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Abstract

The permeability of coal seams is pore pressure-dependent. A number of analytical models have been

proposed to investigate this problem, but many disregard a crucial factor: the anisotropy of coal. This

paper is devoted to investigating the role of anisotropy in modeling the change of horizontal permeability

with pressure. Analysis is conducted using a fully anisotropic model that incorporates both the anisotropies

of mechanical properties and of the permeability dependence on stresses. Analytical expressions of the

pressure-permeability relationship are derived in oedometric and isochoric geomechanical conditions, and

validations are conducted against both laboratory and field data. Then, the roles of the anisotropy of stiffness

and of permeability dependence on stresses in the permeability-change model are explored. We demonstrate

that the mechanical anisotropy can be simplified to an isotropic model without introducing significant

errors in prediction of pressure-permeability relationship, while neglecting the anisotropy of permeability

dependence on stresses leads to considerable errors. When both anisotropy sources are disregarded, the

pressure-permeability curve can be exactly reproduced by a totally isotropic material in both oedometric

and isotropic conditions. However, the material properties (e.g., bulk modulus) are skewed; moreover,

such an equivalent material might lead to significant errors in other geomechanical conditions. Finally, the

permeability change is investigated at the reservoir scale, and the reservoir simulation results confirm the

conclusions obtained from the analytical analysis.

Keywords: Coalbed methane, permeability, anisotropy, analytical modeling, reservoir simulation

1. Introduction

Coalbed methane (CBM) is an important source of energy in the United States, Canada, Australia,

and China among other countries. Different from other geomaterials encountered in natural gas recovery,
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coalbeds are conferred unique poromechanical properties by their two-scale porosity systems: macro-porosity

and micro-porosity (Espinoza et al., 2014; Nikoosokhan et al., 2014). The macro-pores in coalbeds are

commonly constituted by cleats, that are, natural fractures developed during diagenetic processes (Laubach

et al., 1998). The cleats act as the major channel for methane to flow and thus govern the permeability of

fractured coal seams. Between cleats, one finds a microporous organic continuum, routinely called as coal

matrix. Methane is stored inside the micro-pores of coal matrix. In the micro-pores (typically sized in the

order of 10−9 to 10−8 m), all fluid molecules interact with the atoms of solid matrix; they are therefore not

in their bulk state as in the macro-pores but are in adsorbed state (Vandamme et al., 2010; Brochard et al.,

2012). The adsorbed state of methane in micro-pores governs the adsorption/desorption phenomena and

subsequent swelling/shrinking of coal matrix (Pan and Connell, 2007; Day et al., 2008).

The permeability of fractured CBM reservoirs changes with depletion during production, and this process

plays an important role during production and enhanced recovery operations. The permeability change with

depletion (i.e., decrease of pore pressure) mainly stems from two mechanisms with opposing effects. The

first mechanism involves the mechanical deformation due to pressure changes: with decreasing pressure, an

increase in effective stress leads to compression of coal and reduction in cleat porosity, so the permeability

decreases. The second mechanism is desorption-induced shrinkage of the coal matrix with depletion, resulting

in an increase in cleat aperture and thus a rise in permeability.

Several analytical models of pressure-dependent permeability have been proposed such as P-M model

(Palmer and Mansoori, 1998; Palmer et al., 2007), S-D model (Shi and Durucan, 2004), C-B model (Cui and

Bustin, 2005; Cui et al., 2007). A detailed review of these models can be found in Shi and Durucan (2004);

Connell (2009); Palmer (2009). These models can be broadly classified into two categories: strain-based

and stress-based. The strain-based models relate the permeability (k) to the cleat porosity (ϕc) using the

bundled-matchstick conceptual model (Seidle et al., 1992), e.g.: k/k0 = (ϕc/ϕc0)
3
, where the subscript 0

refers to a reference state. For the stress-based models, the permeability is related to effective stress, σ′,

e.g.: k/k0 = e−3α(σ′−σ′
0), where α is cleat (volume) compressibility. These models are supported by a wide

variety of experimental measurements and have been useful for history-matching various CBM plays. In

modeling the permeability evolution, the anisotropy of coal is a crucial influencing factor. This factor has

been investigated (Day et al., 2008; Wang et al., 2009; Pan and Connell, 2011; Wang et al., 2013, 2014) but

needs to be further explored.

Considering the stress-based models, anisotropy exists in two aspects: the mechanical behaviour (to

compute the effective stress) and the permeability dependence on stresses (related to cleat compressibil-

2

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118



ity). As most geomaterials, coal seams exhibit transverse isotropy of its mechanical behaviour. Because

of the dual-porosity system, the mechanical anisotropy of coal seams is controlled by two opposite effects.

Regarding the coal matrix, the lamination and preferred orientation of the macerals during sedimentation,

compaction and diagenesis processes contribute to an intrinsic anisotropy of the coal matrix: the horizontal

Young’s modulus is greater than the vertical one, E/E3 > 1 (the axis 3 is vertical). Thus, this intrinsic

anisotropy increases with the degree of maturation, as demonstrated by Morcote et al. (2010). Regarding the

cleats, they are prone to be sub-vertically oriented and thus counteract the effect of bedding. In theory, the

compressibility of vertical cleats can lead E/E3 at the seam scale to be less than 1. The cleats are sensitive

to the confining stress: sealing the vertical cleats leads the anisotropy to be more and more dominated by

the fabric and so causes E/E3 to increase. Combining the two opposite effects, the anisotropy of elastic

properties of coal seams is variable, depending on the degree of maturation, on the confining stress, and on

the size of tested samples (number of cleats). For instance, the ultrasonic velocity measurements by Morcote

et al. (2010) revealed that horizontal P-wave velocities are greater than vertical velocities for three types

of coal. Espinoza et al. (2014); Hol and Spiers (2012) found E and E3 are comparable. However, Pone et

al. (2010) showed that, for a coal sample exposed to 6.9 MPa hydrostatic stress, the y-axis strain is greater

than the z-axis strain (z-axis is the vertical direction). Beside the mechanical anisotropy, how permeability

depends on effective stresses is also anisotropic. As shown by Espinoza et al. (2014), variation of horizontal

effective stress leads to more change in horizontal permeability compared to variation of vertical effective

stress with the same magnitude, indicating the anisotropy of the cleat compressibility α.

This paper is devoted to investigating the role of anisotropy in the permeability changes in coal seams.

It should be noted that the permeability of coal seams is anisotropic: the horizontal permeability is different

from the vertical one. However, the present work focuses on the horizontal permeability only. This is

because CBM formations are commonly thin, and hence mostly horizontal flow is involved in the production

of methane. Therefore, for what concerns CBM processes, the horizontal permeability predominates, and the

role of the vertical permeability is secondary. In this sense, the term “permeability” used in the present work

specifically refers to the horizontal permeability. In summary, the paper focuses on the role of anisotropies

(i.e., anisotropy of the mechanical properties and anisotropy of the dependence of permeability on stresses)

in the change of the horizontal permeability, not on the anisotropy of permeability itself. The paper is

composed of four parts. After the introduction, the theoretical background used for the analysis is shortly

recalled, including a transverse isotropic poromechanical model and a permeability law that depends in a

transversely isotropic manner on effective stresses. Then, the role of anisotropy is investigated by analytical
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modeling at the scale of a representative element volume (REV) as well as numerical modeling at the scale

of a CBM reservoir.

2. Theory

2.1. Transverse isotropic poromechanical model

The poromechanical model used in this work is a double porosity transverse isotropic model developed

by Espinoza et al. (2014). In brief, the model for coal seams is based on poromechanical equations that

explicitly take into account the effect of adsorption on the mechanical behavior of a microporous medium

(Brochard et al., 2012). As discussed previously, the double porosity system of coal seams is composed

of 1) the cleat macro-porosity where the fluid is in bulk state, and 2) the micro-porosity within the coal

matrix where the fluid is in adsorbed state, and where adsorptive-mechanical couplings (e.g., swelling or

shrinking) originate. The contribution of cleat compressibility to the poromechanical behaviour of coal seams

is modelled using conventional anisotropic poroelasticity (Cheng, 1997); the effect of adsorption-induced

phenomena in the coal matrix is modelled using the theory of generalized poromechanics for microporous

media developed by Brochard et al. (2012) and Espinoza et al. (2013). The model equations are established

from a thermodynamical formulation on the basis of energy conservation. Details about the model derivation

can be found in Espinoza et al. (2014), and a more detailed formulation for isotropic solids can be found in

Nikoosokhan et al. (2014). We merely recall the model equations (the symmetry is around axis 3):



∆σ11 = C11∆ε11 + C12∆ε22 + C13∆ε33 − b1∆Pc − (1− b1)∆Sa(Pm)

∆σ22 = C12∆ε11 + C11∆ε22 + C13∆ε33 − b1∆Pc − (1− b1)∆Sa(Pm)

∆σ33 = C13∆ε11 + C13∆ε22 + C33∆ε33 − b3∆Pc − (1− b3)∆Sa(Pm)

∆σ23 = 2C44∆ε23

∆σ31 = 2C44∆ε31

∆σ12 = (C11 − C12)∆ε12

∆ϕc = b1 (∆ε11 +∆ε22) + b3∆ε33 + [∆Pc −∆Sa(Pm)] /N

nT = (1− ϕc0)nm (Pm, εm) + ρbϕc

(1)

The first seven equations are the conventional anisotropic poroelasticity added with a term Sa. σij

and εij are total stress and strain tensors defined at the coal seam scale; Pc is the pressure of fluid in the

cleat. C11, C12, C13, C33, C44 are the five independent stiffness coefficients; b1 and b3 are cleat-induced
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Biot coefficients; N is Biot modulus; ϕc is cleat porosity. The term Sa quantifies the stress needed to keep

the coal matrix at zero volumetric strain during adsorption (see the first three equations), so it is termed

adsorption stress. The last eighth equation describes the total amount of fluid in per unit volume of coal

seam, nT , as the sum of two terms: 1) the amount of fluid adsorbed in the matrix, nm, and 2) the amount

of fluid in the cleats, which is equal to the cleat porosity, ϕc, multiplied by the bulk fluid molar density, ρb.

The coal matrix strain εm is related to the volumetric strain at the coal seam REV scale ε = ε11 + ε22 + ε33

through the following relation (Coussy, 2010):

εm =
ε− (ϕc − ϕc0)

1− ϕc0
(2)

where ϕc0 is the reference porosity of an undeformed fractured coal. The adsorbed fluid in the coal matrix,

nm, depends both on fluid pressure, Pm, and on volumetric strain, εm. Since strains of the coal matrix are

small, the amount nm of adsorbed fluid can be approximated by its first-order expression with respect to

εm (Brochard et al., 2012):

nm (Pm, εm) = nm0 (Pm) [1 + c (Pm) εm] (3)

where nm0 is the adsorbed quantity at zero matrix strain. The adsorption isotherm is written here in form

of Langmuir equation nm0 = nmax
0 Pm/(PL+Pm), where nmax

0 and PL are two constants. The term c(Pm) is

a coefficient that quantifies the effect of strain on adsorption capacity. This coupling coefficient is positive

for fluids that make coal swell.

Using Equation (3), the adsorption stress can be expressed as:

Sa(Pm) =

Pm∫
0

nm0 (Pm)c (Pm)Vb (Pm) dPm (4)

where Vb is the molar volume of the fluid in bulk conditions as a function of temperature and pressure. This

term can be thought as an analog of thermal stress, but for adsorption (Espinoza et al., 2014). The Sa-Pm

relationship for methane is shown in Figure 1a.

The Biot coefficients (b1 and b3) and Biot modulus (N) are related to the coal matrix bulk modulus
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Figure 1: Adsorption stress as function of pore pressure (a) and its derivative (b).

(Km) as follows (Coussy, 2010), 

b1 = 1− C11 + C12 + C13

3Km

b3 = 1− 2C13 + C33

3Km

1

N
=

(2b1 + b3) /3− ϕc0

3Km

(5)

According to Gibbs-Duhem equation, the pressure of fluid is related to the chemical potential as dU =

Vb (P ) dP for isothermal conditions. In this sense, the term Pm is the pressure of the bulk fluid at the

same chemical potential as the adsorbed phases in the coal matrix, termed thermodynamic pressure. In the

following, the pressure of the fluid in the cleats and the thermodynamic pressure of the fluid in the coal

matrix are assumed to be equal, implying fluid in the cleats is in thermodynamic equilibrium with fluid in

the coal matrix at all times. Accordingly, the two terms Pc and Pm are presented by one term P , termed

pore pressure. It is true that a pressure gradient can exist between the cleat and the coal matrix, especially

in transient states (Peng et al., 2014). Hence, the assumption of local homogeneity of pore pressure is a

limit to the applicability of the model to real cases.

The anisotropy of coal swelling (Day et al., 2008; Wang et al., 2009; Pan and Connell, 2011) is considered

in the present work as a direct consequence of the anisotropy of the stiffness coefficients of the dry material.

Indeed, Espinoza et al. (2013) showed that swelling anisotropy comes mostly from the anisotropy of the

stiffness coefficients, and not so much from the anisotropy of the adsorption stress itself. Therefore, in the

present work, we considered an isotropic adsorption stress; nevertheless, combined with anisotropic stiffness
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coefficients, this isotropic adsorption stress induces an anisotropic swelling.

2.2. Permeability model

As mentioned previously, the permeability-change models are commonly established by two means, strain-

based and stress-based. We adopt here a stress-based model that correlates the logarithm of horizontal

permeability to the horizontal and vertical Terzaghi’s effective stresses, σ, such that,

k = k0 exp [2αh (∆σh +∆P ) + αv (∆σv +∆P )] (6)

where k0 is the reference horizontal permeability at a reference state. This model independently incorporates

the effects of the horizontal effective stress and of the vertical effective stress through introducing two cleat

compressibility coefficients αh and αv. This is different from the common used models that employed the

mean effective stress or the horizontal effective stress (Somerton et al., 1975; Shi and Durucan, 2004; Cui et

al., 2007).

2.3. Reference material

The reference coal for the analysis comes from Forzando mine in South Africa, at depth of 500 m. Several

cores were drilled in the horizontal and vertical directions. To calibrate the parameters of the adsorptive

poromechanical model and of the permeability law in Espinoza et al. (2014), experiments were performed

using a specifically designed triaxial cell that is able to 1) apply independently axial and radial stresses, 2)

measure core axial and radial deformations, 3) measure gas uptake by the coal specimen, and 4) measure core

permeability. The four elastic constants of dry coal specimens (E, E3, ν, ν3) were measured from the stress-

strain data on cores (drilled horizontally and vertically) under anisotropic loading in drained conditions.

The coal matrix bulk modulus (Km) was chosen as the bulk modulus of the coal core for the highest applied

confining stress 30 MPa. Cleat-induced Biot coefficients and Biot modulus (b1, b3, N) were then obtained

from Equation (5). The mean initial macroporosity (ϕc0) was estimated subtracting the microporosity of

coal matrix from the helium (total) porosity. The adsorptive properties (nmax
0 , PL, c) were obtained from

simultaneous fitting of 1) the coal matrix total sorption data, 2) the total uptake measured in the triaxial

experiments, 3) the change of strains upon injection, and 4) the measured swelling slopes upon predominant

adsorption regime. With regards to the permeability law, the cleat permeabilities at different horizontal

and vertical Terzaghi’s effective stresses were measured at constant flow rate regimes. Then the values of

fracture compressibility parameters (αh, αv, k0) were calculated.
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Table 1: Model parameters for the reference material.

Core scale Coal matrix Permeability
E 4082 MPa Km 5000 MPa k0 (10 MPa) 0.0029 mD
E3 2551 MPa nmax

0 1.2 mol/L αh 0.135 MPa−1

ν 0.198 PL 1.6 MPa αv 0.067 MPa−1

ν3 0.198 c 9

Details of the calibration work can be found in Espinoza et al. (2014), and the best fitting parameters

are summarized in Table 1. Three points should be noted. First, the adsorptive properties given in Espinoza

et al. (2014) were tested with CO2. For methane, we set nmax
0 = 1.2 mol/L and c = 9, which yields an

adsorption stress for methane equal to about half of the adsorption stress for CO2 at the same pore pressure.

Second, as discussed previously, the ratio E/E3 can be greater or lower than 1 depending on the sample size.

The tested coal cores in Espinoza et al. (2014) exhibited very little anisotropy. To assess the importance of

the anisotropy of stiffness, we define a reference virtual fractured coal core that is more anisotropic. The

vertical Young’s modulus of the virtual material is identical to that of the tested coal cores E3 = 2551 MPa,

but the horizontal Young’s modulus is set such as E/E3 = 1.6. Third, for the sake of simplification, the

anisotropy of mechanical properties is assumed to totally come from the inequality between E and E3, so

we set ν = ν3 = 0.198.

3. Analytical models for coal permeability changes

3.1. Analytical models for different geomechanical conditions

For a representative volume element of fractured coal in oedometric condition i.e., ∆εh = 0 and ∆σv = 0,

combing Equation (5) into the first three equations in Equation (1) yields:

∆σh =

[
ν3E

(1− ν)E3
+

E

3Km (1− ν)
− 1

]
∆P − E

3Km (1− ν)
∆Sa

∆σv = 0

(7)

We recall that the stiffness coefficients as function of Young’s modulus and of Poisson ratios for transverse

isotropic case are:
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C11 =
E
(
ν23E − E3

)
(νE3 − E3 + 2ν23E) (1 + ν)

C12 =
−E

(
ν23E + νE3

)
(νE3 − E3 + 2ν23E) (1 + ν)

C13 =
−ν3EE3

(νE3 − E3 + 2ν23E)

C33 =
(ν − 1)E2

3

(νE3 − E3 + 2ν23E)

(8)

The variation of mean Terzaghi’s effective stress is:

∆

(
2σh + σv + 3P

3

)
=

[
2ν3E

3 (1− ν)E3
+

2E

9Km (1− ν)
+

1

3

]
∆P − 2E

9Km (1− ν)
∆Sa (9)

Combing Equation (7) into Equation (6), we finally obtain the pressure-permeability relationship in

oedometric condition:

k = k0 exp

(
αh

([
2ν3E

(1− ν)E3
+

2E

3Km (1− ν)
+

αv

αh

]
∆P − 2E

3Km (1− ν)
∆Sa

))
(10)

In isochoric condition, ∆εh = ∆εv = 0. Similar to the derivation in case of oedometric condition, the

horizontal and vertical stresses in isochoric condition are:

∆σh = −b1∆P − (1− b1)∆Sa

∆σv = −b3∆P − (1− b3)∆Sa

(11)

Then the pressure-dependent permeability in isochoric condition is:

k = k0 exp ([2αh (1− b1) + αv (1− b3)] (∆P −∆Sa)) (12)

The equations of pressure-dependent permeability for different cases (Equations 10 and 12) comprise two

terms: 1) variation of pressure, and 2) variation of adsorption stress. Actually, the two terms distinguish

two mechanisms that govern changes in the cleat permeability. Consider reduction in pore pressure during

depletion. The first term, called as a “poromechanical” term, leads to a cleat compression because the

effective stress increases. The second term, called as an “adsorptive” term, causes a matrix shrinkage

resulting from pressure decrease. The two terms have opposite effects: the “poromechanical” term results in a

decrease in k, whereas the “adsorptive” term leads to an increase in k. The final k-P curve is the combination

of the two opposing effects (Figure 2). In oedometric condition, the curve exhibits a concave shape. For
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low pressure, as adsorption stress is much higher than pore pressure (Figure 1b), the “adsorptive” term

predominates so the cleat permeability increases with decreasing pore pressure. However, for high pressure,

dSa/dP reduces significantly (Figure 1b) so that the “poromechanical” term becomes predominant; the cleat

permeability decreases with decreasing pressure. In isochoric condition, the cleat permeability vs. pressure

is a monotonic function because the adsorption stress is always greater than the pore pressure in the studied

range.

In oedometric condition, it exists a rebound pressure that marks the minimum value of the cleat perme-

ability. The rebound pressure is obtained by solving for ∂k/∂P = 0, which yields:

dSa

dP
=

[
2ν3E

(1− ν)E3
+

2E

3Km (1− ν)
+

αv

αh

]
/

(
2E

3Km (1− ν)

)
(13)

For the reference material, Equation (13) yields dSa/dP = 2.9, and the rebound pressure is 7.2 MPa.

From the equation above, one can deduce that the increase of E/E3 leads to the increase of dSa/dP , thus the

rebound pressure decreases accordingly; while the decrease of αv/αh results in an increase in the rebound

pressure.
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Figure 2: Evolution of permeability with reservoir pressure in oedometric and isochoric conditions at the REV scale.

3.2. Model validation

The oedometric condition is a common field condition assumed in the analytical models such as P-M

model and S-D model. Broadly, our proposed model is a generalization of the relation between stresses and

permeability in the S-D model: instead of only considering the dependence of permeability on the effective

horizontal stress, as is the case in the S-D model, both the dependences on the horizontal and vertical
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stresses are considered in our model (see Equation 10). The fact that permeability depends also on vertical

(i.e., axial) stresses and not only on horizontal (i.e., radial) ones has been experimentally shown by Espinoza

et al. (2014). Moreover, the adsorption property of the coal matrix is described by a term of adsorption

stress in our model instead of by a term of swelling strain in S-D model.

The proposed model is verified against both field and laboratory data. Shi and Durucan (2010) used

their own model to fit the San Juan basin permeability data. The same data is also matched with our model

(Equation 10). Most of the model parameters (as summarized in Table 1) are not available from the field

data. However, as discussed previously, the main difference of our model in comparison with the S-D model

lies in Equation (6), which also considers the effect of vertical stress on the permeability change. Hence, we

focus here on this difference, and the anisotropy of the poromechanical properties are neglected. The Young

modulus and Poisson ratios are assumed to be identical and chosen the same as those (E = E3 = 2900

MPa, ν = ν3 = 0.35) in Shi and Durucan (2010). The model parameters regarding the coal matrix (Km,

nmax
0 , PL, c) for the San Juan basin coal are assumed the same as those of the reference material (Table

1). Finally, only the two cleat compressibility constants are tuned to fit the field permeability data, such

that, αh = 0.159 MPa−1, αv = 0.001 MPa−1. The model match is shown in Figure 3, as well as the match

using the S-D model (Shi and Durucan, 2010). Broadly, the near-exponential increase growth of absolute

permeability (up to nearly 10 fold) with reservoir drawdown from 5.5 MPa is reproduced. The matched αh

value of 0.159 MPa−1 is greater than that (0.139 MPa−1) found with the S-D model (Shi and Durucan,

2010).

Pore pressure (MPa)
0 2 4 6 8 10

k/
k 0

0

2

4

6

8

10
Field data
S-D model
Proposed model

Figure 3: Model match of the San Juan basin permeability data (Shi and Durucan, 2010). The S-D model is also presented
for comparison.
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The performance of the proposed model (Equations 7 and 10) is also tested using the laboratory data of

Mitra et al., (2012), in which both the horizontal stress and the permeability are measured. As done in the

model match for the field data, the parameters Km, nmax
0 , PL, and c are assumed the same as those of the

reference material (Table 1). The Poisson ratios (ν, ν3) are assumed to be identical and equal to 0.3, i.e.,

the same as those in Shi and Durucan (2014), who also matched the laboratory data using their S-D model.

Since the size of the samples in Mitra et al. (2012) is comparable to the size of the samples in Espinoza et

al. (2014), we assume that E = E3, as was approximately observed Espinoza et al. (2014) on their sample 1.

Finally, only three parameters are determined by fitting the experimental data, such that, E = 1450 MPa,

αh = 0.344 MPa−1, and αv = 0.037 MPa−1. The determined values of E and αh are both within the range

of available data (Liu et al., 2012). As shown in Figure 4, the proposed model can reproduce appropriately

both the horizontal stress and the permeability. The deviation of the predicted horizontal stress for the

lowest two pressure points (when P is less than 1.4 MPa) can be explained by the reduction in Young’s

modulus at low pore pressure (Shi et al., 2014; Shi and Durucan, 2018).

The same experimental data has also been matched by Shi et al. (2014) using their own model. Applying a

constant αh value of 0.194 MPa−1, the S-D model well reproduced the laboratory results when pore pressure

varied from 6.2 MPa to 1.4 MPa but failed to match the data when the pore pressure reduced below 1.4

MPa (Figure 4). In contrast, the proposed model succeeds in fitting the whole experimental data using a

constant αh value.

4. The role of anisotropy

4.1. Analytical modeling at the scale of representative volume element

4.1.1. The role of the anisotropy of stiffness

In the following, the role of different anisotropy terms on the k-P relationship will be explored. To do so,

three types of equivalent materials are established: the first neglecting the anisotropy of stiffness, the second

neglecting the anisotropy of permeability dependence on stresses, and the third neglecting both anisotropies.

The coefficients of these equivalent materials are calibrated on the permeability variations predicted with

the anisotropic model (Figure 2). Comparisons are conducted to assess how well the equivalent isotropic

models can reproduce the permeability variations predicted with the anisotropic model, and thus the role

of the different types of anisotropy can be discussed.

1the anisotropy of the elastic properties is indeed expected to be somehow related to the size of the sample, since, in
particular because of the presence of cleats, elastic properties are known to depend on the size of the sample
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Figure 4: Validation of the proposed model using laboratory data of (Mitra et al., 2012): a) horizontal stress, b) permeability.
The S-D model (Shi et al., 2014) is also presented for comparison.

As mentioned previously, the anisotropy of stiffness in the present work specifically refers to the difference

between E and E3. To evaluate its importance for the k-P relationship, we consider an equivalent isotropic

material. The two elastic constants are assessed in two ways. In the first way (called free K method),

the Young’s modulus and Poisson ratio of the equivalent isotropic material are calculated such that its

volumetric Terzaghi’s effective stress in oedometric condition (refer to Equation 9) is identical to that of

anisotropic material:

νia

1− νia
=

ν3E

(1− ν)E3

Eia

(1− νia)
=

E

(1− ν)

(14)

We obtain Eia = 3648 MPa and νia = 0.283. The superscript ia stands for the equivalent material

with isotropic stiffness and anisotropic permeability dependence on stresses. For this isotropic material, still

employing the same anisotropic permeability dependence on stresses as for the reference anisotropic material,

we predict exactly the same k-P curve with respect to the reference anisotropic material in oedometric

condition, shown in Figure 5a. Actually, in oedometric condition, the equivalence of the volumetric Terzaghi’s

effective stress (i.e., 2σh/3 + P ) implies the equivalence of the horizontal stress. Hence, the anisotropy of

stiffness can be neglected without introducing any error. However, using the free K method, the bulk

modulus of the isotropic material (1/Kia = 3(1− ν)/E − 3ν3/E3) is skewed (the isotropic bulk modulus of

the anisotropic materials is 1/K = 2(1− ν)/E + (1− 4ν3)/E3), shown in Figure 6. To avoid the mismatch
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in bulk modulus, we propose another method (called constrained K method): the bulk modulus K is

constrained, and the second elastic constant (νia) is obtained by fitting the pressure-permeability curve in

oedometric condition, i.e., minimizing (log ksiso − log k)2. The fitting yields νia = 0.219. This constrained

K method can result in an almost perfect reproduction of the P -k curve with respect to the reference

anisotropic material (see Figure 5a).

To quantify the error induced by disregarding different terms of anisotropy, we define an error norm i.e., e

= mean(
∣∣log(kiiso/k)∣∣), where i might refer to s (in case of disregarding the anisotropy of stiffness), p (in case

of disregarding the anisotropy of permeability dependence on stresses) or sp (in case of disregarding both

anisotropies of stiffness and of permeability dependence on stresses). We carry out a parametric analysis

varying αh and E with constrained αv and E3, and the results in case of disregarding the anisotropy of

stiffness are shown in Figure 7, for both oedometric and isochoric conditions. In general, both methods

reproduce well the pressure-permeability curve in oedometric condition, for which the averaged ksiso/k is

less than 100.05 = 1.1. Using the constrained K method, the error increases with the anisotropy degree of

stiffness and of permeability dependence on stresses.

The elastic constants of equivalent isotropic material calibrated in oedometric condition are applied

for the prediction of the P -k curve in isochoric condition, shown in Figure 5b. In general, the free K

method overestimates the cleat permeability, whereas the constrained K method underestimates the cleat

permeability. This trend can be explained by Equation 12, considering bia equal to 0.44 and 0.58 for the free

and constrained K methods, respectively (compared to b1 = 0.52 and b3 = 0.64). Regarding the absolute

value of the errors, the constrained K method provides better prediction in isochoric condition: the average

of ksiso/k is 100.25 = 1.8 using the constrained K method; whereas, it can reach 100.60 = 4.0 using the free

K method (Figure 7c and 7d).

4.1.2. The role of the anisotropy of permeability dependence on stresses

We now evaluate the importance of the anisotropy of permeability dependence on stresses. To do so,

while keeping the anisotropic elastic properties unchanged, we consider a permeability that only depends

on the volumetric stress so that the two coefficients αh and αv are replaced by a single coefficient αai.

This coefficient is determined by fitting the P -k curve using the same principle as for the identification of

the second elastic constant of the equivalent isotropic material using constrained K method: it yields αai

= 0.156 MPa−1. For this virtual material that obeys isotropic permeability dependence on stresses, the

pressure-permeability curve is below that for the reference material in oedometric condition (Figure 5c);

whereas, the permeability is overestimated in isochoric condition (Figure 5d). The fitted value αai depends

14

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



on αh/αv as well as E/E3: it may be beyond the [αv, αh] interval; it can be even negative in some cases

(Figure 8).

The error e on permeability induced when disregarding the anisotropy of permeability dependence on

stresses is shown in Figure 9. It is normal to observe that the error increases with αh/αv. The dependence

of the error with E/E3 is more complex. In oedometric condition, the error increases with E/E3 up to a

maximum and then reduces slightly (Figure 9b). In isochoric condition, two troughs exist in the e-E/E3

curve: the first is at lowest E/E3 value, while the second is close to 1.4 with e = 0 regardless of the αh/αv

value (Figure 9d).

Compared to neglecting the anisotropy of stiffness, disregarding the anisotropy of permeability leads

to larger deviations from the k-P curves in the anisotropic case: in the tested αh/αv and E/E3 intervals,

the averaged kpiso/k in oedometric and isochoric conditions can reach nearly 100.3 = 2.0 and 101.2 = 15.8,

respectively, in comparison to 100.05 = 1.1 and 100.25 = 1.8 when neglecting the anisotropy of stiffness.

4.1.3. Disregarding both anisotropies of stiffness and of permeability dependence on stresses

We now consider the case where both anisotropies of stiffness and of permeability dependence on stresses

are neglected. In this totally isotropic case, the material properties reduce to three: one for the permeability

law (αii) and two for the stiffness (Eii and νii). To assess the three parameters, a method comparable

to that used for investigating the role of the anisotropy of stiffness is applied again: the two coefficients

before the pore pressure and adsorption stress terms are identical in anisotropic and totally isotropic cases

for oedometric condition (Equation 10). Since the oedometric condition only leads to two equations for

three unknowns, the system is underdetermined. The third equation can be introduced by equating the P -k

curves in isochoric condition (Equation 12). Thus,

2ν3Eαr

(1− ν)E3
+

2Eαr

3Km (1− ν)
+ αa =

2νiiαii

1− νii
+

2Eiiαii

3Km (1− νii)
+ αii

2Eαr

3Km (1− ν)
=

2Eiiαii

3Km (1− νii)

2αr (1− b1) + αa (1− b3) = 3αii
(
1− bii

)
(15)

For the totally isotropic material, Equation (15) yields Eii = 4342 MPa, νii = 0.099, and αii = 0.142

MPa−1. This leads to an exact reproduction of the k-P curves in both oedometric and isochoric conditions

(Figures 5e and 5f). However, as for the case of disregarding the anisotropy of stiffness, the bulk modulus

of the totally isotropic material is skewed respect to the bulk modulus of the reference anisotropic material

(Figure 10). Moreover, this equivalent totally isotropic material cannot reproduce the same P -k curves in
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other geomechanical conditions, and the error might be more significant than for the case when only one

term of anisotropy is neglected. We provide here two examples: free swelling condition (i.e., ∆σr = ∆σa =

0) and inverse oedometric condition (i.e., ∆σr = 0, ∆εa = 0), shown in Figure 11.

4.2. Numerical simulation at the scale of reservoir

In the section above, the role of anisotropy in permeability changes was investigated at the scale of

representative element volume, and some geomechanical assumptions were employed in the derivation of the

analytical equations, e.g., the assumption of uniaxial strain and constant vertical stress (i.e. of oedometric

condition). These assumptions do not exactly match the coalbed conditions for real methane recovery at the

scale of reservoir, and so the accuracy of the analytical modeling should be investigated. For instance, oedo-

metric condition is the most common condition used for matching CBM production (Palmer and Mansoori,

1998; Shi and Durucan, 2004). During the production, subsidence and pressure gradients lead to creation

of shear stress as well as changes in vertical stress (Settari, 2002). Moreover, there is field evidence that the

uniaxial strain assumption may not be accurate during reservoir subsidence (Connell, 2009).

This section is devoted to assessing how formation permeability changes with declining reservoir pres-

sure. Once the pressure-permeability relationship is established independently, the analytical models and

subsequent analysis obtained in the previous section can be tested in how well they match the response at

the reservoir scale. To do so, reservoir simulations are performed considering the same four materials as

in the previous section. 1) A totally anisotropic reference material with material properties given in Table

1. 2) An equivalent isotropic material, but the permeability of which still depends in different manners on

horizontal and vertical effective stresses. The isotropic mechanical constants are Eia = 3648 MPa and νia =

0.283. 3) An anisotropic material, but with the permeability that only depends on the volumetric stress: its

cleat compressibility is αai = 0.156 MPa−1. 4) A fully isotropic material: its elastic properties are isotropic

(Eii = 4342 MPa and νii = 0.099), and its permeability only depends on the volumetric stress (αii = 0.142

MPa−1).

We model the depletion of a coal seam containing pure methane at 312.15 K. Vertical and horizontal in-

situ total stresses are 23 MPa and 14 MPa, respectively; initial pressure of methane is 10 MPa. Simulation is

axisymmetrical. The radius of the borehole is 0.1 m. The radius of the coal seam is 100 m, its thickness is 5

m. 30-m-thick impervious isotropic cap rock and bed rock are considered in the simulation, their mechanical

properties are: Ec = 10 GPa and νc = 0.26. The simulation is conducted through the in-house software

“Bil” based on the finite element method. The mesh (with a total element number of 21571) used in the

simulations is displayed in Figure 12, together with the mechanical boundary conditions. With regards to
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the hydraulic boundary conditions in the coal seam, flow is null at outer boundary. Two types of boundary

conditions are considered at the borehole: constant production rate (0.001 mol/(s.m2)) and constant pressure

(1 MPa). In case of constant production rate, the small rate is employed so that methane can be recovered

more fully and the reservoir pressure can fall to a low value (down to 5MPa in our simulation) to maintain

this production rate. This enables obtaining the permeability variation curve in a wide pressure range. We

consider that the kinetics of methane flowing from the coal matrix to the cleats is very fast: at any time, at

any location in the coal seam, the pressure of the fluid in the cleats and the thermodynamic pressure of the

fluid in the coal matrix are considered to be equal.

4.2.1. Estimation of reservoir permeability

The reservoir simulation gives rise to production data including gas rate history, evolution of pressure

profile in the reservoir. These data are then used to calculate the formation permeability kg (in mD) using

the production data analysis method (Lee et al., 1984; Clarkson, 2007):

kg =
qgT [ln (re/rw)− 0.5 + s+Dqg]

7.03× 10−4h [m (Pr)−m (Pwf )]
(16)

where re and rw are drainage radius and wellbore radius, qg is gas surface flow rate, m is pseudo-pressure (in

psi2/cp), Pr and Pwf stand for reservoir pressure and bottomhole pressure, s is skin factor (assumed equal

to 0 here), and D is inertial or turbulent flow factor (in D/Mscf, assumed equal to 0 here). In the following,

the reservoir pressure Pr is equal to the pressure at the outer boundary Pe. The derivation of Equation

(16) is based on the pseudo-steady-state analytical solution of a radial flow from a finite cylindrical reservoir

at a constant production rate, and the derivation details are provided in Appendix A. It should be noted

that our equation slightly differs from the equation in the literature (Lee et al., 1984; Clarkson, 2007): the

constant 0.75 is modified into 0.5.

To validate Equation (16), we model recovery of methane from a coal seam with invariant permeability

(i.e., αh = αv = 0). The other mechanical and permeability properties are the same as the reference

material. Equation (16) is valid for the pseudo-steady-state, i.e., tD > 0.3r2eD (refer to Appendix A). For the

considered system, the time for reaching the pseudo-steady-state is 4.5 years. After this time, the estimated

reservoir permeability agrees well with the coal permeability, which validates Equation (16).

4.2.2. Reservoir simulation results

The profiles of pore pressure at different times in two cases (i.e., constant flow and constant pressure)

are shown in Figure 13; the evolution of borehole pressure and pressure at outer boundary is displayed in
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Figure 14. Given the range of applicability of Equation (16), the pressure-permeability curve is estimated

only after 4.5 years or more have elapsed since methane production started. The k-P curve determined from

the reservoir simulation is shown in Figure 15. The analytical model curves for oedometric and isochoric

conditions also are given for comparison. One observes that oedometric condition gives a good representation

of the reservoir. Compared to the constant-pressure condition, the constant-flow condition gives rise to a k-P

curve more consistent with that for the analytical oedometric condition. This is mainly because Equation

(16) is derived from the analytical solution of the flow equation in case of constant production rate.

When the anisotropic material is simplified by an equivalent material with isotropic stiffness using Equa-

tion (14), we reproduce the same kg-P curve as in the reference anisotropic case. This is also the case when

both anisotropies of stiffness and of permeability dependence on stresses are disregarded. When neglecting

the anisotropy of permeability dependence on stresses, the pressure-dependent permeability curve deviates

from the curve for the anisotropic material: for the reference material considered, it underestimates the

reservoir permeability. These observations at the scale of reservoir are comparable with those obtained from

analytical modeling at the scale of representative element volume.

5. Conclusion

The effect of anisotropy on the horizontal permeability changes in coal seams was investigated. The

analysis was based on a fully anisotropic model consisting of both the anisotropies of stiffness and of how

horizontal permeability depends on stress. The main findings include:

• The analytical expression of the horizontal permeability changes in oedometric condition is derived.

Different from the existing models that merely considered the dependence of the horizontal permeability

on the horizontal stress or on the mean stress, the proposed model separately incorporates the effects of

the horizontal effective stress and of the vertical effective stress. Moreover, the mechanical anisotropy

is also taken into account. The proposed model is validated against both available laboratory and field

data.

• On the basis of the analytical expression, we demonstrate that the mechanically anisotropic materials

can be simplified by an isotropic material without introducing any error in permeability changes (called

free K method). However, this free K method leads to a fitted bulk modulus that differs from the

actual bulk modulus of the material, and results in significant errors on the permeability variations

estimated in isochoric condition. Hence, an alternative method with constrained K (i.e., with a bulk
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modulus that is kept equal to the actual bulk modulus of the material) is proposed: it still provides

a very good estimate of permeability changes in oedometric condition, while providing an estimate of

permeability variations in isochoric condition which is better than with the free K method.

• The anisotropy of permeability dependence on stresses plays a predominant role in the permeability

changes in coal seams. Indeed, over the range of parameters here considered, when disregarding the

anisotropy of cleat compressibility (α), the permeability can be misestimated by a ratio of up to 15.8.

In comparison, when disregarding the anisotropy of stiffness, the permeability can be misestimated by

a maximal ratio of only 1.8.

• The errors on the estimated permeability by disregarding the two terms of anisotropies depend on

αh/αv and E/E3. In general, the increase in the anisotropy degree of permeability dependence on

stresses translates into an increase of the error. Nevertheless, the effect of mechanical anisotropy on

the error is more complex and not monotonic. In some cases (typically when E/E3 < 1), the error

induced by disregarding the anisotropy of permeability dependence on stresses can decrease with an

increasing mechanical anisotropy.

• When both anisotropies of stiffness and of permeability dependence on stresses are neglected, the

material constants can be assessed in such a way that the k-P curve can be exactly reproduced in

both oedometric and isotropic conditions. However, in such case, the fitted bulk modulus is not equal

to the bulk modulus of the actual material. Moreover, the totally isotropic material cannot reproduce

the variation of permeability in conditions other than oedometric or isochoric.

• The pressure-dependent permeability curve also is determined at the reservoir scale. The reservoir

simulation results confirm the conclusions obtained from the analytical modeling at the scale of a

representative elementary volume.

Appendix A. Estimation of permeability-pressure relationship from production data

Consider a radial flow from a finite cylindrical reservoir (with sealed upper and lower surfaces) at a

constant production rate. The flow at the outer boundary is zero at all times. The flow equation for a

cylindrical flow described in terms of dimensionless variables is (Board, 1979):

1

rD

∂

∂rD

[
rD

∂

∂rD
(∆PD)

]
=

∂

∂tD
(∆PD) (A.1)
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The boundary and initial conditions are: a) The flow rate at the well is constant,

rD
∂

∂rD
(∆PD)

∣∣∣∣
rD=1

= −1 (A.2)

b) The flow at the outer boundary is zero,

∂

∂rD
(∆PD)

∣∣∣∣
reD

= 0 (A.3)

c) The initial reservoir pressure is uniform,

∆PD = 0 (A.4)

The dimensionless variables are defined as:

rD =
r

rw
(A.5)

tD =
λkt

ϕµic
f
i r

2
w

(A.6)

∆PD =
mi −m

miqD
(A.7)

qD =
γTqst
khmi

(A.8)

where k is permeability, ϕ is porosity, µ is viscosity of fluid, cf is compressibility of fluid, h is the formation

thickness. The subscript i stands for the initial condition. The two coefficient λ and γ include coefficient

like 2 and π, units conversion factors, and the numerical values of Pst and Tst that may be inherent in the

definitions of the dimensionless terms. The pseudo-pressure m is defined as:

m = 2

P∫
P0

P

µZ
dP (A.9)

where P0 is a specified reference pressure.The compressibility factor, Z, is a correlation factor which defines

the deviation of a real gas from ideal gas behaviour.

If the well radius can be assumed to be vanishingly small (i.e., re ≫ rw), the general solution of the

problem is:
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∆PD (tD) =
2

r2eD

(
r2D
4

+ tD − r2eD ln rD
2

)
− 3

4
+ ln reD +

∞∑
n=1

πJ2
1 (αnreD)Un (αnrD)

αn [J2
1 (αnreD)− J2

1 (αn)]
e−α2

ntD (A.10)

where αn are the roots of

J1 (αnreD)Y1 (αn)− J1 (αn)Y1 (αnreD) = 0 (A.11)

J1 and Y1 are Besel functions of the first and second kind, respectively and both of order one.

When tD is sufficient large (tD > 0.3r2eD), the summation term in Equation A.10) becomes negligible,

and the pressure at the well and at the outer boundary are simply:

∆PD|rD=1 =
2tD
r2eD

− 0.75 + ln reD (A.12)

∆PD|reD =
2tD
r2eD

− 0.25 (A.13)

Combining the two above equations and using the definition of the dimensionless variables, we obtain,

m (Pr)−m (Pwf ) =
γTqst
kh

(ln reD − 0.5) (A.14)

In the derivation above, it was assumed that the medium is homogeneous and isotropic and that flow

is single-phase and obeys Darcy’s law. In real case, deviations from these idealizations are frequent and

can not be ignored. Two terms commonly are considered: 1) the skin effect to account for the altered

permeability at the vicinity of well because of well drilling, fracturing or acidizing on completion; 2) the

inertial /turbulent flow effect that are not taken into account by Darcy’s law. Taking the two effects into

account, we finally obtain the equation for estimating the formation permeability by production data.

References

Board, E.R.C., 1979. Gas Well Testing: Theory and Practice. Energy Resources Conservation Board.

Brochard, L., Vandamme, M., Pellenq, R.J.M., 2012. Poromechanics of microporous media. Journal of Mechanics and Physics

of Solids 60, 606-622.

Cheng, A.D., 1997. Material coefficients of anisotropic poroelasticity. International Journal of Rock Mechanics and Mining

Science 34, 199-205.

Clarkson, C.R., Jordan, C.L., Gierhart, R.R., Seidle, J.P., 2007. Production data analysis of CBM wells. SPE107705.

Coussy, O., 2010. Mechanics and Physics of Porous Solids. Wiley.

21

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239



Cui, X., Bustin, R.M., 2005. Volumetric strain associated with methane desorption and its impact on coalbed gas production

from deep coal seams. American Association of Petroleum Geologists Bulletin 89 (9), 1181-1202.

Cui, X., Bustin, R.M., Chikatamarla, L., 2007. Adsorption-induced coal swelling and stress: implications for methane production

and acid gas sequestration into coal seams. Journal of Geophysical Research 112, B10202.

Connell, L.D., 2009. Coupled flow and geomechanical processes during gas production from coal seams. International Journal

of Coal Geology 79, 18-28.

Day, S., Fry, R., Sakurovs, R., 2008. Swelling of Australian coals in supercritical CO2. International Journal of Coal Geology

74, 41-52.

Espinoza, D.N., Vandamme, M., Dangla, P., Pereira, J.M., Vidal-Gilbert, S., 2013. A transverse isotropic model for microporous

solids: Application to coal matrix adsorption and swelling. Journal of Geophysical Research: Solid Earth 118(12), 6113-6123.

Espinoza, D.N., Vandamme, M., Pereira, J.M., Dangla, P., Vidal-Gilbert, S., 2014. Measurement and modeling of adsorptive-

poromechanical properties of bituminous coal cores exposed to CO2: adsorption, swelling strains, swelling stresses and

impact on fracture permeability. International Journal of Coal Geology 134-135, 80-95.

Hol, S., Spiers, C.J., 2012. Competition between adsorption-induced swelling and elastic compression of coal at CO2 pressures

up to100MPa. Journal of the Mechanics and Physics of Solids 60, 1862-1882.

Laubach, S.E., Marrett, R.A., Olson, J.E., Scott, A.R., 1998. Characteristics and origins of coal cleat: a review. International

Journal of Coal Geology 35, 175-207.

Lee, W.J., Kuo, T.B., Holditch, S.A., McVay, D.A., 1984. Estimating formation permeability from single-point flow data,

SPE/DOE/GRI12847.

Liu, S., Harpalani, S., Mitra, A., 2012. Laboratory measurement and modelling of coal permeability with continued methane

production: part 2 - Modelling results. Fuel 94, 117-124.

Mitra, A., Harpalani, S., Liu, S.M., 2012. Laboratory measurement and modeling of coal permeability with continued methane

production: Part 1 - Laboratory results. Fuel 94, 110-116.

Morcote, A., Mavko, G., Prasad, M., 2010. Dynamic elastic properties of coal. Geophycis 75, E227-E234.

Nikoosokhan, S., Vandamme, M., Dangla, P., 2014. A poromechanical model for coal seams saturated with binary mixtures of

CH4 and CO2. Journal of the Mechanics and Physics of Solids 71, 97-111.

Palmer, I., 2009. Permeability changes in coal: analytical modeling. International Journal of Coal Geology 77, 119-126.

Palmer, I., Mansoori, J., 1998. How permeability depends on stressand pore pressure in coalbeds: a new model. SPE Reservoir

Evaluation & Engineering, 539-544.

Palmer, I.D., Mavor, M., Gunter, B., 2007. Permeability changes in coal seams during production and injection. International

Coalbed Methane Symposium. University of Alabama, Tuscaloosa, Alabama. Paper 0713.

Pan, Z.J., Connell, L.D., 2007. A theoretical model for gas adsorption-induced coal swelling. International Journal of Coal

Geology 69, 243-252.

Pan, Z.J., Connell, L.D., 2011. Modelling of anisotropic coal swelling and its impact on permeability behaviour for primary

and enhanced coalbed methane recovery. International Journal of Coal Geology 85, 257-267.

Peng, Y., Liu, J., Wei, M., Pan, Z., Connell, L.D., 2014. Why coal permeability changes under free swellings: New insights.

International Journal of Coal Geology, 133, 35-46.

Pone, J.D.N., Halleck, P.M., Mathews, J.P., 2010. 3D characterization of coal strains induced by compression, carbon dioxide

sorption, and desorption at in-situ stress conditions. International Journal of Coal Geology 82, 262-268.

22

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298



Seidle, J.P., Jeansonne, M.W., Erickson, D.J., 1992. Application of matchstick geometry to stress dependent permeability in

coals. Rocky Mountain Regional Meeting of the Society of Petroleum Engineers. Casper, Wyoming. SPE 24361.

Settari, A., 2002. Reservoir compaction. Journal of Petroleum Technology 54(8), 62-69.

Shi, J.Q., Durucan, S., 2004. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir

response to primary recovery. Transport in Porous Media 56(1), 1-16.

Shi, J.Q., Durucan, S., 2010. Exponential growth in San Juan basin Fruitland coalbed permeability with reservoir drawdown:

model match and new insights. SPE Reservoir Evaluation & Engineering 13(6), 914-925.

Shi, J.Q., Durucan, S., 2014. Modelling laboratory horizontal stress and coal permeability data using S&D permeability model.

International Journal of Coal Geology 131, 172-176.

Shi, J.Q., Pan, Z., Durucan, S., 2014. Analytical models for coal permeability changes during coalbed methane recovery: Model

comparison and performance evaluation, International Journal of Coal Geology 136, 17-24.

Shi, J.Q., Durucan, S., 2018. Variation in horizontal stress with pore pressure depletion in coal under uniaxial strain conditions:

An update on the modelling of laboratory data, International Journal of Coal Geology 187, 94-97.

Somerton, W.H., Soylemezolu, I.M., Dudley, R.C., 1975. Effect of stress on permeability of coal. Journal of Rock Mechanics

and Mining Science & Geomechanics Abstracts 12, 129-145.

Vandamme, M., Brochard, L., Lecampion, B., Coussy, O., 2010. Adsorption and strain: the CO2-induced swelling of coal.

Journal of Mechanics and Physics of Solids 58, 1489-1505.

Wang, G.X., Massarotto, P., Rudolph, V., 2009. An improved permeability model of coal for coalbed methane recovery and

CO2 geosequestration. International Journal of Coal Geology 77, 127-136.

Wang, J.G., Liu, J.S., Kabirc, A., 2013. Combined effects of directional compaction, non-Darcy flow and anisotropic swelling

on coal seam gas extraction. International Journal of Coal Geology 109-111, 1-14.

Wang, K., Zang, J., Wang, G.D., Zhou, A.T., 2014. Anisotropic permeability evolution of coal with effective stress variation

and gas sorption: Model development and analysis. International Journal of Coal Geology 130, 53-65.

23

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357



Glossary

b1, b3: Horizontal and vertical Biot coefficient [-]

c: Adsorption-strain coupling coefficient [-]

Cij : Stiffness tensor coefficient defined at the coal seam scale [Pa]

D: Inertial or turbulent flow factor [D/Mscf]

E, E3: Horizontal and vertical Young’s modulus [Pa]

h: Formation thickness [ft]

k: Coal horizontal permeability [mD]

k0: Reference coal horizontal permeability (at 10 MPa) [mD]

kg: Reservoir horizontal permeability [mD]

K: Coal seam bulk modulus [Pa]

Km: Coal matrix bulk modulus [Pa]

m(P ): Pseudopressure [psi2/cp]

nm: Fluid amount in the coal matrix per unit volume of coal matrix [mol/L]

nmax
0 : Asymptotic parameter of constant matrix volume Langmuir isotherm [mol/L]

nT : Total fluid amount per unit volume of coal seam REV [mol/L]

N : Coal seam Biot modulus [Pa]

P : Pore pressure (P = Pc = Pm) [Pa]

Pc: Pressure of fluid in the cleat [Pa]

Pe: Pressure at the outer boundary in the simulation [Pa]

PL: Langmuir pressure of constant matrix volume Langmuir isotherm [Pa]

Pm: Thermodynamical pressure of fluid in the coal matrix [Pa]

Pr: Reservoir pressure [psia]

Pwf : Flowing bottomhole pressure [pisa]

qg: Gas surface flow rate [Mscf/D]

re: Drainage radius [ft]

rw: Wellbore radius [ft]

s: Skin factor [-]

Sa: Coal matrix adsorption stress [Pa]

T : Temperature [◦R]

U : Chemical potential [J/mol]
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Vb: Molar volume of the fluid in bulk conditions [L/mol]

Subscript

1,2: Horizontal

3: Vertical

D: Dimensionless

h: Horizontal direction

v: Vertical direction

Superscript

ia: In case of isotropic stiffness and anisotropic permeability dependence on stresses

ai: In case of anisotropic stiffness and isotropic permeability dependence on stresses

ii: In case of isotropic stiffness and isotropic permeability dependence on stresses

Greek symbols

α: Cleat compressibility coefficient for permeability law [MPa−1]

εm: Volumetric strain of the coal matrix [-]

εij : Strain tensor defined at the coal seam scale [-]

ϕc: Cleat porosity or macroporosity [-]

µ: Viscosity of fluid [cp]

ν,ν3: Horizontal and vertical Poisson ratios [-]

σij : Total stress tensor defined at the coal seam scale [-]

ρb: Bulk molar density of the fluid [mol/L]

Units conversion

1 ft = 0.3048 m

1 psi = 6895 Pa

1 cp = 0.001 Pa.s
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Figure 5: The k-P relationships in oedometric (left) and isochoric (right) conditions for the equivalent materials when disre-
garding the anisotropy of stiffness (a)(b), the anisotropy of permeability dependence on stresses (c)(d), and the anisotropy of
both (e)(f).
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Figure 6: The mismatch in the bulk modulus when neglecting the anisotropy of stiffness using the free K method.
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Figure 7: The errors on permeability introduced when disregarding the anisotropy of stiffness, depending on αh/αv (left) and
E/E3 (right) in oedometric (top) and isochoric (bottom) conditions (solid line: free K method, dashed line: constrained K
method).
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Figure 8: The assessed αai values in the case of neglecting the anisotropy of permeability dependence on stresses, depending
on (a) αh/αv and (b) E/E3. The fittings provide sometimes negative αai values which are illustrated in dashed lines.
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Figure 9: The errors on permeability introduced when disregarding the anisotropy of permeability dependence on stresses,
depending on αh/αv (left) and E/E3 (right) in oedometric (top) and isochoric (bottom) conditions.
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Figure 10: The mismatch in the bulk modulus for the totally isotropic case.
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Figure 11: The k-P curves for the totally isotropic case in (a) free swelling (i.e., ∆σr = ∆σa = 0) and (b) inverse oedometric
(i.e., ∆σr = 0, ∆εa = 0) conditions.
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Figure 12: The model used for the reservoir simulation of methane recovery.
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Figure 13: Methane pressure profiles at different times in the cases of constant flow (a) and of constant pressure (b) at wellbore
from the reservoir simulation.

10
−4

10
−2

10
0

10
2

10
4

0

2

4

6

8

10
x 10

6

Time (year)

M
et

ha
ne

 p
re

ss
ur

e 
(M

P
a)

 

 

P
wf

 (constant flow)

P
e
 (constant flow)

P
wf

 (constant pressure)

P
e
 (constant pressure)

Figure 14: Evolution of borehole pressure (Pwf ) and pressure at the outer boundary (Pe).

30

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770



Reservoir pressure (MPa)
4 5 6 7 8 9 10

k
g
 (

m
D

)

10-3

10-2

10-1

Anisotropic stiffness, anisotropic perm. law
Isotropic stiffness, anisotropic perm. law
Anisotropic stiffness, isotropic perm. law
Isotropic stiffness, Isotropic perm. law
Analytical (oedometric)
Analytical (isochoric)

(a)

Reservoir pressure (MPa)
0 2 4 6 8 10

k
g
 (

m
D

)

10-3

10-2

10-1

100

101

Anisotropic stiffness, anisotropic perm. law
Isotropic stiffness, anisotropic perm. law
Anisotropic stiffness, isotropic perm. law
Isotropic stiffness, Isotropic perm. law
Analytical (oedometric)
Analytical (isochoric)

(b)

Figure 15: The kg-P curves evaluated from the reservoir simulation in the cases of constant flow (a) and of constant pressure
(b) at the wellbore.
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