

• The GLS model ignores the localization of the stress redistributions due to fiber breakage. Indeed in the382

vicinity of a broken fiber, the following mechanism is assumed: the composite material surrounding the383

broken fiber is subjected to traction and as a consequence it shrinks in the radial direction; the broken384

fiber itself is unloaded, therefore it does not shrink in the radial direction imposing on the surrounding385

matrix a compressive stress. If the Local Load Sharing scheme is assumed, the localization of the386

overload on the neighboring fibers should, in theory, lead to their greater radial deformation. For387

simplicity reasons, in the present model, the effects of this localization will also be ignored in the388

calculation of the value of the resulting compressive radial stress. The present model could be further389

developed by including this feature.390

A frictional coefficient links the radial compressive stress and the frictional stress in the debonded region as391

shown in the equation (4):392

τfr(t) = µσr(t) (4)

Where τfr is the frictional shear stress in the matrix’s debonded element, µ is the frictional coefficient and393

σr is the radial compressive stress at the matrix-fiber interface.394

It will be assumed that the radial compressive stress is related to the matrix’s far field longitudinal stress395

as expressed in the equation (5):396

σr(t) = νσm(t) (5)

Where ν is a specific Poisson’s ratio. In the present study, it will be equal to that of the matrix. The matrix

is viscoelastic, the relationship between its axial stress and strain can be written as:

σm(t) =

∫ t

−∞
Em(t− t′)

dεm(t′)

dt′
dt′
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In the present model, a constant in time axial fiber stress is applied. Because fibers are elastic, this implies

a constant strain in the fibers at the far field. At the far field fibers and matrix are undamaged, their axial

strains are therefore equal. This approximation simplifies the previous equation in the following manner:

σm(t) = Em(t)ε (6)

ε =
σf
Ef

(7)

Where ε is the imposed composite strain. As for the shear behavior, an incomplete power law will be used397

for matrix’s axial viscoelastic behavior, equation (8):398

Em(t) =
E0m

( t
Tc

)α
(8)

Combining equations (4) to (8), the time-dependent expression of the frictional stress is obtained in the399

equation (9):400

τfr(t) = µν
σf
Ef

E0m

( t
Tc

)α
(9)

In these simulations, at each time step, the frictional shear stress imposed in the debonded part τfr(t)401

is then recalculated.402

6 Basic stress transfer phenomena403

In this first analysis, a simple case of an infinite lamina with one central fiber break is presented. A404

traction load is applied to the material. A shear deformation peak results from this load in the very vicinity405

of the fiber break. The excessive shear strain causes debonding. In time, as matrix relaxes, the debonded406

region progresses. In the debonded region, an uniform frictional shear stress is imposed. According to the407

previous sections, this frictional stress diminishes in time. In 6 and 7, material data used in the simulation is408

given in 3 in part 7 fixing Ge to 4.5GPa. Moreover, stress value are normalised to make them dimensionless409

as proposed in [31], i.e, the fiber axial stress is normalized by its value without fiber break p∗ and the matrix410

shear stress is normalized by p∗

Ef∗A∗h∗w∗Je . On the figure 6(a), the time evolution of the shear stress in the411

matrix surrounding the broken fiber is represented. It can be seen that the debonded region extends in412

time (shear stress peaks move apart) while the frictional stress slightly diminishes (on the figure 6 (a) the413

constant shear stress in the middle debonded region is decreasing in time). On the figure 6 (b) the axial414

stress in the broken fiber and its first intact neighbor as well as their evolution in time are shown. The415

overstress profile evolves in time progressively presenting several maxima instead of one, as it would be the416

case without debonding. Another difference with the case without debonding is the fact that in time the417

overstress of the first intact fiber in the very vicinity of the fiber rupture is decreasing instead of remaining418

constant. This is due to the relaxation of the frictional stress and the progressive global load sharing in the419
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(a) Matrix shear stress around the broken fiber
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(b) Axial stress in the broken fiber and its first intact neighbor

Figure 6: Influence of a broken fiber on its immediate surroundings including debonding

material. The load is progressively more equally distributed among the remaining intact fibers instead of420

being mainly supported by the first intact fibers.421

The stress redistribution scheme is also modified on the following neighboring fibers. Figures 7 (a) and422

7 (b) show the overstress profiles on the 1st to 4th intact fibers next to the broken one, respectively at423

the first and third time step. When time progresses, instead of presenting only one localized stress peak,424

the overstress profiles tend to a more uniform distribution on the whole overloaded region of the intact425

fiber. This is in significant contrast with what was observed in simulations ignoring debonding (figures 7 (c)426

and 7 (d) present these results) where stress redistribution was highly localized around the fiber break and427

dominantly concentrated on the first intact neighbor, a situation persistent in time.428
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(a) Axial stress in the neighboring intact fibers at the first

time step (elastic response) when debonding occurs
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(b) Axial stress in the neighboring intact fibers at the 3rd

time step when debonding occurs
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(c) Axial stress in the neighboring intact fibers at the first

time step (elastic response) without debonding
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(d) Axial stress in the neighboring intact fibers at the 3rd

time step without debonding

Figure 7: Influence of a broken fiber on its 1st to 4th intact neighbors. Comparison between the situations with and without

debonding

Maximum overstress factors are summarized in the table 2. The overstress factor (OSF) equals the429

stress in the fiber element divided by the axial far field stress applied to the material (OSF = σf/σ0).430

When OSF > 1, the fiber supports a stress greater than in the unscathed composite. On the other hand431

when OSF < 1, the fiber is partially or completely unloaded. The Maximum OSFs are compared to those432

obtained when debonding is not accounted for and with results taken from a 3D FE model presented in433

Blassiau et al. [59].434

When debonding is not modelled, the OSF is respectively higher for the first intact neighbor and lower435
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Fiber’s number 1 2 3 4

OSF without debonding (constant in time) 1.333 1.067 1.029 1.016

OSF with debonding at the first time step 1.282 1.085 1.038 1.021

OSF with debonding at the third time step 1.148 1.09 1.055 1.036

OSF without debonding at the first time step, taken from [59] 1.084

OSF with debonding at the first time step, taken from [59] 1.13-1.16

Table 2: Maximal OSF of successive broken fiber’s intact neighbors

for the following neighbors 2,3 and 4 when compared to the OSF obtained with debonding. This shows436

that with debonding, load sharing becomes more equal among neighbors approaching a global load sharing437

scheme. Comparing OSFs at the first time step and at the third time step shows that uniformization of438

stress over neighbors is further increased when debonding progresses. When comparing the present 2D439

shear-lag model’s results with the results from a 3D FE model, it can be seen that in the elastic case440

without debonding, the OSF of the 3D FE model is lower on the first intact neighbor. This can be partly441

explained by the differences between the 3D and 2D fiber arrangements. In the 3D case, there is more intact442

neighboring fibers supporting the overstress, therefore the amount of stress transferred to each of them is443

lower. Another observation should be made about the modification of the OSF when debonding occurs. The444

present model shows a reduction of the OSF whereas the 3D FE model shows an increase in the OSF. This445

might be partly explained by the fact that the shear-lag model does not take into account matrix’s axial446

stiffness. In the FE model, stress supported by the matrix near a broken fiber would be further transferred447

to the intact fibers when debonding occurs as matrix becomes “inactive”, this could result in the increase448

of the OSF. More importantly, in the present work, fiber-matrix debonding length is controlled by a shear449

strain-based criterion whereas in the FE model various debonding lengths are imposed. As FE simulations450

and the present work show, the longer the debonded region, the lower the overstress factor on the intact451

neighbor.452

Results shown in the table 2 are specific to the interface strength used in this simulation. Lower interface453

strength would increase initial debonding span modifying the OSFs. Nonetheless this comparison gives the454

general trends of the influence of debonding on the stress transfer mechanism. These results confirm that455

a damageable interface may be more profitable to the material because it avoids stress localizations in the456

material (as shown experimentally in [20]).457
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7 Progressive damage combining fiber breaks and debonding458

In this section a more complex case will be studied. A sample is first generated: random fibers strengths459

are allocated to element of discretized fibers. Further details on this procedure are given in chapter 2 of [11].460

Then this sample is studied in the elastic case: its static strength is determined with and without taking461

into account the debonding. Next this same sample undergoes a creep test and the time-dependent damage462

(both fiber breaks and matrix debonding) is observed. The same creep conditions are then applied to this463

sample with a modification of the matrix’s shear stiffness in order to assess its role in the time-dependent464

creep and damage. In a final subsection the influence of an additional shear stress (that could represent a465

torsion loading superimposed to a traction loading applied to the material) will be studied.466

Figure 8: Strengths distribution in the fibers

The sample consists of an infinite lamina where 19 fibers are allowed to break. Each fiber is divided into467

201 elements. A randomly generated strength following the previously presented bi-modal Weibull proba-468

bility law is assigned to every element [60]. The fiber volume fraction is taken equal to 54.2%. The figure 8469

represents the fibers strengths distribution of the specimen studied. Each horizontal band represents a fiber.470

Random distribution of flaws in the fibers can be noticed. Various parameter values used for this simulation471

are summarized in the table 3.472

473

The resin has mechanical properties of an epoxy resin (presented in [15]). In particular, the present474

value of poisson’s coefficient has been deduced from young’s modulus and shear modulus values given in475

[15]. Moreover, Fibers are glass fibers characterized in [60]. The parameter α characterizes matrix’s creep476

behavior. The higher the value of α, the more pronounced the matrix’s creep is. Previously studied value477

of 0.5 for this parameter is rather high but certain polyester resins have this characteristic. Furthermore,478
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Model characteristics

2N+1 19

2M+1 201

normalized dx 0.05

Vf 54.2%

loading variable: 0 - 2800MPa (elastic case), 1910MPa (creep test)

shear loading γsh variable: 0 and 70% γlim

Fiber characteristics

σ01 3200 MPa

m01 5.79

σ02 5110 MPa

m02 7.65

l0 10 mm

q0 0.45

Ef 74 GPa

r 13.5 µm

Matrix characteristics

Ge 1.29 GPa, 4.5GPa and 10GPa

ν 0.3

Tc 1600 s

α 0.2

γlim 14.8%

µ 0.5

Table 3: Simulation parameters

elevated temperatures can intensify matrix’s creep, increasing α’s value. The corresponding creep behavior of479

the composite material as a whole will be also more pronounced. Two additional values of α were used in our480

simulations, 0.2 and 0.048. 0.2 is a middle-range value for usual polymer matrixes and 0.048 characteristic481

of an epoxy resin (as in [15]. Some preliminary simulations were made without debonding: at 1500MPa482

with an α = 0.5 both stages of secondary and tertiary creep were observed. At the same level of applied483

stress with an α = 0.2 only secondary creep is observed and the final relative strain ratio equals 2%. When484

α = 0.048 creep is almost imperceptible with final relative strain ratio of 0.2%. Furthermore, we did not485

study the effect of the frictional coefficient µ’s value in this study. As ones can expect this parameter will486
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(a) Number of fiber breaks versus applied load

(b) Apparent modulus versus applied load

Figure 9: Macroscopic damage versus applied load

be of interest, since the frictional stress on the debonded area varies in a linear fashion with it (equation 9).487

Nevertheless, most of the stress transfer is done by the pic of shear stress in the undebonded part. Then,488

a small modification of its value shouldn’t severely change the global creep behaviour of the composite. In489

the following simulations paper α will be taken equal to 0.2 - as a middle-range value for usual polymer490

matrixes and µ will be set to 0.5 as given in Koyanagi [53].491

7.1 Static strength with and without debonding492

First, the sample is tested in static conditions. Increasing loading levels are applied in the elastic case.493

Corresponding damage is assessed. In particular the number of broken fibers is analyzed (fig. 9 (a)).494

The point when its increase rate versus applied load increases abruptly is taken as the rupture (circled in495

blue on the figure 9 (a)). Corresponding applied stress is considered as the static strength of the material.496
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(a) 2350MPa - 13 fiber breaks (b) 2400MPa - 40 fiber breaks

Figure 10: Damage patterns and overstress factors in the material without debonding

The sample is both studied in cases where debonding is taken into account and ignored. Thus the influence497

of debonding on the static strength of the material can be explored. In the figure 9 (a) the number of498

fiber breaks corresponding to each load level is shown. The influence of debonding is also assessed through499

calculation at each load level of the apparent modulus of the sample. These results are presented in the500

figure 9 (b). It is clearly visible that when debonding is taken into account the value of the static strength501

diminishes considerably. When debonding is ignored, the sample breaks when the axial far field stress502

exceeds 2350MPa. When debonding is considered, the limit is 2050MPa. In the same manner, the rupture503

moment of the material corresponds to a drop in the apparent modulus value (also circled in blue), as can504

be observed in the figure 9 (b).505

In the following figures 10 and 11, damage patterns are presented for cases without and with debonding506

for loading levels preceding and slightly exceeding the rupture limit. In the figures 10 (a), 10 (b), 11 (a) and507

11 (b) colors represent the level of the overstress factor for the fibers axial stress. In the figures 11 (c) and508

11 (d) corresponding fiber breaks and debonded areas are represented.509

It can be seen on these results that rupture occurring with debonding initiates with fewer fiber breaks510

(5 vs 13, see figures 11 (a) with debonding and 10 (a) without debonding) than when debonding is not511

considered. It can also be seen that when a fiber is broken, it is instantaneously unloaded almost on the512

entire length of the material through debonding (see figures 11 (a) and 11 (c)). The rupture pattern observed513

when debonding is modelled (figure 11 (b)) is different from the one observed without debonding (figure514

10 (b)). In the case with debonding fiber breaks are more scattered whereas without debonding they are515

mostly aligned. This is due to the fact that scattered fiber breaks linked by debonded areas (figure 11 (d))516
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form a unique break cluster. On the other hand when debonding does not occur, in order to be connected,517

fiber breaks need to be in the very vicinity of each other.518

These static simulations show that debonding decreases the static strength of the material. In the elastic519

case matrix relaxation has not yet taken place. This means that load sharing between intact neighbors of520

a given broken fiber is still uneven: the first intact neighbor has a greater overstress factor. Due to the521

debonded region, this first intact neighbor is almost evenly overloaded on the whole length of the debonded522

region. Flaws on this intact neighbor can therefore be easily reached by the overstress leading to a new fiber523

break locate away from the initial fiber break causing the overstress. Debonded regions therefore connect524

fewer existing fiber breaks thus forming a macro-cluster. When debonding does not occur, overstress profiles525

are more localized, creating a peak of overstress in the very vicinity of the fiber break. A new fiber break526

occurs only if a flaw in the first intact neighbor is located immediately in this small overloaded region.527

Therefore higher loads are necessary to trigger global rupture of the material.528
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(a) 2050MPa - 5 fiber breaks (b) 2100MPa - 22 fiber breaks

(c) 2050MPa - 5 fiber breaks and 1191 debonded matrix

elements

(d) 2100MPa - 22 fiber breaks and 3242 debonded matrix

elements

Figure 11: Damage patterns and overstress factors in the material with debonding

7.2 Progressive damage in time529

In this section matrix’s viscoelastic behavior is introduced and the time-depended damage is observed.530

First the influence of Ge, matrix’s initial shear stiffness, will be studied, while the other material charac-531

teristics remain unchanged (in particular matrix’s shear strain yielding limit). Then the influence of an532

additional shear stress will also be investigated. For these simulations, a permanent far field axial stress is533

applied to the fibers, it is equal to 1910MPa.534
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(a) Number of fiber breaks versus time

(b) Number of debonded elements versus time

Figure 12: Evolution of damage versus time (logarithmic scale) for samples with various values of the matrix’s shear stiffness,

subjected to 1910MPa fibers traction stress

7.2.1 Influence of matrix’s shear stiffness535

For these simulations, four values for the matrix’s shear stiffness are taken: Ge=0.7GPa, 1.29GPa,536

3.5GPa and 6GPa. The influence of this parameter on the long-term durability of the material is studied.537

The rupture mode, damage evolution and evolution of the apparent modulus are investigated. The sample538

has the same fibers strengths distribution as described in the figure 8.539

The figure 12 gives time evolution of the damage in the material: number of fiber breaks (figure 12 (a))540

and number of debonded matrix elements (figure 12 (b)). These figures show a sudden increase in material’s541

damage for samples with Ge ≥ 1.29GPa, whereas for the sample with Ge = 0.7GPa, the evolution of the542

damage is smooth and continuous over time. This indicates a modification of the damage process in the543

material for composites with different matrix’s stiffnesses. From approximately 10 years on, the number of544

fiber breaks for the group of materials with Ge ≥ 1.29GPa, is similar ranging from 21 (Ge = 1.29GPa) to 24545
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Figure 13: Ratio between debonding and fiber breakage for various matrix stiffnesses

Figure 14: Apparent modulus versus time during the pure traction creep test

(Ge = 6GPa), whereas for the material with Ge = 0.7GPa, the number of fiber breaks remains constantly546

equal to 2. On the other hand, the number of debonded matrix elements for the material with Ge = 0.7GPa547

is greater than that of the materials with Ge ≥ 1.29GPa before their breakage.548

It is also interesting to compare the ratio between the number of debonded matrix elements and the549

number of fiber breaks at the end of the 50-years creep period for these simulations. The figure 13 summarizes550

these values. Results from additional simulations with different shear stiffness values were added to the graph551

in order to determine clear tendencies. Results for Ge=0.7, 1.29, 3.5 and 6 are highlighted in light grey.552

What can be seen on this graph is that there is at least two different groups of materials. The first group553

with Ge < 1.29GPa where damage is predominantly debonding-based (the ratio is higher than 300) and554

the second group with Ge ≥ 1.29GPa, where the ratio between the number of debonded elements and fiber555

breaks is much lower (< 200).556

The figure 14 shows the time evolution of the apparent modulus of these samples. In particular a sudden557
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(a) Damage pattern for Ge = 0.7GPa, unbroken sample
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(b) Damage pattern for Ge = 1.29GPa, broken sample
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(c) Damage pattern for Ge = 3.5GPa, broken sample
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(d) Damage pattern for Ge = 6GPa, broken sample

Figure 15: Damage pattern following the breakage of the samples: comparison for different matrix’s stiffness values

drop of the apparent modulus for the materials with Ge ≥ 1.29GPa can be noticed. This is due to the558

fact that a sufficient number of fiber breaks form a macro-cluster completely destroying the material. A559

macro-cluster in this case is a group of fiber breaks linked by debonded regions, spanning across the whole560

sample in the transverse direction. For the composite with Ge = 0.7GPa, longitudinal splits, isolate broken561

fibers from the remaining intact fibers, preserving a tractional stiffness of the composite.562

Figure 15 gives the damage patterns following the breakage of the samples. This figure confirms the pres-563

ence of macro-clusters for the materials with Ge ≥ 1.29GPa (figures 15 (b),15 (c), 15 (d)) and longitudinal564

splits for the material with Ge = 0.7GPa (figure 15 (a)).565

These results show that matrix’s shear stiffness has an influence on the rupture mode of the material. On566
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the examples presented here two groups were identified: rupture based on the development of macro-clusters567

and rupture mainly initiated through longitudinal splitting. The evolution between these two groups seems568

to be monotonic in respect to the matrix’s stiffness: the group of materials with longitudinal splitting-based569

rupture has low stiffness values whereas the second group of materials presenting macro-cluster formation570

has higher stiffness values. Lower stiffness values as well as matrix relaxation lead to the same result on the571

load sharing in the material: its globalization. Globalization of the load sharing, under certain limits, helps572

protecting the material: as it was shown in the literature overview, a very stiff and strong interface leads573

to high overstress factors increasing the number of fiber breaks whereas a weak interface leading to a global574

load sharing scheme results in a fragmentation of the material and its incapacity to take up broken fibers’575

load. A medium situation provides the optimal result.576

7.2.2 Influence of an additional shear strain577

In the experimental study presented in the section 2, creep experiments combining bending and torsion578

were lead. These experimental results motivated a numerical investigation of the influence of an additional579

shear strain applied to the material in combination with the traction load. Indeed during the experiments580

when torque is applied to the material, this results in shearing of the material. This shear is either combined581

with traction or compression resulting from the bending load.582

In this section the model is used to simulate time-dependent damage of the sample described in the figure583

8. For these simulations two values of the matrix’s shear stiffness are taken: Ge = 1.29GPa and Ge = 6GPa.584

A uniform shear strain field equal to 70% of the limit shear strain is applied to the whole composite.585

Then a creep test is simulated with an axial far field fiber stress equal to 1910MPa. Comparison between586

these simulations and simulations where pure traction is applied is performed. Figure 16 gives the damage587

evolution in four cases: pure traction loading and Ge = 1.29GPa, pure traction loading and Ge = 6GPa,588

traction and shear combined and Ge = 1.29GPa and traction and shear combined and Ge = 6GPa.589

In the case of Ge = 6GPa, additional shear strain causes an increase in the lifespan of the material590

compared to the lifespan under pure traction loading: when pure traction loading is applied, the lifespan (as591

can be seen in the figure 16 (a)) is approximately 0.05 years, whereas with combined shear it is increased to592

1.3 years. At the same time the damage mode is not significantly modified.593

In the case of Ge = 1.29GPa, the damage process is modified: in pure traction it is fiber breakage -594

based and it becomes predominantly debonding based when shear is applied. The lifespan of the sample is595

also increased from 4.8 years under pure traction loading to 50 years when traction and shear are combined.596

Additional shear in the material leads to additional debonding. This debonding, in the two cases pre-597

sented here, lead to an increase of the material’s lifespan. This is due to the fact that debonded regions598

isolate the broken fiber, globally, as the relaxation takes place, redistributing its load to the remaining intact599

fibers.600
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(a) Number of fiber breaks versus time

(b) Number of debonded elements versus time

Figure 16: Evolution of damage versus time (logarithmic scale) for samples with various values of the matrix’s shear stiffness,

subjected to either 1910MPa fibers traction stress exclusively or combined with 70% shear strain additional loading

Figure 17 gives the evolution of the apparent modulus during these 4 simulations.601

In the figure 18 the corresponding damage patterns are presented. Figures 18 (a) and 18 (b) confirm602

the modification of the damage mode for Ge = 1.29GPa. Figures 18 (c) and 18 (d) show that when shear603

is applied to the material with Ge = 6GPa, fiber breaks become less scattered and a clear fracture appears.604

To summarize results of this section, several key facts are to be mentioned: additional shear causes605

additional debonding, this debonding helps increasing the material’s lifespan as it helps isolating broken606

fibers. The additional shear can modify the rupture mode of the material leading to a fracture initiated by607

longitudinal splitting. This effect depends on the matrix’s shear stiffness: lower stiffness values lead to a608

modified rupture mode.609

In the simulations presented in this section shear loading is combined with traction whereas in the610

experiments presented in the previous section 2, combined shear and compression also occurred. In this611
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Figure 17: Apparent modulus versus time during the pure traction and traction-shear creep tests

situation, debonding can enhance buckling of the individual fibers leading to the material’s premature612

ruin. This asymmetry in the traction-compression behavior should be introduced in the model in order to613

demonstrate the reduction of the material’s lifespan under flexural loading.614
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(a) Damage pattern for Ge = 1.29GPa under combined

shear and traction loading
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(b) Damage pattern for Ge = 1.29GPa under pure trac-

tion loading
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(c) Damage pattern for Ge = 6GPa under combined shear

and traction loading
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(d) Damage pattern for Ge = 6GPa under pure traction

loading

Figure 18: Damage patterns following the breakage of the samples subjected to pure traction and combined traction and shear

loadings: comparison for different matrix’s stiffness values
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8 Conclusions and future work615

A shear-lag type model, based on existing previous work of the literature, is further developed in order616

to simulate progressive debonding occurring in a unidirectional 0o composite material subjected to traction617

or traction combined with shear. This model includes a stochastic distribution of fiber’s strengths, matrix’s618

relaxation in time, progressive debonding at the fiber-matrix interface with a shear strain-based criterion619

and a residual frictional shear stress also relaxing in time.620

First the model is used to investigate the influence of debonding on basic stress transfer phenomena621

occurring in a composite with an elevated fiber volume fraction. This investigation shows that debonding622

leads to a globalization of the stress redistribution in the composite: stress is both more equally distributed623

into the depth of the material and more uniformly distributed on the length of the intact fibers.624

This model is then used to simulate progressive damage in a composite material with 19 fibers allowed625

to break. First the static strength of the sample is assessed by applying increasing tractional loading to the626

sample. Simulations taking debonding into account and ignoring it were lead. These simulations showed627

that debonding, as expected, decreased material’s static strength. Then creep tests were simulated during628

a maximum of a 50-years period, where a given tractional load level was applied to the fibers at the far629

field. In these investigations various mechanical characteristics of the composite’s components are used. In630

particular the influence of matrix’s shear stiffness is investigated. Then the influence of an additional shear631

strain superimposed to the tractional loading is studied. Both lifespan of the sample and type of rupture632

mode are assessed.633

Low stiffness of the matrix encourages debonding (for a given shear strain limit), leading to a modification634

of the damage process from mainly based on fiber breakage to one predominantly based on the development635

of longitudinal splitting and debonded zones.636

Additional shear seems to have a similar effect on materials with a low matrix shear stiffness: rupture637

occurs through longitudinal splitting. At the same time the material’s lifespan is increased. Indeed debonded638

regions isolate broken fibers from the intact ones preserving their integrity: as debonding occurs and develops639

in the relaxing material, localization and maximum overstress factor diminish. Materials with high matrix640

shear stiffness tend to demonstrate a longer lifespan as well but a more localized fiber rupture pattern when641

subjected to additional shear.642

Further investigation of the influence of various parameters of the composite’s configuration are needed.643

In particular the influence of the fibers volume fraction and parameters of the stochastic distribution of644

fibers strengths might be of great interest. By the way, a recent article of swolfs and al. [61] confirms in645

fact the great influence of these parameters. Probabilistic analysis of the composite’s lifespan should also646

be performed using a Monte-Carlo approach. Moreover, new long term experimental work should be led to647

identify more precisely the required parameters and validate the analysis. Then, Results presented in the648
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present paper should allow for a fine-tuning of macro-mechanical models in order to represent in a more649

precise manner the influence of matrix and interface properties on the creep behavior of composite materials.650

Finally, the model is a first step toward the modelling of creep rupture of 0o UD composites through combined651

bending-shear loading which is shown, in the beginning of the present work, as a decisive criterion in real652

structures. The present model could also become more universally applicable if the axial elastic modulus of653

the matrix was modelled. This would allow its application to a wider spectrum of composite materials.654
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[18] J. Gordon, Structures et Maẗı¿œriaux. L’explication mı̈¿œcanique des formes., Belin, 1994.

[19] I. Beyerlein, C. Zhou, L. Schadler, A time-dependent micro-mechanical fiber composite model for inelastic zone growth

in viscoelastic matrices, Internationa Journal of Solids and Structures 40 (2003) 2171–2194.

[20] F. Zhao, N. Takeda, Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass

fiber/epoxy composites. Part 1: experiment results, Composites: Part A 31 (2000) 1203–1214.

[21] C. Zhou, L. Schadler, I. Beyerlein, Time-dependent micromechanical behavior in graphite/epoxy composites under constant

load: a combined experimental and theretical study, Acta Materialia 50 (2002) 365–377.

[22] A. Diaz Diaz, J. Caron, Interface plasticity and delamination onset prediction, Mechanics of Materials 38 (2006) 648–663.

[23] L. Mishnaevsky, P. Brøndsted, Micromechanical modeling of damage and fracture of unidirectional fiber reinforced

composites: A review, Computational Materials Science 44 (2009) 1351–1359.

[24] H. Cox, The elasticity and strength of paper and other fibrous materials, British Journal of Applied Physics 3 (1952)

72–79.

[25] J. Hedgepeth, Stress Concentrations in Filamentary Structures, Technical Report, National Aeronautics and Space Ad-

ministration, 1961.

[26] B. Rosen, Tensile failure of fibrous composites, AIAA Journal 2 (1964) 1985–1991.

[27] C. Zweben, Tensile failure of fiber composites, AIAA Journal 6 (1968) 2325–2331.

[28] P. Van Dyke, J. M. Hedgepeth, Stress concentrations from single-filament failures in composite materials, Textile Research

Journal 39 (1969) 618–626.

[29] A. Sastry, S. Phoenix, Load redistribution near non-aligned fibre breaks in a two-dimensional unidirectional composite

using break influence supersposition, Journal of Materials Science Letters 12 (1993) 1596–1599.

[30] J. A. Nairn, On the use of shear-lag methods for analysis of stress transfer in unidirectional composites, Mechanics of

Materials 26 (1997) 63–80.

[31] I. Beyerlein, S. Phoenix, R. Raj, Time evolution of stress redistribution around multiple fiber breaks in a composite with

viscous and viscoelastic matrices, Internationa Journal of Solids and Structures 35 (1998) 3177–3211.

[32] C. Landis, M. McGlockton, R. McMeeking, An improved shear-lag model for broken fibers in composite materials, Journal

of Composite Materials 33 (1999) 667–680.

[33] C. M. Landis, R. McMeeking, Stress concentrations in composites with interface sliding, matrix stiffness and uneven fiber

spacing using shear-lag theory, Internationa Journal of Solids and Structures 36 (1999) 4333–4361.

[34] C. Landis, I. Beyerlein, R. McMeeking, Micromechanical simulation of the failure of fiber reinforced composites, Journal

of Mechanics and Physics of Solids 48 (2000) 621–648.

[35] B. J. Thuruthimattam, A. M. Waas, A. S. Wineman, Stress transfer modeling in viscoelastic polymer matrix composites,

International Journal of Non-Linear Mechanics 36 (2001) 69–87.

[36] T. Okabe, N.Takeda, Y. Kamoshida, M. Shimizu, W. Curtin, A 3D shear-lag model considering micro-damage and

36



statistical strength prediction of unidirectional fiber-reinforced composites, Composite Science and Technology 61 (2001)

1773–1787.
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