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In this manuscript, we propose an exhaustion model
and an adapted work-hardening model to explain the
long-term basic creep of concrete. In both models,
the macroscopic creep strain originates from local
microscopic relaxations. The two models differ in
how the activation energies of those relaxations are
distributed and evolve during the creep process.
With those models, at least up to a few dozen
MPa, the applied stress must not modify the
rate at which those relaxations occur, but only
enables the manifestation of each local microscopic
relaxation into an infinitesimal increment of basic
creep strain. The two models capture equally well
quite several phenomenological features of the basic
creep of concrete. They also make it possible to
explain why the indentation technique enables the
quantitative characterization of the long-term kinetics
of logarithmic creep of cement-based materials orders
of magnitude faster than by macroscopic testing. The
models hint at a physical origin for the relaxations that
is related to disjoining pressures.
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1. Introduction
Since the work of Hatt in 1907 [1] and the saving of the Veurdre bridge by Freyssinet in
1912 [2], concrete is known to creep, i.e., to deform over time when subjected to a constant
load. Creep of concrete impacts the durability of civil engineering infrastructures: creep can5

for instance lead to excessive deflections of bridges [3] or to a decrease of prestress in the
confinement building of nuclear power plants [4], hence requiring monitoring, maintenance, or
even sometimes replacement of the infrastructure.

Most agree that the viscous behavior of concrete mostly originates from its hydrates, and from
its main constituent in ordinary Portland cement, namely calcium silicate hydrates (noted C-S-H).10

However, the physical origin of creep of concrete is still debated. In the short term, load-induced
redistribution of water (i.e., consolidation) within the microstructure is considered to play a
role [5]. For what concerns creep in a longer term, various theories have been proposed, among
which: microsliding of the C-S-H layers over each other [6,7], additional self-drying due to micro-
cracking [8], dissolution and then re-precipitation of the hydrates [9,10], hopping over energy15

barriers modified by the applied load [5], free volume dynamics [11], existence of a microprestress
that impacts the apparent viscosity of the material and relaxes over time as a consequence of
breakage of atomic bonds and their restoration [12]. Several of the proposed physical processes
could occur concomitantly.

Time-dependent deformations of concrete are sensitive to relative humidity and can be20

characterized on a sample that is free to exchange moisture with its surroundings or, in contrast,
on a sample that is sealed for its moisture content to remain constant. Creep of a sealed sample
of concrete is characterized by applying a constant mechanical load to the sample and measuring
how its strains evolve over time. However, even in absence of mechanical load, a sealed sample
of concrete deforms over time, as a consequence of hydration [2], capillary effects induced by self-25

desiccation [13,14], and/or relaxation of eigenstresses [15]. This time-dependent strain of a sealed
sample in absence of any mechanical load is called autogenous shrinkage. The difference between
the time-dependent strain of a sealed sample in presence of a constant mechanical load and that
of a sealed sample in absence of any mechanical load (i.e., autogenous shrinkage) is called basic
creep. Thus, basic creep can be interpreted as the part of the time-dependent strain that is induced30

by the mechanical load.
The focus of this manuscript is basic creep, which has been extensively characterized [16,17].

In terms of phenomenology, several features can be noted. 1) Up to about 30% of its compressive
strength, basic creep of mature concrete depends linearly on the applied stress [16]. 2) After some
time, basic creep evolves linearly with the logarithm of time. Such qualitative feature, which35

manifests itself on some pre-stressed concrete bridges for instance [3], is taken into account in
some codes like the fib Model Code 2010 [18] and in some models like the B4 model [17,19]. 3) The
viscoelastic Poisson’s ratio of concrete remains roughly constant over time for concrete samples
whose elastic Poisson’s ratio is comprised between 0.15 and 0.20 [20]. 4) The characteristic time to
reach the logarithmic kinetics of creep increases with the age at which the sample is loaded [21].40

5) Indentation makes it possible to characterize the long-term kinetics of logarithmic creep of
cement-based materials orders of magnitude faster than by macroscopic testing [22].

The objective of this manuscript is to find out a model for creep of concrete that verifies the
phenomenology just described. In particular, one striking qualitative feature of concrete creep is
its logarithmic evolution with time in the long term. Such kinetics is also observed on soils [23] or45

on metallic alloys [24]. For those latter, two models have been proposed, which make it possible
to retrieve a logarithmic evolution of strains with respect to time [25]: those two models are called
the exhaustion model and the work-hardening model. In those two models, the macroscopic
deformation is initiated at sites whose activation requires some energy (i.e., an energy barrier
needs to be overcome). The two models differ in how the activation energies are distributed50

and evolve during the creep process. In our manuscript, we aim at finding out whether those
two models can explain basic creep of concrete and its phenomenology. We interpret the local
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initiations of deformation as local microscopic relaxations. The exhaustion model is used as is,
but the work-hardening model is adapted.

In section 2, we introduce the models. In section 3, we check how consistent the models are 55

with respect to the observed phenomenology. Further discussion is performed in section 4, before
we conclude.

2. Models
We consider a material loaded with a macroscopic stress Σ (see Fig. 1). In the two proposed
models, we consider that the material is subjected to a succession of local microscopic 60

relaxations. If, in absence of any macroscopic stress, a local microscopic relaxation leads to an
increment of macroscopic strain (which will happen if the microscopic volume to be relaxed is
prestressed/eigenstressed), with respect to the terminology commonly used to describe time-
dependent deformations of concrete, this increment is interpreted as autogenous shrinkage. Here,
since we are interested in basic creep, the strain of interest for our problem is the one in excess 65

of this autogenous shrinkage, i.e., the additional incremental strain occurring during the local
microscopic relaxation, as a consequence of the presence of the macroscopic stress Σ (see Fig. 1).

We consider that each local microscopic relaxation requires an activation energy U . Classically,
in the spirit of the transition state theory [26], the characteristic time τm for this local microscopic
relaxation to occur should scale with the Boltzmann distribution exp(U/kBT ), where kB is the 70

Boltzmann constant and T is the absolute temperature:

τm = τ0e
U/kBT , (2.1)

where τ0 is a microscopic characteristic time. This relation has been found to correctly describe a
variety of nanoscale phenomena phenomenologically, e.g., cell adhesion [27] or drying creep of
nanoporous solids [28]. However, this relation is no more valid when the nanoscale processes are
governed by a complex energy landscape that involves a variety of energy barriers, or in cases 75

where the transition state theory itself breaks down.
We assume that, under the action of a macroscopic stress Σ, the local relaxation will always

lead to the release of the same elastic energy, on the order of (Σ2/2E)Ωm, where E is the
Young’s modulus of the material andΩm is the characteristic microscopic volume relaxed at each
local microscopic relaxation. Indeed, under the assumption of linear elasticity, (Σ2/2E)Ωm is 80

the elastic energy stored in the microscopic volume Ωm submitted to a macroscopic stress Σ.
The small increment εind of macroscopic basic creep strain caused by each local microscopic
relaxation is such that the work ΣεindΩ (where Ω is the volume of the material) provided by
the macroscopic stress Σ in the small increment εind of macroscopic strain is equal to twice the
elastic energy released during the relaxation (since the other half of this work is stored as an 85

increase of elastic energy in the part of the material that was not subjected to the relaxation), i.e.,
ΣεindΩ ∼ (Σ2/E)Ωm, so that:

εind ∼ (Σ/E)(Ωm/Ω). (2.2)

Consequently, for each local microscopic relaxation event, the increment εind of the fraction of
the macroscopic strain that contributes to basic creep is proportional to the macroscopic stress Σ
applied to the material. 90

As we will see, the two models here proposed will yield a creep function ε(t)/Σ that evolves
logarithmically with time after a transient period, i.e., that can be approximated in the long term
by:

ε(t)/Σ ≈ α ln (t/τ) . (2.3)

The parameter τ will be referred as to the characteristic time of logarithmic creep, and the
parameter α as to the prefactor to logarithmic creep. This prefactor, whose dimension is that of 95
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Figure 1. Strain observed during a local microscopic relaxation in presence of a macroscopic stress Σ. With

respect to the classical terminology used in concrete science, this strain is the sum of autogenous shrinkage

and basic creep. Autogenous shrinkage is the macroscopic strain induced by the local microscopic relaxation of a

prestressed/eigenstressed microscopic element (i.e., the red spring). Basic creep is the macroscopic strain induced by

the local microscopic relaxation of a microscopic element in absence of any prestress/eigenstress (i.e., the black spring)

but in presence of the macroscopic stress Σ. The meaning of the colors is the following: a red spring is a microscopic

element subjected to a prestress/eigenstress (i.e., a microscopic element that is stressed even when no macroscopic

stress is applied); a black spring is a microscopic element submitted to no prestress/eigenstress; a brown spring is a

microscopic element which may or may not be prestressed/eigenstressed.

the inverse of a stiffness, governs the long-term logarithmic kinetics of creep since, in the long
term: ε̇(t)/Σ ≈ α/t.

(a) Exhaustion model
In the exhaustion model (see Fig. 2-a), activation energies U0 are distributed uniformly. The
number of local microscopic relaxation sites with an activation energy comprised between U0100

and U0 + dU0 is noted n̄0dU0, where n̄0, whose dimension is the inverse of an energy, is constant.
Under the action of a macroscopic stress Σ, the activation energies may be impacted. Hence, in
first order, the activation energies are:
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Figure 2. Probability density functions of the activation energies barriers a) in the exhaustion model and b) in the work-

hardening model. The activation energy U0 is that in absence of macroscopic stress Σ and of prestress/eigenstress σ.

In the work-hardening model, the probability density function is a Dirac delta function.

U =U0 − vexhΣ, (2.4)

where the dimension of vexh is that of an energy divided by a stress, i.e., of a volume. The
characteristic time for a given local relaxation to occur scales as τm = τ0 exp((U0 − vexhΣ)/kBT ). 105

Assuming a Poisson’s process for the local microscopic relaxations of sites with an activation
energy (in absence of any macroscopic stress) comprised between U0 and U0 + dU0, the fraction
of those sites that will have relaxed at time t is 1− exp(−t/τm). Consequently, the contribution
of the relaxation of those sites to the macroscopic basic creep strain over time is: n̄0dU0(1−
e−t/τm)εind. Summing over all activation energies, the macroscopic basic creep strain ε(t) hence 110

increases as:

ε(t) =

∫+∞
0

n̄0εind

(
1− e−t/τm

)
dU0

= n̄0εind

∫+∞
0

(
1− e−t/τm

)
dU0,

(2.5)

which, since the microsocopic time τm is given by Eq. (2.1) and the activation energies by Eq. (2.4),
can be solved as:

ε(t) = n̄0εindkBT

∫ (t/τ0) exp(vexhΣ/kBT )

0

1− e−z

z
dz

=Σ
n̄0kBTΩm

EΩ

[
ln

(
t

τ0

)
+ E1

(
t

τ0
exp

(
vexhΣ

kBT

))
+
vexhΣ

kBT
+ γ

]
,

(2.6)

where γ is the Euler-Mascheroni constant and where E1 is an exponential integral. For large times
the function E1 vanishes, so that, in the long term, the creep function ε(t)/Σ evolves as: 115

ε(t)

Σ
≈ n̄0kBTΩm

EΩ

[
ln

(
t

τ0

)
+
vexhΣ

kBT
+ γ

]
,

≈ n̄0kBTΩm
EΩ

ln

(
t

τexh

)
,

with τexh = τ0 exp

(
−
(
γ +

vexhΣ

kBT

))
.

(2.7)

which makes it possible to retrieve a logarithmic evolution of long-term basic creep strains.
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(b) Adapted work-hardening model
In the work-hardening model (see Fig. 2-b), the activation energy U is the same at all local
microscopic relaxation sites, but evolves over time. In the version of the work-hardening
model proposed by Nabarro [25], the activation energies increase with strain. Here, in a dual120

version, we consider that there exists some microscopic prestress/eigenstress σ which impacts
the energy barriers and is impacted by the local microscopic relaxations. This microscopic
prestress/eigenstress is in fact present in the work-hardening model of Nabarro [25], as it
intervenes in the definition of a so-called ‘effective stress’. In concrete science, this microscopic
prestress/eigenstress can be the micro-prestress of Bažant et al. [29] or the eigenstress of125

Abuhaikal et al. [15] (hence the reference to a ‘prestress/eigenstress’ in the caption of Fig. 1). As
was the case with the exhaustion model, we also consider here that the applied macroscopic stress
Σ, as well as the prestress/eigenstress σ, can impact the activation energies U , hence expressed
as:

U =U0 − vΣworΣ − vσworσ, (2.8)

where U0 is the activation energy of all local microscopic relaxation sites in absence of130

macroscopic stressΣ and of prestress/eigenstress σ, and where vΣwor and vσwor are two parameters
whose dimension is that of an energy divided by a stress, i.e., a volume.

The rate at which the prestress/eigenstress σ relaxes must be proportional to the rate at which
local microscopic relaxation events occurs (which is equivalent to stating that, on average, each
local microscopic relaxation event relaxes the prestress/eigenstress σ by a same amount σind), so135

that, in accordance with Eq. (2.1):

σ̇=−σ̇0e−U/kBT =−σ̇0e(−U0 + vΣworΣ + vσworσ)/kBT , (2.9)

where σ̇0 is a constant parameter homogeneous to a stress divided by a time. The solution to this
differential equation is:

σ(t) = σ0 −
kBT

vσwor
ln

(
1 +

t

τwor

)
with τwor =

kBT

σ̇0v
σ
wor

exp

(
U0 − vΣworΣ − vσworσ0

kBT

)
, (2.10)

where σ0 is the prestress/eigenstress at time t= 0. According to this equation, the
prestress/eigenstress decreases logarithmically with respect to time. Since both the relaxation140

of the prestress/eigenstress σ(t) and the increase of the basic creep strain ε(t) are due to local
microscopic relaxations, they must evolve in a proportional manner, from which one finds:

ε(t)

Σ
=

kBTΩm
vσworEσindΩ

ln

(
1 +

t

τwor

)

with τwor =
kBT

σ̇0v
σ
wor

exp

(
U0 − vΣworΣ − vσworσ0

kBT

)
,

(2.11)

which also makes it possible to retrieve a logarithmic evolution of long-term basic creep strains.
Indeed, in the long term:

ε(t)

Σ
≈ kBTΩm
vσworEσindΩ

ln

(
t

τwor

)
. (2.12)

3. Features of models and agreement with phenomenology145

In this section, we will compare features of the models with phenomenology of basic creep of
concrete. Data from macroscopic uniaxial experiments are from the database gathered by Bažant’s
group [30]. We only consider basic creep data on samples loaded in uniaxial compression at less
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Figure 3. Examples of creep compliances measured on a given concrete at several ages and load levels by Le Roy [31].

The creep compliance is the total strain (i.e., the sum of the elastic strain and the creep strain) divided by the applied

stress. The first element in the label is the file identifier in the database gathered by Bažant’s group [30].

than 30% of their compressive strength, at temperatures between 15◦C and 25◦C, loaded at an age
greater than 3 days, with no lightweight aggregates, for which if the total strain (i.e., the sum of the 150

elastic strain and the creep strain) was given rather than the creep strain, the Young’s modulus
was given as well (to make it possible to calculate the creep strain). Typical measurements are
displayed in Fig. 3.

(a) Linearity of creep behavior
But at the very early age (i.e., before 3 days), creep of concrete is known to be linear with respect 155

to the applied load, up to a threshold ratio of the applied compressive stress to the compressive
strength [16]. This threshold ratio is accepted to be at least equal to 30% [16], which, for a typical
concrete with a compressive strength of 60 MPa, translates into a linearity of the creep behavior
up to about 20 MPa of applied stress. Such linearity is for instance visible on Fig. 4, which shows
that the derivative of the creep function in the long term is independent of the applied stress Σ. 160

An observation of Eqs. (2.7) and (2.11) shows that, for the linearity of the creep function ε(t)/Σ
to be ensured, for each model its characteristic time (i.e., τexh for the exhaustion model, and τwor
for the adapted work-hardening model) must be independent of the applied macroscopic stress.
For the exhaustion model, Eq. (2.7) implies that the applied macroscopic stress Σ must verify
vexhΣ� kBT , i.e., that the applied macroscopic stress must modify the distributed activation 165

energies by much less than kBT . The fact that this constraint must be satisfied for a macroscopic
stress of at least 20 MPa implies that the volume vexh should verify vexh� 0.2 nm3. In contrast,
for the adapted work-hardening model, Eq. (2.11) implies that the applied macroscopic stress
Σ must verify vΣworΣ�U0 − vσworσ0, i.e., that the applied macroscopic stress must not modify
significantly the activation energies that prevail in the material in absence of macroscopic stress 170

(but the magnitude of those activation energies is not known).
With both models, the linearity of the basic creep strain with respect to the applied stress can be

retrieved, as soon as the applied stress is sufficiently small (even though what ‘sufficiently small’
means differs for the two models), and, to be in accordance with experimental observations, an
applied stress of 20 MPa must be sufficiently small. In turn, this constraint implies that, at least 175

up to 20 MPa, the applied stress has no effect on the activation energies, and hence no effect on
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Figure 4. Slope d(ε/Σ)/d(log t) of the long-term creep displayed in a logarithmic scale versus the applied macroscopic

stress Σ. Each curve corresponds to creep experiments performed on 1 mix design. Among the tests selected based

on the criteria described at the beginning of section 3, we only considered tests for which the long-term data spanned at

least one decade and for which creep experiments were performed at several loads on the same mix design. Long term

was considered to start at 7 days or at three times a characteristic time introduced in the fib Model Code 2010 [18] (i.e.,

3/(0.035 + 30τref/τL)
2, where τL is the age at loading and τref = 1 day), whichever was the larger. Eventually, data

are from [32], [31], [33], [34], and [35].

the probability for local microscopic sites to relax. Said otherwise, local relaxations must occur
in absence of macroscopic stress as often as when a macroscopic stress is applied (at least up
to 20 MPa). If a macroscopic stress is applied, when those local relaxations occur, the relaxation
translates into an additional increment of strain, which we interpret macroscopically as basic180

creep. But the applied macroscopic stress is not the reason for the local relaxation event (at least
up to 20 MPa of applied macroscopic stress).

(b) Viscoelastic Poisson’s ratio
Based on an analysis of the data available in the literature, Aili et al. [20] showed that the
viscoelastic Poisson’s ratio of concrete remains close to its elastic Poisson’s ratio, when the elastic185

Poisson’s ratio is comprised between 0.15 and 0.2, which is a typical range of values for cement-
based materials. When the elastic Poisson’s ratio is greater than 0.2, the viscoelastic Poisson’s ratio
decreases, so that its final value is comprised between 0.15 and 0.2 as well (see Fig. 5). Here, we
show that the two proposed models predict evolutions of viscoelastic Poisson’s ratio which are
quite consistent with those experimental observations.190

We define the viscoelastic Poisson’s ratio as the opposite −εl/εa of the ratio between lateral εl
and axial εa strain during a uniaxial creep experiment. An alternative definition of a viscoelastic
Poisson’s ratio can be proposed based on a relaxation test, which would yield a viscoelastic
Poisson’s ratio that, strictly speaking, differs from the one defined on a creep experiment.
However, Aili et al. [20] showed that, for cement-based materials, using one or the other definition195

yields viscoelastic Poisson’s ratios that only differ in a negligible manner from each other in
practice.

We hence consider our material subjected to a constant macroscopic stress Σ and aim at
calculating how its viscoelastic Poisson’s ratio evolves over time. We calculate the increments
dεa and dεl of axial and lateral strains, respectively, which occur when an infinitesimal volume200
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Figure 5. Long-term viscoelastic Poisson’s ratio, as back-calculated from experiments and as predicted by the two

models. The predictions with the work-hardening and with the exhaustion models overlap with each other. The values

back-calculated from experiments come from [20].

fraction df of the material is subjected to local relaxation events. Again, as already explained
in section 2, the local relaxation event itself can induce a strain (if the relaxed volume was
prestressed/eigenstressed), which would be interpreted as autogenous shrinkage. But here we
are interested in basic creep, i.e., in the strain that occurs during this local relaxation event in
addition to autogenous shrinkage, i.e., as a consequence of the fact that the sample is under 205

macrsocopic stress. Those infinitesimal increments dεa and dεl of basic creep strains occurring
when an infinitesimal volume fraction df of the material is subjected to local relaxation events
are the increments of strain one would observe if the relaxations would occur when the material
would initially not be prestressed/eigenstressed (see Fig. 1-bottom).

We consider that the elastic properties of our material are: bulk modulus K0 and shear 210

modulus G0, or, equivalently, Young’s modulus E0 = 9K0G0/(3K0 +G0) and elastic Poisson’s
ratio ν0 = (3K0 − 2G0)/(2(3K0 +G0)). Calculating the incremental strains dεa and dεl is
therefore equivalent to calculating the strains one expects when a volume fraction df of this
material of reference is replaced by pores. The strains in this latter case can be obtained if one
knows the macroscopic stiffness of the material in presence of a volume fraction df of pores. Such 215

stiffness can be calculated with the dilute scheme model derived by Eshelby [36]. According to
this model, the bulk modulus KE and shear modulus GE of a material whose bulk modulus of
the matrix is K0, whose shear modulus of the matrix is G0, and that contains pores that occupy a
small volume fraction f , are [37, chap. 4, sec. 3.2]:

KE =K0

(
1− f

1− α0

)
and GE =G0

(
1− f

1− β0

)
, (3.1)

whereα0 = 3K0/(3K0 + 4G0) and β0 = 6(K0 + 2G0)/(5(3K0 + 4G0)). SinceEE = 9KEGE/(3KE +220

GE) and νE = (3KE − 2GE)/(2(3KE +GE)) and since εa =Σ/EE and εl =−ΣνE/EE , the
increments dεa and dεl of axial strain and radial strain, respectively, observed when a volume
fraction df of the material is relaxed, can be calculated through:
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dεa =Σξadf , where ξa =
1

Σ

dεa
df

∣∣∣∣
f=0

=
3(5ν20 + 4ν0 − 9)

2E0(5ν0 − 7)

dεl =Σξldf , where ξl =
1

Σ

dεl
df

∣∣∣∣
f=0

=
−15ν20 + 12ν0 + 3

2E0(5ν0 − 7)
.

(3.2)

Under the assumption that the local stiffness does not evolve with the local relaxation
event (i.e., that the local relaxation event is not a micro-cracking of the material, or does225

not induce any damage), radial and axial strains evolve linearly with the cumulative
volume fraction f(t) of material that has been subjected to local relaxation events before
time t. Consequently, εa(t) =Σ(1/E0 + ξaζ(t)) and εl(t) =Σ(−(ν0/E0) + ξlζ(t)), where the
function ζ(t) can be identified, with the help of Eqs. (2.6) and (2.11), with ζ(t) =

(kBTΩm/(v
σ
worEσindΩξa)) ln (1 + t/τwor) for the adapted work-hardening model and with230

ζ(t) = (n̄0kBTΩm/(EΩξa)) [ln (t/τ0) + E1 (t/τ0) + γ] for the exhaustion model, and is therefore
a diverging function for both models. Finally, the viscoelastic Poisson’s ratio ν(t) is found to
evolve as:

ν(t) =− εl(t)
εa(t)

=

ν0
E0
− ξlζ(t)

1

E0
+ ξaζ(t)

, (3.3)

toward its asymptotic value ν∞:

ν∞ =− ξl
ξa

=
5ν0 + 1

5ν0 + 9
. (3.4)

The asymptotic value predicted by the model is displayed in Fig. 5, together with the235

experimental asymptotic values given in Aili et al. [20]. With the two models, if the elastic
Poisson’s ratio of the material is equal to 0.2, its viscoelastic Poisson’s ratio remains constant over
time, which is one of the conclusions of Aili et al. [20] based on their analysis of experimental
observations. With the model again, if the elastic Poisson’s ratio differs from 0.2, the asymptotic
value of the viscoelastic Poisson’s ratio in the long term is strictly in the range between 0.2240

and the elastic Poisson’s ratio. As one observes in Fig. 5, the predictions of asymptotic long-
term viscoelastic Poisson’s ratios obtained with the model are in quite good agreement with the
experimental observations. The discrepancy could be due to the heterogeneity of concrete, since
the derivation performed in this section is for a homogeneous material. Discrepancy could also
be due to the difficulty in measuring long-term evolutions of viscoelastic Poisson’s ratios with245

accuracy.

(c) Measurement of creep properties by indentation
Indentation is an experimental technique to measure the mechanical properties of small volumes
of materials, and in particular their creep properties [38]. Both nanoindentation [11] and
microindentation [22] make it possible to characterize the long-term kinetics of logarithmic creep250

of cement-based materials, and provide results that are quantitatively consistent with the long-
term kinetics of logarithmic creep characterized by macroscopic testing. Such consistency is
surprising, because indentation experiments only last for a few minutes, while the characteristic
time of logarithmic creep characterized by macroscopic testing is much longer, rather on the order
of the day (see Fig. 8 or Fig. 6). The reason why indentation is able to probe this long-term kinetics255

is that, with indentation testing, the characteristic time of logarithmic creep is rather on the order
of 1 s (see Fig. 6). However, why this characteristic time is much smaller by indentation testing
than by macroscopic testing remained unclear.

Here, we aim at finding out whether the two proposed models can explain those
observations. The reason that we will put forward is that stresses involved during indentation260



11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

101 102 103

Stress , MPa

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Ch
ar

ac
te

ris
tic

 ti
m

e 
, d

ay

Macroscopic uniaxial
compressions
Berkovich indentations
at 2 mN
Berkovich indentations
at 100 mN
Cube corner indentations
at 0.5 mN
Berkovich indentations
at 20 N

Figure 6. Impact of the applied macroscopic stress Σ on the characteristic time τ of logarithmic creep. The macroscopic

uniaxial compressions are those respecting the criteria enumerated in section 3; data are from [39], [32], [40], [41], [42],

[43], [31], [44], [45], [46], [33], [47], [48], [49], [34], and [35]; each data point corresponds to an average performed on

all experiments on 1 mix design, independent of the load level or of the age at loading. Berkovich indentations at 2 mN

and 100 mN and cube corner indentations at 0.5 mN are from [50], and Berkovich indentations at 20 N are from [22];

each data point corresponds to an average performed on all indentations performed on the hydrates of 1 mix design; the

applied macroscopic stress is equal to the average of the measured indentation hardnesses.

creep experiments are much larger than stresses involved during macroscopic uniaxial creep
experiments. Indeed, because of the sharpness of the Berkovich or the Cube-Corner indenter
probe, stresses obtained by microindentations on cement paste or by nanoindentations on calcium
silicate hydrate phases are on the order of a few hundred MPa to about 1 GPa (see Fig. 6),
i.e., much higher than the stresses that are applied to macroscopic concrete samples in regular 265

macroscopic testing.
Why large stresses could make it possible to reach the logarithmic kinetics of creep much faster

than by regular macroscopic testing is readily visible from Eqs. (2.7) and (2.11): if the applied
macroscopic stress is sufficiently high, it will shift the characteristic time to much lower values.
For the exhaustion model, the stresses must be sufficiently high to shift the activation energies 270

by an amount on the order of vexhΣ ∼ kBT . For the adapted work-hardening model, the stresses
must be sufficiently high to significantly modify the initial activation energies U0 − vσworσ0.

The other surprising feature of indentation is that its characterization of the logarithmic
kinetics of creep (i.e., of the prefactor α in Eq. 2.3) is quantitatively consistent with macroscopic
experiments. Here again, with the two models here proposed, the reason why it is so is clear: 275

the prefactor in front of the logarithmic term in Eqs. (2.7) and (2.11), which governs the long-
term creep rate, does not depend on the applied macroscopic stress Σ, even when this stress is
arbitrarily large.

This observation makes it possible to estimate the characteristic macroscopic stress Σchar
below which the applied macroscopic stress Σ does not impact the probability of local 280

microscopic relaxations, and above which it does. Indeed, the linearity of the basic creep behavior
observed for stresses smaller than a few dozen MPa (see section (a)) implies that Σchar is larger
than a few dozen MPa. In contrast, the fact that indentation experiments make it possible to
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decrease the characteristic time significantly implies that Σchar must be smaller than a few
hundred MPa. Consequently, the characteristic macroscopic stress Σchar must be somewhere285

between a few dozen and a few hundred MPa. This estimate makes sense, as it is comparable
to the magnitude of disjoining pressures which prevail in microporous materials (such as
cement-based materials), i.e., in materials with pores smaller than 2 nm: Indeed, because of
intermolecular interactions between molecules of the pore fluid and atoms of the solid skeleton,
those disjoining pressures (defined as the difference between the mechanical pressure of the fluid290

and its thermodynamic pressure [51]) can reach characteristic magnitudes of a few hundred
MPa [52], although lower [53] as well as higher values [54] are also reported (but note that the
magnitude of the disjoining pressures strongly depends on the interlayer distance [55], such
that the disjoining pressures in actual materials, in which only specific interlayer distances are
observed, could be much lower than the maximal disjoining pressures reported in molecular295

simulation studies that explore a complete range of interlayer distances). This comparison of
orders of magnitude hints toward local microscopic relaxations in cement-based materials which
are controlled by disjoining pressure effects if the sample is not loaded mechanically or tested
in regular uniaxial macroscopic experiments, but which are controlled by the applied load in
indentation experiments.300

In short, the models here proposed make it possible to explain why indentation decreases
the characteristic time τ of logarithmic creep by several orders of magnitude (with respect to
macroscopic testing) while enabling a quantitative measurement of the kinetics of this logarithmic
creep (which is governed by the parameter α, see Eq. 2.3). The reason why the magnitude of
the logarithmic kinetics of creep measured with indentation is quantitatively consistent with the305

one measured with macroscopic experiments is that the prefactors that govern this kinetics are
independent of the applied stress (see Eqs. (2.7) and (2.11)). In contrast, the reason put forward
for the observed decrease in characteristic time is that indentation experiments involve stresses
of several hundred MPa, i.e., on the order of or even larger than disjoining pressures that prevail
in microporous solids such as cement-based materials. The reasoning here performed suggests310

that local microscopic relaxations in cement-based materials are governed by disjoining pressure
effects, except at the highest levels of stresses involved in indentation experiments.

4. Further discussion

(a) Magnitude of long-term kinetics of logarithmic creep
The prefactors in Eqs. (2.7) and (2.11), which govern the rate of the long-term logarithmic kinetics315

of creep, are complex, in the sense that they involve several parameters of unknown magnitude.
However, some information can still be inferred from this rate, based on a more macroscopic
approach. The logarithmic feature implies that, in the long term, over each decade, the same
number ndec of relaxation events occur, which thus relax a same volume ndecΩm of material.
Following the same logic as the one which led to Eq. (2.2), these relaxations induce an increase320

∆decε of basic creep strain over a decade which must satisfy (∆decε)ΣΩ ∼ (Σ2/E)nΩm, so that:

nΩm
Ω
∼ (∆decε)E

Σ
. (4.1)

From Fig. 4, we find that (∆decε/Σ) = d(ε/Σ)/(d(log t))≈ 3 · 10−6 MPa−1. Considering a
characteristic Young’s modulus of 30 GPa for the concretes, we find out that the volume fraction
nΩm/Ω of concrete that relaxes over each decade is on the order of 10%.

Creep of concrete is accepted to originate mostly from creep of the calcium silicate hydrates.325

Since aggregates occupy typically around 60% to 80% of the volume of a concrete [56], since
capillarity porosity occupies around 22% of the volume of cement paste for a water-to-cement
mass ratio of 0.5 [56], and since calcium silicate hydrates occupy typically around 50% to 60%
of the volume of solids in the hydrated cement paste [56], a typical volume fraction of calcium
silicate hydrates in concrete is around 13%. From this estimation, in combination with the330
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Figure 7. Envisioned process through which the local microcoscopic relaxation occurs and induces no damage. The

meaning of the colors is the following: a red spring is a microscopic element subjected to a prestress/eigenstress (i.e., a

microscopic element submitted to a stress, even when no macroscopic stress is applied); a black spring is a microscopic

element submitted to no prestress/eigenstress; a brown spring is a microscopic element which may or may not be

submitted to a prestress/eigenstress.

estimation performed in the previous paragraph, we find out that, in the long term, over each
decade, most of the volume of calcium silicate hydrates is subjected to the local microscopic
relaxations. Consequently, if the local microscopic relaxations were some type of micro-cracking,
one would expect the material to be significantly damaged after one decade of logarithmic
creep. Since, to the best of our knowledge, no significant decrease of modulus is reported 335

for concrete during creep (again, at least up to 30% of the compressive strength), the local
microscopic relaxations are not some type of micro-cracking and could rather be interpreted
as some type of ‘ductile’ event. Indeed, concrete is known to be ductile when confinement is
sufficiently high [57,58]. In our case, the ductility may be due to the confinement provided by
the concrete surrounding the volume subjected to the local microscopic relaxation. Consequently, 340

rather than what is proposed in Figure 1, a more realistic description of the local microscopic
relaxation process could be the one proposed in Figure 7, in which the local microscopic relaxation
induces no damage. The fact that broken bonds can be restored in geomaterials is observed
experimentally, even in non-hydrating materials: indeed, TenCate et al. [59] showed that the
modulus of a sample of concrete, of sandstone, or of a limestone, which decreases sharply after 345

nonlinear acoustic straining or rapid temperature change, recovers slowly over a time (and in fact
linearly with the logarithm of time).

In another manuscript [14], we confirmed that the kinetics of long-term autogenous shrinkage
is consistent with the hypothesis that, in the long term, autogenous shrinkage could be due to
creep of the solid skeleton under the action of capillary forces due to self-desiccation. Note that 350

this result is not inconsistent with the idea, put forward in the present manuscript, of a viscous
behavior of concrete that is governed by microscopic relaxations: in the long term, autogenous
shrinkage can be driven by capillary forces which apply a mechanical stress to a solid skeleton
whose viscous behavior is due to microscopic relaxations.

(b) Elements of comparison with other creep models 355

This idea that the mature material evolves even in absence of any applied load is consistent
with the microprestress-solidification theory proposed by Bažant et al. [12]. In this theory,
as a consequence of hydration and of restraint due to heterogeneity of the microstructure,
micoprestresses prevail in the material, which, because of disjoining pressure effects, can reach
several hundreds of MPa. Because of orientational disorder, these microprestresses, which at some 360

location are orthogonal to the C-S-H layers, act parallel to the C-S-H layers at other locations.
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The apparent viscosity of the C-S-H is considered to depend on those normal microprestresses.
Parallel microprestresses induce sliding of the C-S-H layers over each other, which enables
relaxation of the microprestresses, and hence yields an apparent viscosity of the C-S-H that
evolves with time. The theory shows that viscosity increases linearly with time which, under365

load, yields a strain that increases linearly with the logarithm of time in the long term. In the
microprestress-solidification theory, the applied mechanical stress has no effect on how fast the
microprestresses relax. In this respect, the two models here proposed, based on the idea of
local microscopic relaxations events not impacted by macroscopic applied stresses are consistent
with the microprestress-solidification theory. The adapted work-hardening model relies on the370

existence and relaxation of a prestress/eigenstress σ (see section (b)), which is the microprestress
in the microprestress-solidification theory of Bažant et al. [12], and is the eigenstress observed
by Abuhaikal et al. [15]. To some extent, the adapted work-hardening model can be interpreted
as a discrete version of the microprestress-solidification theory, and may provide additional
physical basis to this theory. In particular, the idea that microscopic relaxations are impacted375

by the presence of a microscopic prestress/eigenstress is readily in line with the microprestress-
solidification theory. In contrast to the microprestress-solidification theory, the models here
proposed avoid having to postulate a relationship between an apparent viscosity of the material
and the microprestress: the logarithmic feature of the long-term creep is a consequence of the
uniform distribution of activation energies for the exhaustion model, and of the linear dependence380

of activation energies on stresses for the adapted work-hardening model.
It is interesting that the adapted work-hardening model provides satisfactory agreement with

the phenomenology of concrete creep, although concrete is not work-hardening, but strain-
softening: the mechanisms at the origin of the strain-softening behavior of concrete could differ
from those at the origin of its creep behavior.385

The models here proposed are quite different, in terms of spirit, from the rate theory proposed
to explain creep of concrete [5] or of geomaterials [60], although the rate theory also relies on
activation of local sites. In that theory, particles constituting the solid skeleton are fixed to their
position by interactions with surrounding particles: schematically, they are located in a potential
trough. Under the application of a macroscopic stress, the energy landscape is modified, which390

favors the probability of jump of the particle in some specific directions, which translates into
creep. Consequently, in the rate theory, the application of a macroscopic stress modifies the
activation energies. In contrast, as explained in section (a), with our models based on local
microscopic relaxations, the application of a macroscopic stress (at least up to a few dozen MPa)
does not modify the activation energies: local microscopic relaxations occur at a rate that is395

independent of this macroscopic stress, and the macroscopic stress only enables the manifestation
of the local microscopic relaxation into an infinitesimal increment of basic creep strain.

(c) Evolution of characteristic time of logarithmic creep with age at loading
For concrete, the characteristic time of logarithmic creep (i.e., the parameter τ that intervenes in
Eq. 2.3) is known to increase with the age of the material at which loading is initiated [61], as can400

be observed in Fig. 8. In this section, we aim at finding out whether this increase with the age of
loading can be explained by the two proposed models.

With the exhaustion model, when loading is performed at time τL, if we consider the
relaxation sites with an activation energy U , already a fraction 1− exp(−τL/τm) has relaxed.
When applying a macroscopic stress Σ that is sufficiently small (in the sense of the discussions of405

section (a), so that activation energies are not impacted by this stress), the contribution to strain
of the relaxation of the remaining sites is:

ε(t′) =

∫+∞
0

n̄0εind


1− e

−
t′ + τL
τm

−
1− e

−
τL
τm


 dU0, (4.2)
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Figure 8. Impact of the age τL at loading on the characteristic time τ ′ (counted after loading) of logarithmic creep. Among

the tests selected based on the criteria described at the beginning of section 3, we only considered tests for which the

long-term data spanned at least one decade and for which creep experiments were performed at several ages on the

same mix design. Long-term was considered to start at 7 days or at three times a characteristic time introduced in the

fib Model Code 2010 [18] (i.e., 3/(0.035 + 30τref/τL)
2, where τL is the age at loading and τref = 1 day), whichever

was the larger. Eventually, data are from [32], [41], [31], [46], [48], [34], and [35]. The characteristic time of logarithmic

creep was calculated by fitting a line to the long-term creep data displayed on a logarithmic scale and calculating its

intercept with the x-axis.

where t′ is the time after loading. The solution to this equation, following the same type of
derivation as in section (a), is:

ε(t′)
Σ

=
n̄0kBTΩ

EΩm

[
ln

(
t′ + τL
τ0

)
+ E1

(
t′ + τL
τ0

)
−
[
ln

(
τL
τ0

)
+ E1

(
τL
τ0

)]]
, (4.3)

which in the long term is approximately equal to: 410

ε(t′)
Σ

=
n̄0kBTΩm

EΩ

[
ln

(
t′ + τL
τ0

)
− ln

(
τL
τ0

)
− E1

(
τL
τ0

)]
=
n̄0kBTΩm

EΩ

[
ln

(
t′ + τL
τL

)
− E1

(
τL
τ0

)]
,

(4.4)

so that the characteristic time τ ′exh (counted after loading) of logarithmic creep can be calculated:

τ ′exh = τL (exp(E1(τL/τ0))) , (4.5)

With the exhaustion model, the characteristic time of logarithmic creep increases with the age at
loading, which is consistent with experimental observations. For ages τL at loading which are
sufficiently large to satisfy τL� τ0, the above equation becomes:

τ ′exh ≈ τL. (4.6)

One can perform the same type of calculation with the adapted work-hardening model. Akin 415

to the logic of section (b), once the macroscopic stressΣ is applied, the basic creep strain increases
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linearly with the decrease of prestress/eigenstress σ, whose expression is given in Eq. (2.11) so
that:

ε(t′)∝−(σ(t′ + τL)− σ(τL))

ε(t′)
Σ

=
kBTΩm

vσworCσindΩ

[
ln

(
1 +

t′ + τL
τwor

)
− ln

(
1 +

τL
τwor

)]
=

kBTΩm
vσworCσindΩ

[
ln

(
1 +

t′

τwor + τL

)]
.

(4.7)

Therefore, with the adapted work-hardening model, the characteristic time τ ′wor (counted after
loading) of logarithmic creep verifies:420

τ ′wor = τwor + τL. (4.8)

With the adapted work-hardening model also, the characteristic time after which creep is
logarithmic increases with the age at loading, which is consistent with experimental observations.

For this feature also (i.e., how the characteristic time to reach the logarithmic kinetics of creep
evolves with the age of loading), both models lead to the same phenomenology, by predicting
a characteristic time that increases linearly with the age of loading. However, according to the425

models, this characteristic time is larger than is found experimentally, as can be observed in Fig. 8,
in which we set τ0 = τwor = 1 s. Such discrepancy is not surprising, as the main reason for aging
of concrete is the evolution of hydration, which makes the mechanical properties of cement-based
materials evolve over time. Also, this characteristic time to reach the logarithmic kinetics of creep
may be impacted by processes specific to short-term creep (e.g., redistribution of water within the430

microstructure) and distinct from the local microscopic relaxations. In any case, it is interesting to
observe that the two models here proposed, which disregard hydration, still predict an increase
of the characteristic time with the age of loading. Consequently, in concrete, part of this observed
increase could be a consequence not of hydration per se, but an intrinsic consequence of the
relaxation process itself. Such idea is in line with the microprestress-solidification theory [12],435

in which aging of concrete is partly due to hydration (i.e., the solidification part of the theory)
and partly due to a relaxation process that is independent of hydration (i.e., the microprestress
part of the theory).

5. Conclusions
We proposed two models based on the idea of local microscopic relaxations to explain long-term440

basic creep of concrete. Those models (namely the exhaustion model and the work-hardening
model), inspired from the literature on creep of metallic alloys, differ by how their activation
energies are distributed and evolve during the creep process. We used the exhaustion model as is,
but adapted the work-hardening model to formulate it as a function of the prestress/eigenstress
prevailing in the material, rather than as a function of strain. The two models put the emphasis on445

stresses, activation energies, and their evolutions during the creep process, rather than on strains
and evolutions of the microstructure.

Both models can be consistent with quite a large corpus of phenomenological observations on
basic creep of concrete:

(i) Linearity of the basic creep behavior with the applied macroscopic stress for stresses up450

to about 30% of the compressive strength. To ensure this linearity, the activation energies
of the local microscopic relaxation sites must not be significantly impacted by the applied
macroscopic stress. Consequently, at least up to about a few dozen MPa, local microscopic
relaxations must occur at a rate that is independent of the applied stress. Said otherwise,
it is not the applied macroscopic stress that induces the local microscopic relaxations (i.e.,455

it is not the modification of the energy landscape by the applied macroscopic stress that
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is the reason for the creep process, as is the case in the rate theory [5]): those relaxations
occur even in absence of any applied macroscopic stress but, when they occur in presence
of a macroscopic stress, they translate into infinitesimal strains interpreted as basic creep.
The strain induced by a local microscopic relaxation in absence of a macroscopic stress is 460

autogenous shrinkage.
(ii) A basic creep strain that evolves linearly with the logarithm of time, after some time.

(iii) A viscoelastic Poisson’s ratio that remains roughly constant over time for materials with
an elastic Poisson’s ratio between 0.15 and 0.2. Said otherwise, the models are also
consistent with a tridimensional feature of the creep behavior. In fact, the models predict 465

that the viscoelastic Poisson’s ratio of a material with an elastic Poisson’s ratio equal to
0.2 must remain constant.

(iv) Phenomenology related to indentation creep measurements, namely that indentations
make it possible to reach the logarithmic kinetics of creep orders of magnitude faster than
by macroscopic testing, and provide a logarithmic kinetics of creep that is quantitatively 470

consistent with that obtained with macroscopic testing. With the models, the reason for
the latter observation is that the prefactors of the logarithmic term in Eqs. (2.7) and (2.11)
do not depend on the applied macroscopic stress: independent of its magnitude, the
applied macroscopic stress does not modify the kinetics of logarithmic creep. In contrast,
with the models, the reason for the former observation is that stresses below the indenter 475

tip —on the order of a few hundred MPa to about 1 GPa— must be sufficiently large
to significantly decrease the activation energies of the local microscopic relaxation sites.
Since, as explained before, linearity of the creep behavior with respect to the applied
stress observed in macroscopic testing imposes that stresses on the order of a few dozen
MPa do not modify significantly these activation energies, we reach the conclusion that 480

the characteristic magnitude of the threshold stresses that can impact activation energies
must be comprised between a few dozen MPa and a few hundred MPa. Such magnitude
is consistent with the magnitude of disjoining pressures which prevail in microporous
systems such as cement-based materials (i.e., in porous systems with pores with a width
below 2 nm), as those disjoining pressures can be on the order of a few hundred MPa. This 485

observation hints toward activation energies of local microscopic relaxation sites which
find their physical origin in the presence of disjoining pressures.

The whole phenomenology on basic creep of concrete does not allow to distinguish which of
the two models (i.e., the exhaustion model or the adapted work-hardening model) is the more
relevant: on the various experimental observations considered, each model is as good as the other. 490

With the two models here proposed, the material evolves over time, independently of the
applied stress. To this respect, the proposed models are consistent with the microprestress-
solidification theory of Bažant et al. [12], in which the apparent viscosity of the material
evolves with time independently of the applied load. The adapted work-hardening model
relies on the existence and relaxation of a prestress/eigenstress, which is the microprestress 495

in the microprestress-solidification theory of Bažant et al. [12] and the eigenstress observed by
Abuhaikal et al. [15]. To some extent, the adapted work-hardening model can be interpreted as a
discrete version of the microprestress-solidification theory of Bažant et al. [12] and may provide
additional physical basis to this theory.

Given that creep of soils like clays or sands is also logarithmic with respect to time in the long 500

term, one can reasonably wonder whether the physical origin of creep for soils is the same as for
cement-based materials, and whether the two proposed models (or one of the two) based on local
microscopic relaxations are also relevant to explain the creep of soils. In contrast to cement-based
materials, soils are materials whose chemical composition usually does not evolve over time, and
whose properties are usually anisotropic: the study of creep of soils may involve challenges that 505

differ from the study of creep of cement-based materials.

Data Accessibility. This article has no additional data.

Competing Interests. I declare no competing interest.



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Funding. This work was performed while I was French-government by-fellow at Churchill College and
Visitor in the Department of Engineering, at the University of Cambridge. This stay was financially supported510

by the Embassy of France in the United Kingdom.

Acknowledgements. I want to thank Churchill College and the Embassy of France in the United Kingdom
for their support and giving me the opportunity to come and spend time as a French-government by-fellow
at Churchill College and as a Visitor in the Department of Engineering at the University of Cambridge. I also
want to thank Prof. Malcolm Bolton (Department of Engineering, University of Cambridge) for the interesting515

discussions we had around this work and around creep in general.

References
1. Hatt WK. 1907 Notes on the Effect of Time Element in Loading Reinforced Concrete Beams.

In Proc. ASTM vol. 7 pp. 421–433.
2. Pons G, Torrenti JM. 2008 Le Retrait et Le Fluage. In La Durabilité Des Bétons. Presses des Ponts.520

3. Bažant ZP, Hubler MH, Yu Q. 2011 Pervasiveness of Excessive Segmental Bridge Deflections:
Wake-up Call for Creep. ACI Structural Journal 108, 766–774.

4. Martinet E, Guinet P, Granger L, Rousselle H. 1997 Prestress Losses in NPP Containments -
The EDF Experience. In Joint WANO/OECD Workshop on Prestress Loss in NPP Containments
Poitiers, France.525

5. Wittmann FH. 1982 Creep and Shrinkage Mechanisms. In Creep and Shrinkage in Concrete
Structures pp. 129–161.

6. Tamtsia BT, Beaudoin JJ. 2000 Basic Creep of Hardened Cement Paste - A Re-Examination of
the Role of Water. Cement and Concrete Research 30, 1465–1475.

7. Morshedifard A, Masoumi S, Abdolhosseini Qomi MJ. 2018 Nanoscale Origins of Creep in530

Calcium Silicate Hydrates. Nature Communications 9.
8. Rossi P, Tailhan JL, Le Maou F, Gaillet L, Martin E. 2012 Basic Creep Behavior of Concretes

Investigation of the Physical Mechanisms by Using Acoustic Emission. Cement and Concrete
Research 42, 61–73.

9. Pachon-Rodriguez EA, Guillon E, Houvenaghel G, Colombani J. 2014 Wet Creep of Hardened535

Hydraulic Cements — Example of Gypsum Plaster and Implication for Hydrated Portland
Cement. Cement and Concrete Research 63, 67–74.

10. Pignatelli I, Kumar A, Alizadeh R, Le Pape Y, Bauchy M, Sant G. 2016 A Dissolution-
Precipitation Mechanism Is at the Origin of Concrete Creep in Moist Environments. The Journal
of Chemical Physics 145, 054701.540

11. Vandamme M, Ulm FJ. 2009 Nanogranular Origin of Concrete Creep. Proceedings of the
National Academy of Sciences of the United States of America 106, 10552–10557.

12. Bažant ZP, Hauggaard AB, Baweja S, Ulm FJ. 1997 Microprestress-Solidification Theory for
Concrete Creep. I: Aging and Drying Effects. Journal of Engineering Mechanics 123, 1188–1194.

13. Hua C, Acker P, Ehrlacher A. 1995 Analyses and Models of the Autogenous Shrinkage of545

Hardening Cement Paste. I. Modelling at Macroscopic Scale. Cement and Concrete Research 25,
1457–1468.

14. Aili A, Vandamme M, Torrenti JM, Masson B. 2018 Is Long-Term Autogenous Shrinkage
a Creep Phenomenon Induced by Capillary Effects Due to Self-Desiccation?. Cement and
Concrete Research 108, 186–200.550

15. Abuhaikal M, Ioannidou K, Petersen T, Pellenq RJ, Ulm FJ. 2018 Le Châtelier’s Conjecture:
Measurement of Colloidal Eigenstresses in Chemically Reactive Materials. Journal of the
Mechanics and Physics of Solids 112, 334–344.

16. Neville AM, Dilger WH, Brooks JJ. 1983 Creep of Plain and Structural Concrete. Construction
Press.555

17. Bažant ZP, Jirásek M. 2018 Creep and Hygrothermal Effects in Concrete Structures vol. 225Solid
Mechanics and Its Applications. Dordrecht: Springer Netherlands.

18. fib. 2013 Fib Model Code for Concrete Structures 2010: FIB MODEL CODE 2010 O-BK. Weinheim,
Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

19. RILEM Technical Committee TC-242-MDC. 2015 RILEM Draft Recommendation: TC-242-560

MDC Multi-Decade Creep and Shrinkage of Concrete: Material Model and Structural
Analysis. Materials and Structures 48, 753–770.



19

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

20. Aili A, Vandamme M, Torrenti JM, Masson B, Sanahuja J. 2016 Time Evolutions of Non-Aging
Viscoelastic Poisson’s Ratio of Concrete and Implications for Creep of C-S-H. Cement and
Concrete Research 90, 144–161. 565

21. Torrenti JM, Le Roy R. 2017 Analysis of Some Basic Creep Tests on Concrete and Their
Implications for Modeling. pp. 1–6.

22. Zhang Q, Le Roy R, Vandamme M, Zuber B. 2014 Long-Term Creep Properties of
Cementitious Materials: Comparing Microindentation Testing with Macroscopic Uniaxial
Compressive Testing. Cement and Concrete Research 58, 89–98. 570

23. Lambe TW, Whitman RW. 1969 Soil Mechanics. New York, NY: Wiley.
24. Nabarro FRN, DeVilliers HL. 1995 The Physics of Creep: Creep and Creep-Resistant Alloys.

London: Taylor & Francis. OCLC: 832576348.
25. Nabarro FRN. 2001 The Time Constant of Logarithmic Creep and Relaxation. Materials Science

and Engineering A 309-310, 227–228. 575

26. Eyring H. 1935 The Activated Complex in Chemical Reactions. The Journal of Chemical Physics
3, 107–115.

27. Bell GI. 1978 Models for the Specific Adhesion of Cells to Cells. Science 200, 618–627.
28. Sinko R, Vandamme M, Bažant ZP, Keten S. 2016 Transient Effects of Drying Creep in

Nanoporous Solids: Understanding the Effects of Nanoscale Energy Barriers. Proceedings of 580

the Royal Society A: Mathematical, Physical and Engineering Science 472, 20160490.
29. Bažant ZP, Hauggaard AB, Baweja S. 1997 Microprestress-Solidification Theory for Concrete

Creep. II: Algorithm and Verification. Journal of Engineering Mechanics-ASCE 123, 1195–1201.
30. Hubler MH, Wendner R, Bažant ZP. 2015 Statistical Justification of Model B4 for Drying

and Autogenous Shrinkage of Concrete and Comparisons to Other Models. Materials and 585

Structures 3.
31. Le Roy R. 1996 Déformations Instantanées et Différées Des Bétons à Hautes Performances.

Technical report Laboratoire Central des Ponts et Chaussées.
32. Larrard D. 1990 Creep and Shrinkage of High-Strength Field Concretes. ACI Special Publication

121, 577–598. 590

33. Vincent EC, Townsend BD, Weyers RE, Via CE. 2004 Final Contract Report Creep of
High-Strength Normal and Lightweight Concrete. Technical Report VTRC 04-CR8 Virginia
Transportation Research Council Charlottesville, Virginia.

34. Anders I. 2012 Stoffgesetz Zur Beschreibung Des Kriech- Und Relaxationsverhaltens Junger Normal-
Und Hochfester Betone. PhD thesis Karlsruher Institut für Technologie. 595

35. Theiner Y, Drexel M, Neuner M, Hofstetter G. 2017 Comprehensive Study of Concrete Creep,
Shrinkage, and Water Content Evolution under Sealed and Drying Conditions. Strain p.
e12223.

36. J.D. Eshelby. 1961 Elastic Inclusions and Inhomogeneities. Progress in solid mechanics 2, 87–140.
37. Zaoui A. 2000 Matériaux Hétérogènes et Composites. 600

38. Vandamme M, Tweedie CCA, Constantinides G, Ulm FJ, Van Vliet KJ. 2012 Quantifying
Plasticity-Independent Creep Compliance and Relaxation of Viscoelastoplastic Materials
under Contact Loading. Journal of Materials Research 27, 302–312.

39. Browne RD. 1967 Properties of Concrete in Reactor Vessels. In Proceedings of the Conference on
Prestressed Concrete Pressure Vessels Group C Institution of Civil Engineers pp. 131–151 London, 605

England. Thomas Telford Publishing.
40. Brooks JJ, Wainwright PJ. 1983 Properties of Ultra-High-Strength Concrete Containing a

Superplasticizer. Magazine of Concrete Research 35, 205–213.
41. Bryant AH, Vadhanavikkit C. 1987 Creep, Shrinkage-Size, and Age at Loading Effects.

Materials Journal 84, 117–123. 610

42. Russel HG, Larson SC. 1989 Thirteen Years of Deformations in Water Tower Place. Structural
Journal 86, 182–191.

43. Shritharan S. 1989 Structural Effects of Creep and Shrinkage on Concrete Structures. M. E. thesis
University Auckland.

44. Huo X. 1997 Time-Dependent Analysis and Application of High-Performance Concrete in Bridges. 615

PhD thesis University of Nebraska - Lincoln.
45. Navrátil J. 1998 Použití Modelu B3 pro Predikci Dotvarování a Smršt’ování Betonu. Stavební

obzor pp. 110–116.
46. Mazloom M, Ramezanianpour AA, Brooks JJ. 2004 Effect of Silica Fume on Mechanical

Properties of High-Strength Concrete. Cement and Concrete Composites 26, 347–357. 620



20

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

47. Mazzotti C, Savoia M, Ceccoli C. 2005 A Comparison between Long Term Properties of
Self Compacting Concretes and Normal Vibrated Concretes with Same Strength. In Creep,
Shrinkage and Durability of Concrete and Concrete Structures: CONCREEP 7 vol. 7 pp. 523–528
Nantes, France.

48. Mazzotti C, Ceccoli C. 2008 Creep and Shrinkage of Self-Compacting Concrete: Experimental625

Behavior and Numerical Model. In Proceedings of the Eighth International Conference on Creep,
Shrinkage and Durability Mechanics of Concrete and Concrete Structures pp. 667–673 Ise-Shima,
Japan. CRC Press.

49. Mu R, Forth JP, Beeby AW. 2008 Designing Concrete with Special Shrinkage and Creep
Requirements. In Proceedings of the Eighth International Conference on Creep, Shrinkage and630

Durability Mechanics of Concrete and Concrete Structures Ise-Shima, Japan. CRC Press.
50. Vandamme M, Ulm FJ. 2013 Nanoindentation Investigation of Creep Properties of Calcium

Silicate Hydrates. Cement and Concrete Research 52, 38–52.
51. Coussy O. 2010 Mechanics and Physics of Porous Solids. Wiley.
52. Bažant ZP. 1972 Thermodynamics of Interacting Continua with Surfaces and Creep Analysis635

of Concrete Structures. Nuclear Engineering and Design 20, 477–505.
53. Beltzung F, Wittmann FH. 2005 Role of Disjoining Pressure in Cement Based Materials. Cement

and Concrete Research 35, 2364–2370.
54. Karaborni S, Smit B, Heidug W, Urai J, van Oort E. 1996 The Swelling of Clays: Molecular

Simulations of the Hydration of Montmorillonite. Science 271, 1102–1104.640

55. Pellenq RJM, Lequeux N, Van Damme H. 2008 Engineering the Bonding Scheme in C-S-H:
The Iono-Covalent Framework. Cement and Concrete Research 38, 159–174.

56. Mehta PK, Monteiro PJM. 2006 Concrete: Microstructure, Properties and Materials. McGraw-Hill
3rd edition.

57. Woolson IH. 1905 Some Remarkable Tests Indicating ’flow’ of Concrete under Pressure.645

Engineering News 54, 459–460.
58. Bazant ZP, Kim JJH, Brocca M. 1999 Finite Strain Tube-Squash Test of Concrete at High

Pressures and Shear Angles up to 70 Degrees. Materials Journal 96, 580–592.
59. TenCate J, Smith E, Guyer R. 2000 Universal Slow Dynamics in Granular Solids. Physical review

letters 85, 1020–3.650

60. Kwok CY, Bolton MD. 2010 DEM Simulations of Thermally Activated Creep in Soils.
Géotechnique 60, 425–433.

61. Le Roy R, Le Maou F, Torrenti JM. 2017 Long Term Basic Creep Behavior of High Performance
Concrete: Data and Modelling. Materials and Structures 50.


	1 Introduction
	2 Models
	(a) Exhaustion model
	(b) Adapted work-hardening model

	3 Features of models and agreement with phenomenology
	(a) Linearity of creep behavior
	(b) Viscoelastic Poisson's ratio
	(c) Measurement of creep properties by indentation

	4 Further discussion
	(a) Magnitude of long-term kinetics of logarithmic creep
	(b) Elements of comparison with other creep models
	(c) Evolution of characteristic time of logarithmic creep with age at loading

	5 Conclusions
	References

