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 2 

Abstract: 1 

The Callovo-Oxfordian (COx) claystone is considered as a potential host rock in the 2 

French concept of high level radioactive waste disposal at great depth. To better 3 

understand and to complement existing published data on the thermo-hydro-mechanical 4 

behaviour of the COx claystone, an experimental program was carried out by using a 5 

hollow cylinder triaxial device specially developed for low permeability materials. 6 

Special care was devoted to the saturation of the specimens that was made under stress 7 

conditions close to in-situ, and to conditions ensuring full drainage thanks to a reduced 8 

drainage length and low shear rate. Tests were carried out under in-situ, half to in-situ 9 

and twice the Terzaghi mean effective in-situ stress at 25°C and 80°C to investigate the 10 

effects in the close field of the temperature elevation due to the exothermic nature of 11 

the waste. Some radial permeability tests were conducted at various temperatures. The 12 

data obtained showed that there is little effect of temperature on the elastic parameters 13 

determined, whereas a tendency to a decrease in shear strength was noted, compatible 14 

with the few published data. Temperature also appeared to have little effect on the 15 

intrinsic permeability, with higher flows mainly due to the decrease in water viscosity. 16 

 17 
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 3 

1. Introduction  1 
 2 

In many countries (including Belgium, France and Switzerland), deep argillaceous 3 

formations are considered as potential host rock for the disposal of high activity 4 

radioactive waste at great depth. Because of low permeability, good self sealing 5 

properties and ability to retain radionuclides, the Callovo-Oxfordian (COx) claystone 6 

has been selected in France as potential host rock by Andra, the French agency for the 7 

management of radioactive waste. Andra developed an Underground Research 8 

Laboratory [1] in the COx layer at a depth of 490 m near the village of Bure (East of 9 

France) to perform in-situ investigations devoted to various aspects of radioactive waste 10 

disposal, including the thermo-hydro-mechanical response of the host rock in the close 11 

field, in configurations close to that prevailing during the operational phase of the waste 12 

disposal [1].  13 

In the French concept, the canisters containing the radioactive waste are to be 14 

placed in disposal cells that consist in horizontal cased microtunnels of 70 cm in 15 

diameter and at least 80 m in length. Due to the exothermic nature of radioactive 16 

wastes, the rock in the close field and the excavation damaged zone (EDZ) around 17 

disposal cells and galleries will be submitted to a temperature elevation. A maximum 18 

temperature of 90°C at the cells wall is considered in the French concept, a condition 19 

that has obvious economic consequences in terms of both the density of the network of 20 

gallery and disposal cells and the number of canisters that can be placed along a given 21 

length of excavated disposal cell. 22 

Various investigations have been carried out on the thermal behaviour of clays but 23 

that of claystones is much less documented. In clays, the importance of the 24 

overconsolidation ratio has clearly been emphasized, with significant effects in volume 25 

change and shear strength response [1, 2, 3, 4, 5, 6].  26 
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Various investigations have been carried out about the hydro-mechanical 1 

behaviour of the COx claystone based on triaxial tests [7, 8, 9, 10, 11]. Actually, 2 

published data on the shear strength properties of the COx claystone appear to be 3 

somewhat dispersed partly due to the natural variability of the properties of the 4 

claystone. The mineralogical composition of the COx claystone changes with depth, in 5 

particular in terms of clay and calcite content. The depth of 490 m at which the Bure 6 

URL has been excavated corresponds to a maximum clay content of around 50%, 7 

selected to ensure the best isolating properties in terms of low permeability, self-sealing 8 

and radionuclides retaining ability.  9 

Another possible reason of the observed dispersion of the published mechanical 10 

characteristics of the COx is related to the various testing methodologies adopted. A 11 

first important parameter is the specimen size that obviously controls the easiness and 12 

the period of time necessary to fully saturate specimens. Claystone specimens can be 13 

significantly desaturated due to the consecutive effects of coring, core isolation from 14 

evaporation, core transportation and storage and, finally, machining in the laboratory. 15 

Claystones are very sensitive to changes in water content and triaxial tests carried out at 16 

various degrees of saturation evidenced a significant increase of the mechanical 17 

strength with lower degree of saturation [8, 9, 12, 13, 14]. 18 

Another parameter largely dependent on the specimen size is the quality of the 19 

drainage ensured during triaxial testing. Due to the very low permeability of claystones 20 

(around 10-20 m2 for the COx claystone), fully drained tests that are necessary for a 21 

sound determination of their intrinsic mechanical characteristics are difficult to achieve 22 

[15]. Good drainage can be ensured either by adopting slow enough shearing rate or by 23 

adopting testing devices with small drainage length. This can be made either by testing 24 
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small specimens or by adopting specimen shapes with reduced drainage length [15, 16, 1 

11]. These aspects will be commented in more details later. 2 

In this paper, fully saturated and fully drained triaxial thermal tests were carried 3 

out on COx specimens by using a hollow cylinder thermal triaxial device with short 4 

drainage length specially developed for low permeability geomaterials [16]. This 5 

thermal device has already successfully been used to test the Boom clay from Belgium 6 

[17], the Opalinus clay from Switzerland [18] and the COx claystone from France [19]. 7 

The experimental program carried out here was aimed at further investigate the effects 8 

of temperature on the shear strength response of the COx claystone by comparing tests 9 

carried out at 80°C with tests run at 25°C, following the work of Mohajerani et al. [19] 10 

on thermal volume changes. Triaxial tests were complemented by constant head radial 11 

permeability tests run at both temperatures to investigate the effects of temperature on 12 

permeability. 13 

2. The Callovo-Oxfordian claystone 14 
 15 
2.1. Mineralogical composition 16 

The COx claystone is a sedimentary rock deposited 155 millions years ago on top of a 17 

layer of Dogger limestone that was afterwards covered by an Oxfordian limestone 18 

layer. The thickness of the COx layer is about equal to 150 m. The COx claystone is 19 

composed of a clay matrix containing some grains quartz and calcite with a 20 

mineralogical composition depending on depth with significant changes in carbonate 21 

and clay contents. At the depth of the Bure URL (490 m), the average mineralogical 22 

composition of COx claystone is as follows [20]: 45-50% clay fraction composed of 23 

10-24% interstratified illite/smectite layers, 17-21% illite, 3-5% kaolinite, 2-3% 24 

chlorite. The claystone also contains 28% carbonate, 23% quartz and 4% other minerals 25 

(feldspars, pyrite, dolomite, siderite and phosphate minerals). The total porosity varies 26 
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in the COx layer between 14% in carbonated levels and 19.5% in the more argillaceous 1 

levels [21]. 2 

The characteristics of the specimens tested are presented in Table 1. Specimens 3 

come from various cores named EST45414 (specimen S1, depth 498 m), EST30734 4 

(S2, depth 612 m) and EST285nn (S3-S4, depth 479 m) and EST45407 (S5, depth 5 

499m). These cores have been extracted at distinct locations. They were selected 6 

because they are located approximately at the same level in the claystone layer. 7 

Specimen S1 and S5 have a porosity between 13 and 13.5% and a water content around 8 

2.2% corresponding to degrees of saturation between 38 and 39%. A suction of 9 

109 MPa was measured in specimen S1 by using a WP4 dew-point tensiometer. 10 

Specimens S2, S3 and S4 have larger porosity between 16.5 and 17.8%, higher water 11 

content of around 6% corresponding to degrees of saturation between 80 and 85%. The 12 

suctions of specimens S2 and S4 are equal to 31 and 34 MPa, respectively.   13 

2.2. Shear strength and thermal effects in the COx claystone  14 

Published data about the shear properties of the COx claystone determined by running 15 

triaxial tests are variable. This is due to the natural variability observed in the COx 16 

claystone layer. The specimens tested do not necessarily come from the same borehole 17 

location or from the same depth whereas the mineralogical composition of the claystone 18 

is dependent upon the depth at which the specimen has been cored. For instance, 19 

specimens with higher calcite content and smaller clay content extracted from layers 20 

deeper than that of the Bure URL (that is located at the level of maximum clay content) 21 

are stiffer and stronger, as recently confirmed in terms of Young modulus by means of 22 

micro-indentation and mini compression tests (UCS) run by Hu et al. [22] on COx 23 

unsaturated specimens extracted from depths of 490, 503 and 522 m. By testing COx 24 

specimens from various depths, Chiarelli [7] showed that the Young modulus increased 25 
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with larger calcite content (between 6 and 15 GPa for calcite content between 20 and 1 

52%) and decreased with larger clay fraction (between 15 and 6.5 GPa for clay fraction 2 

between 28 and 50%).  3 

Beside natural variability, the testing procedure adopted is another important 4 

parameter to consider when comparing the data from various laboratories on COx 5 

specimens. Tests have been run in both saturated and unsaturated conditions with 6 

drainage conditions not always described in enough detail. By running a series of 7 

unconfined compression tests on COx specimens equilibrated at various suctions 8 

between 2.7 and 155.2 MPa (by using saturated saline solutions), Pham et al. [13] 9 

confirmed the sensitivity of the COx claystone to changes in water content already 10 

quoted by Chiarelli et al. [8], Zhang and Rothfuchs [9] and more recently by Zhang et 11 

al. [23]. They obtained trends comparable to that evidenced by Valès et al. [12] on the 12 

Tournemire shale, with significant increase in strength in drier states. The unconfined 13 

compression strengths that Pham et al. [13] obtained at failure varied between 27 MPa 14 

in a state close to saturated under a 98% relative humidity (suction 2.7 MPa, water 15 

content 5.24%, degree of saturation not given) and 58 MPa in a much drier state under a 16 

32% relative humidity (suction 155.2 MPa, water content 1.65%, degree of saturation 17 

not given). 18 

Prior to inspect further experimental data, it was found useful to present the 19 

technical procedures used and published in the literature including the depth at which 20 

specimens were extracted, the size of the specimen, their porosity, water content, 21 

degree of saturation, testing rate and drainage length (an important parameter with 22 

respect of drainage conditions). The data obtained in the works of Chiarelli [7] and 23 

Chiarelli et al. [8], Zhang and Rothfuchs [9], Pham et al. [13] and Hu et al. [11] are 24 

presented in Table 2. One can see that various sizes of triaxial specimens have been 25 
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used, the smallest being the 20 × 20 mm cylindrical specimen used by Hu et al. [11], 1 

the longest one being the 100 mm high and 35 mm diameter used by Chiarelli [7] and 2 

Chiarelli et al. [8]. Pham et al. [13] used a specimen of 72 mm in height and 36 mm in 3 

diameter whereas Zhang and Rothfuchs [9] used a slightly larger specimen (40 mm in 4 

diameter and 80 mm in length). Both sizes are close to standard triaxial specimens of 38 5 

mm in diameter and 76 mm in height. 6 

Whenever carried out, the saturation procedure has not always been described in 7 

details by the authors. Some values of degree of saturation are given, that correspond to 8 

the initial one as obtained when receiving the specimen in the laboratory (i.e. between 9 

73 and 100 % for Chiarelli [7] and Chiarelli et al. [8] who tested their specimens at their 10 

initial degree of saturation). The smallest degree of saturation was obtained after drying 11 

to investigate the effects of change in water content on the shear strength (1.65% by 12 

Pham et al. [13] and 2.8% by Zhang and Rothfuchs [9]). Although they did not 13 

comment about their saturation procedure, Zhang and Rothfuchs [9] obtained almost 14 

fully saturated specimens at Sr = 99%. On their small specimen, Hu et al. [11] achieved 15 

complete saturation by imposing a 1.5 MPa back-pressure on the bottom of the 16 

specimen until monitoring the same value on the top. The change with time of the pore 17 

pressure measured at the top of the specimen indicated that full saturation occurred 18 

after 70 hours in the 20 mm high specimen. 19 

The drainage conditions imposed during the tests are not always described in 20 

detail. It seems that most often drainage was ensured by porous discs on top and bottom 21 

of the specimens. The other important parameter is the strain rate imposed, that varies 22 

between the largest value of 6.5 × 10-6 s-1 (Zhang and Rothfuchs [9]) in undrained tests 23 

down to 10-7 s-1 in Hu et al [11] in drained tests with a drainage length of 10 mm. The 24 

corresponding speeds are also given in Table 2 in µm/mn, knowing that drained tests in 25 
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clayey soils (permeability of 10-17m2) are typically conducted at a speed of 1 µm/mn 1 

with a 19 mm drainage length equal to the specimen radius, thanks to lateral drainage 2 

allowed by filter papers placed all around the sample. In this regard, given the claystone 3 

average permeability of 10-20 m2, it seems that drainage was not ensured in the tests of 4 

the Table run with speeds larger than 3µm/mn and drainage lengths larger than 40 mm. 5 

Conversely, the strain rate of 10-7 s-1 (speed of 0.12 µm/mn) adopted by Hu et al. [11] 6 

with a drainage length of 10 mm should ensure satisfactory drainage. 7 

Note that, in fully saturated clayey soil specimens, imperfect drainage leads to 8 

over-estimate the shear strength. When specimens are not fully saturated, things are 9 

different because water is under a suction state and generally keeps retained by the 10 

specimen with only air exchanges. The shear strength properties can then be over-11 

estimated by partial saturation. 12 

Fig. 1 presents a synthesis of the shear strength data from tests of Table 2 from 13 

the authors mentioned above, plotted in a diagram giving the shear stress at failure with 14 

respect to the constant confining Terzaghi effective stress applied during the test. One 15 

observes that the data of Chiarelli [7] at various depths with varying degree of 16 

saturation exhibit more dispersion and are located clearly above other data, probably 17 

because of partial saturation. The most coherent set of data is provided by Hu et al. [11] 18 

on specimens EST30446 from vertical borehole in the URL at a depth of around 521.5 19 

m, with good correspondence between drained and undrained saturated tests. The data 20 

of Zhang and Rothfuchs [9] come from both UCS tests and two multistage undrained 21 

tests on apparently saturated specimens (saturation procedure not described in the 22 

paper). In perfectly saturated clayey soils, undrained triaxial tests carried out at various 23 

confining stresses would provide a horizontal failure criterion providing only one value 24 

of undrained shear strength. It is not the case here with a slope comparable to that 25 
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obtained in drained conditions. Imperfect saturation could be a reason why the criterion 1 

is not horizontal. The data of Hu et al. [11] provide, adopting a Mohr Coulomb 2 

criterion, a friction angle around 21° close to what could be obtained from that of 3 

Zhang and Rothfuchs [9]. The data of Chiarelli [7], [8], more dispersed, would provide 4 

higher friction angles. 5 

The cohesion that would be obtained from Zhang and Rothfuchs [9]’s data (9 6 

MPa, Fig. 1) is higher than that from Hu et al. [11], possibly due to partial saturation as 7 

well. This is compatible with data on the shear strength properties of unsaturated soils 8 

[24] that evidenced little effect of suction on the friction angle but significant effect on 9 

the cohesion, the higher the suction, the higher the cohesion. 10 

There is little published data on the thermal behaviour of claystones. In terms of 11 

volume changes in clays, the important influence of overconsolidation, initially 12 

evidenced by Hueckel and Baldi [2] on Boom clay and Pontida clay, was confirmed by 13 

others (see for instance [4] on Boom clay and [5] on compacted clay). It is well 14 

established that normally consolidated clays (that never supported any overburden 15 

higher than what they supported when extracted) contract when heated under constant 16 

load whereas overconsolidated clays (that supported during their geologic history an 17 

overburden higher that what they were supporting when extracted, due for instance to 18 

erosion of upper layers) tend to exhibit elastic thermal expansion. A combined dilating-19 

contracting behaviour can be observed on slightly overconsolidated clays, like for 20 

instance Boom clay.  21 

The volume changes of the COx claystone submitted to temperature elevation 22 

under constant isotropic stress close to in-situ conditions was recently investigated in 23 

fully saturated and fully drained conditions by Mohajerani et al. [19] by using the 24 

hollow cylinder triaxial apparatus. They observed a thermal contraction, evidencing 25 
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behaviour comparable to that of normally consolidated clays. On the Opalinus clay, 1 

Monfared et al. [18] observed a dilating-contracting behaviour with expansion up to a 2 

temperature of 65° close to the maximum estimated temperature supported during its 3 

geological history (65-70°C). Expansion was followed by contraction at higher 4 

temperature (up to 80°C). Interestingly, a subsequent temperature cycle up to 80°C 5 

exhibited thermal expansion, evidencing a thermal hardening phenomenon. 6 

Zhang et al. [25] run at various temperatures (from 20 to 115°C) undrained 7 

triaxial shearing tests (strain rate 10-7 s-1) under constant 3 MPa confining stress on 8 

Opalinus clay specimens with bedding planes inclined of 30-40°. The specimens had an 9 

initial degree of saturation of 88%. Zhang et al. [25] observed in such conditions a more 10 

ductile behaviour at elevated temperature with clear decrease in strength due to 11 

temperature elevation (maximum shear strength of 20 MPa at 20°C and of 5 MPa at 12 

115°C). More recently, Zhang et al. [26] conducted triaxial micro-compression tests on 13 

unsaturated standard triaxial specimens submitted to a relative humidity of around 74%. 14 

They observed little sensitivity with respect to temperature in the stress strain curves 15 

obtained between 20 and 95°C under a confining stress of 15 MPa (around twice the in-16 

situ effective stress), whereas a decrease in peak stress (with small sensitivity in the 17 

elastic regime) was observed under a confining stress of 5 MPa (smaller than the in-situ 18 

stress). Masri et al. [27] conducted a series of what they called “pseudo-drained” 19 

triaxial shear tests at temperatures between 20 and 250°C under three confining 20 

pressures (5, 10 and 20 MPa) at an axial strain rate of 10-6 s-1 on specimens not fully 21 

saturated (degree of saturation not provided). Specimens of 37 mm in diameter and 22 

74 mm in height were bored with air pressure from cubic blocks extracted in the 23 

Tournemire URL (France). Their observations are comparable to that made by Zhang et 24 

al. [25] on Opalinus clay, with significantly more ductile behaviour observed at 25 
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elevated temperature and peak stress decreasing from 90 MPa at 20°C down to 40 MPa 1 

at 250°C (tests run with bedding perpendicular to specimen axis). 2 

The two previous works indicate that there is a suspicion of having an increase in 3 

ductility and a decrease in shear strength in claystones with elevated temperature. 4 

However, due to obvious experimental difficulties, these results are based on tests that 5 

have not been conducted under fully saturated and drained conditions. The necessity 6 

and interest of exploring this issue with well adapted devices and procedures, as 7 

proposed in this work, are hence confirmed.  8 

3. Experimental device 9 
 10 
3.1 Description 11 

A global overview of the hollow cylinder triaxial cell specially designed to investigate 12 

the thermo-hydro-mechanical behaviour of low permeability clays and claystones [16] 13 

is presented in Fig. 2a that schematically shows the triaxial cell containing the hollow 14 

cylinder specimen (external diameter Dext = 100 mm, internal diameter Dint = 60 mm, 15 

height H = 70-80 mm). Note that the same confining pressure is applied along both the 16 

external and internal lateral faces of the specimen thanks to a connection between these 17 

two volumes. As shown in Fig. 2a-b, a major advantage of this device is provided by 18 

the two lateral drainages in the inner and outer walls of the hollow cylinder specimen. 19 

These drainages are made up of two geotextiles bands placed along the specimen, with 20 

no contact between the bands and the upper and lower drainages. These lateral 21 

drainages reduce the specimen drainage length down to half the thickness of the hollow 22 

cylinder, i.e. 10 mm. Satisfactory drainage conditions are achieved during mechanical 23 

and thermal loading provided the strain rate and temperature elevation rate is small 24 

enough. Numerical calculations carried out by Monfared et al. [18] showed that a stress 25 
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rate of 0.5 kPa/mn ensured satisfactory drainage in hollow cylinder specimens with 1 

permeability as low as 10-20 m2.  2 

The axial force is applied by using an integrated piston specially developed (Fig. 3 

2a). The displacements of the piston are controlled by a pressure-volume controller 4 

(maximum pressure of 60 MPa) connected to the upper chamber of the piston. The 5 

applied axial force is directly measured by a local immersed force sensor fixed at the 6 

bottom end of the piston. It can also be estimated from the pressure exerted and 7 

measured by the PVC. 8 

Fig. 2b shows a schematic view of the hydraulic connections between the 9 

specimen, the pressure-volume controllers (PVC) and the pressure transducers (PT). 10 

PVC1 is used to apply the confining pressure whereas the other three PVCs are used to 11 

apply and control the pore fluid pressure. The device also comprises a system used to 12 

monitor local strains composed of two axial and four radial local displacement 13 

transducers (LVDTs, precision ± 1µm, Fig. 2c).  14 

The heating system consists of a heating electric belt placed around the cell with 15 

a temperature regulator with a precision of ±0.1°C. Temperature is measured inside the 16 

cell close to the specimen by a thermocouple. The cell is covered by insulating layer in 17 

order to limit heat exchanges with the environment. 18 

3.2. Preliminary resaturation procedure 19 

As shown by Monfared et al. [16], an interesting feature of the hollow cylinder 20 

triaxial cell is its ability to ensure good initial saturation of specimens of very low 21 

permeability (around 10-20 m2 in the case of the COx claystone) within a reasonable 22 

period of time thanks to a drainage path equal to half the thickness of the hollow 23 

cylinder. Proper preliminary resaturation of specimens that have been desaturated 24 

during coring, conservation, transport and machining in the laboratory is essential. The 25 
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initial degree of saturation of the specimens appears to be an important parameter with 1 

respect to specimen quality.  2 

As recalled by Delage et al. [28] on the Boom clay, Monfared et al. [18] on the 3 

Opalinus clay and Mohajerani et al. [29] on the COx claystone, it is important to 4 

resaturate specimens of swelling clays under stress conditions close to in-situ ones in 5 

order to avoid further perturbation due to swelling during hydration. The in-situ state of 6 

stress at the level of the Bure URL has been investigated in detail by Wileveau et al. 7 

[30] who provided the following values: vertical total stress σv = 12.7 MPa, minor 8 

horizontal total stress σh = 12.4 MPa and major horizontal total stress σH = 16.2 MPa, 9 

situ pore pressure u = 4.7 MPa. Mohajerani et al. [29] used a confining stress of 12 10 

MPa and a pore pressure of 4 MPa, resulting in a Terzaghi effective stress of 8 MPa. So 11 

as to reduce the risk of leaks due to possible perforation of the neoprene jacket under 12 

high stresses, it was preferred here to adopt the same Terzaghi 8 MPa effective stress 13 

value with lower values, i.e. a 9 MPa confining pressure and a 1 MPa pore pressure.  14 

Fig. 3 shows the volume changes calculated from the water injected from the back 15 

pressure PVCs compared to that monitored by local LVDT measurements during the 16 

saturation phase of tests T3 (specimen EST28514, porosity φ  = 17.6%, initial degree of 17 

saturation Sri = 85%) and T6 (specimen EST45407, φ = 13.5%, Sri = 39%). The curves 18 

show that the stabilization of the water injected and of the volume changes derived 19 

from the local LVDTs occurred after two days in both cases. The higher volume change 20 

obtained from the water injected from the PVC is due to the effect of the water volume 21 

needed to saturate the porous elements in contact with the specimen, i.e. the lateral 22 

geotextiles and the upper and lower porous discs. One can also observe that the water 23 

injected from PVCs in test T6 (7.4%, Sri = 39%, Fig. 3b) is significantly larger than that 24 

injected in test T3 (2.3%, Sri = 85%, Fig. 3a) because of the significantly smaller initial 25 
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degree of saturation in T6. A slightly larger swelling is monitored by the LVDTs in test 1 

T3 (1.18% compared to 1.04% for T6), perhaps linked to the difference in clay fraction 2 

between both specimens, with a larger clay fraction in the more porous T3 specimen 3 

(porosity 17.6%).  4 

3.3. Radial permeability tests  5 

Steady state permeability measurements were carried out by applying a radial 6 

pressure gradient across the specimen and by measuring inflow and outflow fluxes by 7 

using the PVCs. Permeability tests were carried out on specimens with an initial 8 

backpressure of 1 MPa by closing the valves connected to the top and bottom of the 9 

specimen and by applying a pressure excess of 0.5 MPa through the external geotextile 10 

while maintaining the internal pressure equal to 1 MPa.  11 

The radial intrinsic permeability kr (m2) was calculated using the flow rates as 12 

follows: 13 

uh
RRQk extw

r ∆
=

π
µ

2
)/ln( int              (1) 14 

where Q is the water flow; µw the water viscosity (equal to 8.90 x 10-4 Pa.s at 25°C and 15 

3.55 x 10-4 Pa.s at 80°C), Rext and Rint the external and internal specimen radius, 16 

respectively (Rext = 50 mm; Rint = 30 mm); h the flow height (h =50 mm); and ∆u the 17 

pressure difference between the inner and outer walls of the specimen (∆u = 0.5 MPa). 18 

3.4. Comments on the hollow cylinder device 19 

As commented previously, the advantages of the hollow cylinder device in term of both 20 

resaturation duration and drainage conditions are provided by the short drainage length 21 

equal to half the thickness of the cylinder (10 mm), thanks to the external and internal 22 

lateral drainages. Compared to small triaxial specimens that also have short drainage 23 

paths, the hollow cylinder configuration also allows the monitoring of axial and radial 24 
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local strains thanks to the larger specimen size. Also, this specific configuration allows 1 

perform radial permeability tests in sheared specimens by forcing the water flux in the 2 

network of shear bands. This ability has proven being quite useful in the investigation 3 

of the self-sealing properties of the Boom clay [17] and of the Opalinus clay [31]. 4 

However, based on the experience gained in the previous studies during the TIMODAZ 5 

European project (see Li et al. [32]) and also gained in previous investigations carried 6 

out on the COx clay [19], some difficulties have been met in link with the difficulty of 7 

machining 100 mm diameter hollow cylinder specimens (see Monfared et al. [17] for 8 

more details). This firstly requires large cores of 100 mm in diameter, which is 9 

expensive and not so common. Most cores presently extracted from the Bure URL by 10 

Andra have a diameter of 80 mm. In this study, good quality hollow cylinder specimens 11 

were obtained on a lathe specially devoted to trimming claystone specimen at CEA, the 12 

French research institute in nuclear energy. 13 

For this reason of availability of large diameter cores, the tests of this program 14 

had to be carried out on available specimens from different origins and initial 15 

characteristics, as shown in Table 1. 16 

3.5. Experimental program 17 

Five different loading paths were performed on six hollow cylinder specimens that were 18 

machined with the axis perpendicular to bedding to investigate some aspects of the 19 

thermo-hydro-mechanical behaviour of the COx claystone, as described in Table 3 and 20 

in Fig. 4. The same stress path was followed for tests T2 and T3. All specimens were 21 

previously saturated as described in section 3.2. Tests T1, T2, T3 and T4 were carried 22 

out along paths aimed at investigating the shear response at 25°C, as shown in Fig. 4. 23 

To do so, constant confining pressure tests were carried out at 25°C close to in-situ 24 
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condition (σ3 = 9 MPa, u = 1 MPa), around half the in-situ condition (σ3 = 5 MPa, 1 

u = 1 MPa) and twice the in-situ condition (σ3 = 17 MPa, u = 1 MPa). 2 

The same program was planned at 80°C but the test planned under twice the in-3 

situ stress condition failed due to leakage and no more hollow cylinder specimen was 4 

available to do it again. The tests under constant confining stress finally performed at 5 

80°C were test T5 on specimen EST45414 (like T1) under stress conditions close to in-6 

situ (σ3 = 9 MPa, u = 1 MPa) and test T5 on specimen EST 45407 under half the in-situ 7 

condition (σ3 = 5 MPa, u = 1 MPa).  8 

The tests carried out under half the in-situ condition are expected to swell during 9 

the stress release from the initial in-situ condition under which they have been 10 

resaturated (see Mohajerani et al. [33]). Particular care was put in following this 11 

swelling phase to make sure that the specimen reached equilibrium in water content. It 12 

seemed that this stress path was preferable to get a relevant response, compared to the 13 

standard stress path in which the specimen would have been directly submitted to the 14 

desired stress state prior to perform the resaturation procedure.  15 

Steady state permeability tests were also planned in some tests. Their interest is 16 

to provide further insight on the effects of temperature, compression and swelling on 17 

the permeability. Successful radial steady state permeability tests were performed in 18 

test T6 at points B (after resaturation), C (after swelling) and D (after heating the 19 

swelled specimen up to 80°C).  20 

4. Experimental results 21 
  22 
4.1. Test at 25°C 23 

Test T1, a drained shear test at constant confining stress close to the in-situ 24 

effective stress, was carried out with a constant axial displacement rate of 0.4 µm/mn 25 

while measuring the strength by using both the immersed force gauge and the pressure 26 
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measurement provided by the PVC applying the axial force. One observes in Fig. 5   the 1 

changes in axial, radial and volumetric strains with respect to the shear stress      (q = σ1 2 

- σ3). The curves show that the maximum value of the shear stress at peak is 23 MPa. A 3 

good correspondence was observed between the force measured by the immersed force 4 

gauge and that obtained from by the external measurement provided by the CPV 5 

pressure applied on the piston chamber (not given here). The peak is reached at 0.62% 6 

of local axial strain and 0.24% of local radial strain. Note that the two axial LVDTs 7 

transducers have not moved at the beginning of the test, up to 4 MPa of shear stress. 8 

Fig. 5 also shows that the axial strain at peak found by external LVDT is of the 9 

order of 1.45%, significantly higher than the 0.62% strain monitored by the local axial 10 

LVDT. This difference is due to the non-negligible effects of the compressibility of the 11 

whole system of axial stress application. It shows that Young's modulus obtained from 12 

external axial measurements might be significantly underestimated. 13 

 A contracting dilating behaviour is observed before reaching the peak with a 14 

transition observed at 16.5 MPa. The post-peak response is controlled by strain 15 

localisation and the response of the resulting discontinuity observed after failure. 16 

Indeed, one observes on the photographs of the specimen at the end of the test (Fig. 6) a 17 

network of shear bands with an inclination of 66° with respect to horizontal. One also 18 

notes the darker colour of the specimen due to full saturation, compared to the initial 19 

clearer grey colour of COx specimens. 20 

 Once resaturated under in-situ stress condition, the specimens of tests T2, T3 21 

and T6 were unloaded to a stress state close to half the in-situ one (σ3 – u = 4 MPa) in 22 

drained condition with the four drainages connected to a PCV imposing a backpressure 23 

u = 1 MPa. To do so, the confining pressure was decreased from 9 to 5 MPa at a slow 24 

rate of 1 kPa/mn. During this phase, the specimen volume monitored by LVDTs 25 
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transducers increased by 1.21%, 1.12% and 0.63% after 12 days for tests T2, T3 and T6 1 

respectively. In a standard fashion, more swelling was observed in the direction 2 

perpendicular to bedding as seen in Fig. 7. The larger swelling observed in the 3 

specimens of tests T2 and T3 of larger porosity (16.5 and 17.6% respectively) confirm 4 

the effect of a larger clay fraction, as previously mentioned in Section 3.2 when 5 

describing the resaturation phase.  6 

Specimens were afterwards maintained under a confining pressure of 5 MPa for 7 

a few days in order to see possible swelling under a constant mean effective stress 8 

lower than the in-situ one (~8 MPa). A volumetric swelling ratio of 0.013%/day, 9 

0.022%/day and 0.010%/day were measured by LVDTs for T2, T3 and T6 respectively.   10 

 The specimens of tests T2 (φ = 16.5%) and T3 (φ = 17.6%) were then sheared 11 

under a constant confining stress equal to half the in-situ effective stress (4MPa) in 12 

drained conditions with axial displacement rates of 0.5µm/mn and 0.4µm/mn 13 

respectively. Fig. 8 shows the axial, radial and volumetric strains changes with respect 14 

to shear stress for both specimens. A peak strength value of 10.5 MPa at axial and 15 

radial strains of 1.06% and 0.24% respectively is observed for T2. A peak strength 16 

value of 10.3 MPa at axial and radial strains of 1.01% and 0.33% respectively was 17 

obtained for T3, showing good repeatability in the response of those two specimens of 18 

comparable porosity.  19 

Fig. 9 presents the axial, radial and volumetric strain with respect to the shear 20 

stress for specimen of test T4 under a constant value of confining stress close to twice 21 

the in-situ one (8 MPa) with a peak strength at 25.5 MPa at axial and radial strains of 22 

1.15% and 0.60% respectively.  23 

 24 

 25 
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4.2. Drained heating test  1 

Once resaturated under an effective confining stress close to in-situ (cell 2 

pressure 3σ = 9 MPa, back pressure u = 1 MPa), a drained heating test (T5) was carried 3 

out under the same constant effective stress on specimen EST45414 (φ = 13%). A 4 

comparable test (T6) was carried out under half the in-situ effective stresses 5 

( 3σ = 5 MPa, u = 1 MPa) on specimen EST45407 (φ = 13.5%). To do so, the cell was 6 

slowly heated up to 80°C with a slow heating rate of 0.5°C/h [4, 18], keeping the four 7 

drainage open (top, bottom, lateral inner and outer).  8 

Fig. 10 presents the thermal local axial, radial and volumetric strains obtained 9 

from LVDT measurements during the drained heating test. As already observed by 10 

Mohajerani et al. [19], they show that the drained thermal volumetric response of the 11 

COx claystone under constant in-situ stress is characterized by a contraction occurring 12 

from the beginning of the test, with axial strains slightly larger than radial strains, 13 

showing slight degree of anisotropy in the thermal response. This anisotropy shows that 14 

the direction perpendicular to bedding (axial strains) is somewhat more sensitive than 15 

that parallel to bedding (radial strains). At 80°C, the axial strain is equal to 0.06% 16 

(characterised by a slope CT⊥ = 1.14 × 10-5 °C-1), compared to 0.06% for the radial strain 17 

(characterised by a slope CT⊥ = 1.06 × 10-5 °C-1), resulting in a slope of 3.16 × 10-5 °C-1 18 

for the volume changes.  19 

Fig. 11 shows the thermal response obtained during the drained heating test 20 

carried out under half the in-situ effective stresses (test T6). The changes in axial strain 21 

also indicate a continuous and almost linear contraction with a slope (perpendicular to 22 

bedding) CT⊥ = 0.96× 10-5 °C-1. In this test, no more change was observed in radial 23 

strain above 37°C, due to some friction effect in the radial LVDT. However, the 24 

changes in axial strain observed up to 37°C are comparable to the radial ones, with a 25 
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slope (parallel  to bedding) CT|| = 0.77 × 10-5 °C-1. Based on this value, a volumetric 1 

thermal contraction coefficient of 2.49 × 10-5 °C-1 is obtained. Thermal contraction 2 

appears to be slightly smaller under half in-situ stress conditions than under in-situ 3 

ones. 4 

4.3. Shear tests at 80°C 5 

Once the drained heating phase completed, specimens of tests T5 and T6 were 6 

submitted to drained shearing with a constant axial displacement rate of 0.3µm/min and 7 

0.4µm/min respectively. Fig. 12a shows that the shear stress at 80°C under in-situ stress 8 

condition reached a peak value of 20 MPa at 0.75% of axial strain and 0.31% of radial 9 

strain in test T5. The volume change is characterized by a contracting behaviour, at the 10 

beginning (up to a 14.6 MPa), followed by a dilation phase up to the peak. As 11 

previously, Fig. 12a shows that the axial strain found by an external measurement at 12 

peak is about 1.2%, significantly higher than that given by the local measurement.  13 

The shear test at 80°C carried out under half the in-situ effective stresses (4MPa) 14 

is presented in Fig. 12b. This curves shows that the shear stress reaches its maximum 15 

value of 16 MPa at 1.25% and 0.35% of axial and radial strain respectively.  16 

4.4. Failure criterion 17 

All the peak values (qmax) obtained in the previous tests are brought together in Fig. 13 18 

together with the data of Hu et al. [11] that also concern fully saturated and drained 19 

tests. The tests run at 25°C on three specimens with a porosity of 16-17% are located 20 

along a line parallel to that obtained at 80°C on specimens with porosity around 13%. 21 

There is unfortunately only one point at 25°C for a specimen with porosity around 13%. 22 

The failure points at 80°C obtained under in-situ effective stress from a specimen with 23 

porosity close to 13% is located slightly below that at 25°C. This set of data will be 24 

further commented in the Discussion section. 25 
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4.5. Radial permeability tests 1 

Radial permeability tests were carried out in some cases to investigate the effects of 2 

volume changes and of temperature on water transport. Given that specimens were 3 

machined with axis perpendicular to bedding, the flow of water during radial 4 

permeability tests is governed by the permeability parallel to bedding. As described in 5 

Section 3.3, tests were carried out by applying a 1.5 MPa pore pressure on the external 6 

lateral face of the hollow cylinder while maintaining the pressure on the internal face 7 

equal to the initial back pressure of 1 MPa. The confining pressure was kept equal to 8 

9 MPa.  9 

The inflow and outflow curves monitored by the upstream and downstream 10 

PVCs for the test after resaturation under in-situ stress conditions of the specimen of 11 

test T6 (porosity 13.6%) are presented in Fig. 14 (in which the Q final inflow and 12 

outflow are indicated). Actually, a tiny leak was observed on the upstream PVC when 13 

bringing back the pressure from 1.5 to 1 MPa at the end of the test. This leak (estimated 14 

by 23% of the monitored inflow at point B) was accounted for and inflow curves 15 

corrected accordingly (note however that the correction was made under 1 MPa 16 

whereas tests were carried out under 1.5 MPa). Less confidence is hence given to 17 

inflow curves compared to outflow curve that were not affected by any leak. 18 

Fig. 14 shows that, once the upstream injection starts, it was necessary to wait 19 

for 30 minutes before monitoring any outflow with the downstream PVC. This period 20 

of time was necessary to install steady state conditions and to reach the new effective 21 

stress state resulting from the 1.5 MPa pore pressure exerted along the external face of 22 

the specimen. By applying Darcy’s law on the outflow observed at the end of test 23 

(Q = 3.35 × 10-12 m3/s), a radial permeability of 0.9 × 10-20 m2 is obtained. That 24 

obtained from the inflow value (Q = 3.88 × 10-12 m3/s) is close, although slightly larger 25 
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(k = 1.1 × 10-20 m2), confirming the good quality of the measurement (with satisfactory 1 

correction of the upstream leak).    2 

Fig. 14b shows the changes in volume obtained from water exchanges 3 

(calculated from the upstream and downstream PVCs data) and from local LVDTs 4 

measurements. For some reason, the two curves are not in good correspondence during 5 

the first 14 hours with LVDTs indicating fast swelling during the first two hours. Both 6 

curves afterwards correspond and indicate that the specimen slightly swells (0.034% 7 

after 27 hours with a final swelling rate of 4.3 × 10-4 h-1). The amount of water adsorbed 8 

during the test explains the slight difference between the inflow and outflow data, and 9 

between the two calculated permeabilities. 10 

Another radial permeability test was carried out in test T6 after releasing the 11 

confining stress to half the in-situ value to investigate the effect of the resulting 0.63% 12 

swelling (Point C, Fig. 4). Inflow and outflow data (Fig. 15a) are comparable to that 13 

observed above with no outflow during the first hour, providing at the end of test radial 14 

permeability values of 1.2×10-20 m2 and 1.6 × 10-20 m2, respectively. These values are 15 

slightly higher than before stress release and are related to the 0.63% swelling. The 16 

PVC volume change curve (Fig. 15b) provides a slightly larger volume change value 17 

than LVDTs at end of test. The final swelling rate is 5.9 × 10-4 h-1. 18 

The data of the permeability test finally carried out after drained heating (Point D, 19 

Fig. 4, test T6, thermal contraction 0.106%, see Fig. 11) are presented in Fig. 16 a and 20 

b. This test had to be stopped after only 7 hours with a final swelling rate of 3.7 × 10-3 21 

h-1. Even after a shorter period of time, swelling is close to 0.07%, i.e. almost twice that 22 

observed in the two previous tests at 25°C, indicating possible enhancing of swelling 23 

with elevated temperature. Compared to previous tests at 25°C, larger fluxes are 24 

obtained (Qinflow = 2.52 × 10-11 m3/s and Qoutflow = 1.58 × 10-11 m3/s). Here, the 25 
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difference between inflow and outflow is larger than previously. Given that the 1 

upstream leak correction done at 25°C could not be valid here, only the outflow curve 2 

is considered to provide an (intrinsic) permeability value equal to 1.8 × 10-20 m2. As 3 

further commented in the Discussion session, larger fluxes are related to the decrease in 4 

water viscosity. A larger permeability is observed at 80°C in spite of a slight porosity 5 

reduction. 6 

4. Discussion 7 

4.1 Elastic response 8 

 A series of triaxial tests have been conducted on COx claystone specimens 9 

along various thermo-hydro-mechanical paths (Fig. 4) in fully saturated and drained 10 

conditions by using the hollow cylinder device. Although all of the tests initially 11 

planned were not successful because of the technical difficulty of getting hollow 12 

cylinder specimens and of running hollow cylinder triaxial tests, some conclusions can 13 

be drawn from the data obtained.  14 

The various shear stress/axial strain curves obtained on specimens trimmed with axis 15 

perpendicular to bedding allow the determination of some elastic constants that partly 16 

describe the transverse isotropic elastic behaviour of the COx claystone. As described 17 

by Cheng et al. [34], the stress-strain elastic relationship for a transverse isotropic 18 

material is as follows: 19 
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with 032 == σσ dd  under “triaxial” conditions and where ν23 and E2 are the Poisson 21 

ratios and Young modulus in the plane of isotropy (2-3), and ν12, ν21 and E1 are the 22 
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Poisson ratio and Young modulus in the plane perpendicular to the plane of isotropy. 1 

The Young modulus and Poisson ratio perpendicular to bedding can be calculated by 2 

using the data of the drained triaxial test using Eq. (3) and Eq. (4). 3 
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From the data of Fig. 5 under a confining stress close to in-situ (8 MPa Terzaghi 6 

effective stress), a value E1 = 3.2 GPa is obtained from the shear stress-axial strain 7 

curve for a mobilisation of 0.1% of axial strain, with ν12 = 0.30 (Table 4). When the 8 

confining stress has been released close to half the in-situ one, values E1 = 1.5 GPa and 9 

1.3 GPa are deduced from tests T2 and T3 respectively with Poisson's ratio ν12 = 0.10 10 

in both cases (Fig. 8). Conversely, when the confining stress is increased to twice the 11 

in-situ stress (test T4, Fig. 9), values of Young modulus and Poisson's ratio of 5.5 GPa 12 

and 0.34, respectively, are obtained. 13 

At 80°C, the estimated values of the E1 Young's modulus and the ν12 Poisson ratio 14 

are E1 = 3.4 GPa and ν12 = 0.26, respectively, under a confining stress close to in-situ. 15 

Values E1 = 1.4 GPa and ν12 = 0.10, respectively, were obtained under a confinement of 16 

half the in-situ stress. 17 

All the values obtained at 25 and 80°C are plotted together in Fig. 17 that clearly shows 18 

that there is no effect of temperature on the elastic properties determined here (Young’s 19 

modulus E1 and Poisson coefficient ν12). Similar comparison has been drawn by 20 

Mohajerani et al. [19] from isotropic compression tests, showing no effect of 21 

temperature (80°C) on the elastic compression parameters. The Young’s modulus also 22 

regularly increases with the effective confining stress. It is important to recall that all 23 
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the points tested here started from previous saturation under in-situ stress, with the 1 

smaller confining stress at half in-situ stress (4 MPa) obtained by subsequent stress 2 

release (and mobilisation of swelling). The Poisson ratio ν12, equal to 0.30 at initial 3 

state under in-situ stress (8 MPa) decreases to 0.10 when the confining effective stress 4 

is released at 4 MPa, both at 25 and 80°C, confirming the independency of the elastic 5 

parameters with respect to temperature. Conversely, ν12 only slightly changes from 0.30 6 

to 0.34 when the confining effective stress is increased at 16 MPa. This could indicate 7 

that the decrease observed when releasing the effective confining stress could be related 8 

to the slight swelling mobilized, an hypothesis to further confirm. 9 

It seems difficult to compare the data obtained here with published data that 10 

appear to have generally been obtained based on other experimental procedure like for 11 

instance, for the Young modulus, from unconfined compression tests under not fully 12 

saturated conditions [13, 26]. Data on the Poisson ratio are less available. 13 

4.2 Thermal volume changes 14 

Two drained heating tests were performed to investigate the thermal volumetric 15 

response of the COx claystone under stress conditions close to in-situ (mean Terzaghi 16 

effective stress of 8 MPa) and to half the in-situ stress (mean Terzaghi effective stress 17 

of 4 MPa). They confirmed the contracting behaviour already evidenced by Mohajerani 18 

et al. [19], but with smaller contraction coefficient, as indicated in Table 5. Whereas 19 

Mohajerani et al. [19] observed a significantly anisotropic thermal response with 20 

thermal contraction coefficients of 3.15 and 6.50 × 10-5°C-1 parallel and perpendicular 21 

to bedding, respectively, the contraction observed here is less marked and less 22 

anisotropic with CT⊥ = 1.15 × 10-5°C-1 perpendicular to bedding and CT// = 1.06 × 10-5 23 

°C-1 parallel to bedding under in-situ stress. These values slightly decreased to 24 

CT⊥ = 0.96 × 10-5°C-1 and CT// = 0.77 × 10-5°C-1 under half in-situ stress. This smaller 25 



 27 

contraction under smaller stress is not surprising. A possible reason of the significantly 1 

smaller contraction observed here could come from the differences in origin and in 2 

porosity between the specimens, with Mohajerani et al.’s [19] specimen significantly 3 

more porous (17.9% compared to around 13% here). More porous samples have larger 4 

clay content and clay content is the driving force of thermal contraction, given that the 5 

grains of quartz and calcite contained in the clay matrix simultaneously expand, 6 

probably resulting in some thermal damage at the interface between the grains and the 7 

clay matrix.  8 

 The COx claystone is known to have supported a maximum temperature of 9 

50°C during its geological history [35]. Unlike what was observed in the Opalinus clay 10 

by Monfared et al. [18], one does not observe here an initial thermal expansion up to 11 

50°C. For some reason, the thermal hardening phenomenon observed on the Opalinus 12 

clay is not observed here. 13 

4.3 Shear strength and temperature effects 14 

Fig. 13 shows the values of peak strength (qmax) as a function of effective mean stress 15 

p’ for all of the tests carried out here, together with the data obtained by Hu et al. [11] 16 

at 25°C under fully saturated conditions. The porosity of the specimens is also 17 

mentioned, given that the specimens tested by Hu et al. [11] have a porosity of around 18 

13%. The Figure shows that the failure shear stress at 25°C are reasonably well 19 

organised with respect to their porosity, with good correspondence between tests T1 20 

(EST45414) under in-situ confining stress (T = 25°C, p’ = 8 MPa, φ = 13%, 21 

qfailure = 23 MPa) and the data obtained by Hu et al. [11] at a comparable value of 22 

porosity and same temperature. The failure data obtained at 25°C with the specimens of 23 

17% porosity are located below that at 13%, exhibiting smaller shear strength for more 24 

porous specimens, in a standard fashion. All tests at 25°C (including Hu et al. [11] data) 25 
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are aligned along parallel lines that define a friction angle of 21° equal to that proposed 1 

by Hu et al. [11]. There is a decrease in cohesion that makes the more porous specimen 2 

weaker with a cohesion of 1.94 MPa at 17% compared to 4.2 MPa at 13%. Note 3 

however that the shear strength data obtained here appear to be somewhat small with 4 

respect to the data of undrained compression tests carried out for Andra by various 5 

laboratories that provided undrained compression strengths (UCS) around 20 MPa 6 

(Conil, personal communication). Indeed, Pham et al. [13] reported a UCS of 28 MPa 7 

on a specimen not fully saturated tested under a 98% relative humidity. A possibility of 8 

underestimating the shear strength by the size and shape of the specimens tested 9 

(hollow cylinder here and small cylinder for Hu et al. [11]) might be considered.  10 

 The two points obtained at a porosity of 13% at a temperature of 80°C are 11 

located slightly below the points at the same porosity and 25°C, indicating a slight 12 

reduction in shear strength due to temperature. The slight difference observed is 13 

actually in the range of the dispersion observed when testing COx specimens, and this 14 

preliminary observation is of course to be confirmed by further fully saturated and 15 

drained tests. This trend is however in agreement with previous suggestions taken from 16 

the works of Zhang et al. [25] on the Opalinus clay and of Masri et al. [27] on the 17 

Tournemire shale.  18 

4.4 Permeability tests 19 

Steady state radial permeability tests were performed by imposing a pore pressure 20 

increase (∆u = 0.5 MPa) on the outer face while maintaining the pore pressure equal to 21 

1 MPa on the inner face of the hollow specimen. Water exchanges were monitored by 22 

using the PVCs and LVDTs were used to monitor local volume changes. In spite of 23 

some differences observed in the transient phase during the set up of the new effective 24 

stress conditions resulting from the application of the 1.5 MPa external pore pressure, 25 
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the comparison of volume change data from LVDT measurements and from the water 1 

exchanges monitored by the PVCs was reasonably satisfactory (in spite of a tiny leak), 2 

providing some confidence in the permeability values obtained.  3 

The radial permeability values (parallel to bedding) obtained at various stages of 4 

test T6 (points B, C and D in Fig. 4) are presented in Table 6. The values of 5 

permeability adopted and discussed below are that obtained from the outflow curves. A 6 

reference permeability value of 0.9 x 10-20 m2 was obtained under in-situ stress 7 

conditions, a value in the range of magnitude of published data (more often measured 8 

along the axial direction) for the COx claystone, between 10-20 and 10-22 m2 m2 [33, 36, 9 

37, 38].  10 

A slight change from 0.9 × 10-20 m2 to 1.2 × 10-20 m2 was obtained after the 11 

0.63% swelling due to stress release from in-situ to half the in-situ stress. After drained 12 

heating at 80°C (with a thermal contraction of 0.12% followed by a swelling of 0.07%), 13 

larger inflow and outflow were observed due to the increase in water viscosity (from 14 

8.90 x 10-4 Pa.s at 25°C to 3.55 x 10-4 Pa.s at 80°C). The permeability at 80°C appeared 15 

to be slightly larger and equal to 1.8 × 10-20 m2. Although these first results should be 16 

confirmed, they show that the permeability is not totally independent of temperature, 17 

unlike what was previously observed on the Boom clay [39], with a slight increase with 18 

temperature. Note that this tests also showed an enhancement of swelling with 19 

temperature, with around twice more swelling at 80°C compared to 25°C under same 20 

stress conditions. 21 

 22 
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 24 

 25 
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5. Conclusion 1 
 2 

Published data on the shear strength properties of the Callovo-Oxfordian 3 

claystone exhibit some variability due to the natural variability of the deposit, to the 4 

changes of the claystone characteristics with depth and also to the testing procedures 5 

adopted. An inspection of published data indeed showed that the specimens tested came 6 

from various boreholes and from various depths and that the testing procedures were 7 

variable in terms of specimen saturation and drainage conditions. It is well known that 8 

partial saturation and drainage overestimate the shear strength properties of the COx 9 

claystone, and this seems to be somewhat linked to the variability observed in the 10 

published data. 11 

Few data are available about the thermal response of the COx claystone. The 12 

tests carried out here were performed after careful saturation under in-situ stress 13 

conditions and in fully drained conditions thanks to the use of a hollow cylinder triaxial 14 

apparatus with reduced drainage length specially designed for testing low permeability 15 

rocks. Triaxial tests were carried out at 25 and 80°C to get some preliminary insights on 16 

the effects of temperature on the shear strength properties of the claystone. Also, some 17 

steady state radial permeability tests were carried out at 25 and 80°C to investigate the 18 

effect of temperature on the claystone permeability. 19 

Although somewhat small with respect to the previous UCS data gathered by 20 

Andra, the shear strength data obtained here are in good agreement with that of tests 21 

also carried out in fully saturated and drained conditions by Hu et al. [11] on specimens 22 

of the same porosity (13%). Some effects of the porosity have also been evidenced, 23 

with smaller shear strength values obtained on specimens with higher porosity (17%). 24 

The thermal contraction of the COx claystone upon heating under constant in-situ stress 25 

evidenced by Mohajerani et al. [19] was confirmed. Subsequent shear tests at 80°C 26 
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showed little changes of the elastic parameters with temperature, confirming the 1 

findings of Mohajerani et al. [19]. The preliminary results obtained in this work 2 

evidenced a more ductile response and slightly smaller shear strengths of the COx 3 

claystone at elevated temperature, in agreement with the few available published data 4 

on shales and claystones. Finally, radial permeability tests performed parallel to 5 

bedding demonstrated that the intrinsic permeability did not change significantly with 6 

elevated temperature, the larger flow observed at 80°C during the test being mainly due 7 

to the decrease in viscosity of water.  8 

The preliminary data obtained here on temperature effects on the shear strength 9 

behaviour of the COx claystone need to be further confirmed by complementary tests, 10 

they however confirm some trends already observed on the COx claystone and on other 11 

clay rocks. A better understanding of the thermo-hydro-mechanical response of 12 

claystone will allow a better understanding and modelling of the coupled THM actions 13 

that prevail in the close field once the exothermic wastes have been placed.  14 

 15 
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Table 1. Initial characteristics of the tested specimens. 
 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Specimen  Ref. Core Depth 
(m) 

Height  
(mm) 

Water content  
(%) 

Dry unit mass 
 (Mg/m3) 

Porosity 
(%) 

Degree of 
saturation (%) 

Suction 
(MPa) 

S1 EST45414 498 73.13 2.11 2.35 13.0 38 109 
S2 EST30734 612 73.95 5.88 2.26 16.5 80 31 
S3 EST28514 477 75.00 6.76 2.21 17.6 85  
S4 EST28518 479 71.02 6.10 2.20 17.8 80 34 
S5 EST45407 499 72.60 2.27 2.34 13.5 39  

Table 1



Table 2. Characteristics published tests about the shear properties of the COx claystone. 
 

Authors N° 
Specimen 

Depth 
(m) 

Spec. 
height 
(mm) 

Spec. 
diameter 
(mm) 

Porosity (%) Water 
content 
(%) 

Degree of 
saturation 
(%) 

Type of 
test 

Testing rate  
(s-1) 
µm/mn 
Drainage 
length H 

Chiarelli 
(2000), 
Chiarelli et 
al. (2003) 

EST 
02172 

451-
467 

100 35 11.5* 
Est. 15.3 

4 – 5.7 73 – 93 Triaxial 6 × 10-6 

3.6µm/mn 
H = 50 mm  

Chiarelli 
(2000), 
Chiarelli et 
al. (2003) 

EST 
02277 

469 100 35 11 – 13.5* 
Est. 

14.6 – 18 

4 – 7 85 – 100 
 

Triaxial 6 × 10-6  
3.6µm/mn 
H = 50 mm 

Chiarelli 
(2000), 
Chiarelli et 
al. (2003) 

EST 
02354 

482 100 35 11.8 – 13.8* 
Est. 

15.7 – 18.4 
 

4 – 7 
 

90 – 100 Triaxial 6 × 10-6  
3.6µm/mn 
H = 50 mm 

Zhang & 
Rothfuchs 
(2004) 

EST 
05677-02 

487 80 40 16.1 7.1 99 UCS 6.5 × 10-6 

3.1µm/mn 
H = 40 mm 

Zhang & 
Rothfuchs 
(2004) 

EST 
05677-04 

487 80 40 16.1 2.8 39 UCS 6.5 × 10-6 

3.1µm/mn 
H =40 mm 

Zhang & 
Rothfuchs 
(2004) 

EST 
05677-01 

487 98 50 16.1 7.1 99 Undrained 
triaxial 
multistage 

6.5 × 10-6 

3.8µm/mn 
H =49 mm 

 
Pham et al. 
(2007) 

EST 
205D 

451 72 36 10 – 14 
 

1.65 –   
5.24 

Various Sr UCS Not given 

 (2014a) EST 
30446 

521.5 20 20 11.8 6.2 100 Triaxial 10-7 s-1 

0.12µm/mn 

H = 10 mm 
 
* porosity value obtained by Chiarelli et al. (2003) from mercury intrusion porosimetry tests. Estimated total porosity values 
are given in italics based on our observation that 25% of the total porosity was not intruded at 200 MPa in the tests that we 
performed on COx specimens at 490 m. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2



 
Table 3. Experimental programme. 
 
Test Specimen  Ref. Core Programme Permeability test 
T1 S1 EST45414 Shear under σ' = 8MPa  at 25°C  [B-C] - 

T2 S2 EST30734 Isotropic unloading to σ' = 4MPa  (swelling)  
[B-C], shear at 25°C [C-D] - 

T3 S3 EST28514 Isotropic unloading to σ' = 4MPa  (swelling)   
[B-C], shear at 25°C [C-D] - 

T4 S4 EST28518 Drained isotropic compression up to σ' = 16MPa  
[B-C], shear at 25°C [C-D] - 

T5 S1 EST45414 Drained heating up to 80°C [B-C], shear under 
σ' = 8MPa  at 80°C  [C-D] - 

T6 S5 EST45407 Isotropic unloading to σ' = 4MPa [B-C], drained 
heating up to 80°C [B-C], shear at 80°C  [C-D] [B], [C], [D] 
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Table 4. Evolution of the elastic parameters.  
 
Test Ref. Core Porosity (%) σ' (MPa) Temperature (°C) qmax (MPa) E1 (GPa) ν12 
T1 EST45414 13.0 8 25 23.1 3.2 0.30 
T2 EST30734 16.5 4 25 10.5 1.5 0.10 
T3 EST28514 17.6 4 25 10.3 1.3 0.10 
T4 EST28518 17.8 16 25 24.6 5.5 0.34 
T5 EST45414 13.0 8 80 20.0 3.4 0.26 
T6 EST45407 13.5 4 80 16.1 1.4 0.10 
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Table 5. Thermal contraction coefficients.   
 

Specimen Ref. Core σ' (MPa) Depth 
(m) 

Porosity 
(%) CT//  (x 10-5 °C-1) CT⊥  (x 10-5 °C-1) 

S5 EST45414 8 491 13.0 1.06 1.15 
S6 EST45407 4 491 13.5 0.77 0.96 
Mohajerani et al. (2014) EST25820  8 480 17.9 3.15 6.50 
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Table 6. Effect of swelling and temperature on the COx claystone permeability (T6, porosity 13.5 %). 
 
State Test Ref. Core kr inflow (m

2
) kr outflow (m

2
) 

After resaturation, 25°C, [B] T6 EST45407 1.1 x 10-20 0.9 x 10-20 
After swelling, 25°C, [C] T6 EST45407 1.6 x 10-20 1.4 x 10-20 
After heating, 80°C, [D] T6 EST45407 2.9 x 10-20 1.8 x 10-20 
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Fig. 1. Published shear strength data of the COx claystone.  
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Fig. 2.  (a): Hollow cylinder triaxial cell, (b): Scheme of the hydraulic connections, (c): Local strain 
measurement system. 
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Fig. 3. Volume changes and water exchanges during resaturation phase; (a) test T3, (b) test T6. 
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Fig. 4. Thermo-hydro-mechanical paths followed during the tests carried out. 
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Fig. 5. Drained shear test under in-situ effective stresses at 25°C, test T1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5



 
 
Fig. 6. COx claystone at the end of the test T1. 
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Fig. 7.  Drained isotropic unloading phase, (a): T2, (b): T3, (c): T6. 
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Fig. 8. Drained shear test under half in-situ effective stresses at 25°C, (a): test T2, (b): test T3. 
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Fig. 9. Drained shear test under twice in-situ effective stresses at 25°C, test T4. 
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Fig. 10. Axial, radial and volumetric strains measured during a drained heating test (0.5°C/h) under in-
situ effective stresses, test T5. 
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Fig. 11. Axial, radial and volumetric strains measured during a drained heating under half in-situ 
effective stresses, test T6. 
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Fig. 12. Drained shear test at 80°C, (a): test T5, (b): test T6. 
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Fig. 13. Shear strength of all tests carried out in the plan q-p'. 
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Fig. 14. Radial permeability test at point B, after resaturation T6, (a): inflow and outflow, (b): volume 
change. 
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Fig. 15. Radial permeability test at point C, after swelling T6, (a): inflow and outflow, (b): volume 
change. 
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Fig. 16. Radial permeability test at point D, after heating T6, (a): inflow and outflow, (b): volume 
change.  
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Fig. 17.  Elastic parameters, (a): Young’s modulus, (b): Poisson coefficient. 
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