
HAL Id: hal-02075623
https://enpc.hal.science/hal-02075623

Submitted on 22 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Algorithms for Sparse Reduced-Rank Regression
Benjamin Dubois, Jean-François Delmas, Guillaume Obozinski

To cite this version:
Benjamin Dubois, Jean-François Delmas, Guillaume Obozinski. Fast Algorithms for Sparse Reduced-
Rank Regression. Proceedings of Machine Learning Research, 2019, Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics, 89, pp.2415-2424. �hal-02075623�

https://enpc.hal.science/hal-02075623
https://hal.archives-ouvertes.fr


Fast Algorithms for Sparse Reduced-Rank Regression

Benjamin Dubois∗,† Jean-François Delmas∗ Guillaume Obozinski†
∗CERMICS, École des Ponts, UPE, Champs-sur-Marne, France

†LIGM, UMR 8049, École des Ponts, UPEM, ESIEE Paris, CNRS, UPE, Champs-sur-Marne, France

Abstract

We consider a reformulation of Reduced-Rank
Regression (RRR) and Sparse Reduced-Rank
Regression (SRRR) as a non-convex non-
differentiable function of a single of the two
matrices usually introduced to parametrize
low-rank matrix learning problems. We study
the behavior of proximal gradient algorithms
for the minimization of the objective. In par-
ticular, based on an analysis of the geometry
of the problem, we establish that a proximal
Polyak-Łojasiewicz inequality is satisfied in
a neighborhood of the set of optima under
a condition on the regularization parameter.
We consequently derive linear convergence
rates for the proximal gradient descent with
line search and for related algorithms in a
neighborhood of the optima. Our experiments
show that our formulation leads to much faster
learning algorithms for RRR and especially
for SRRR.

1 Introduction

In matrix learning problems, an effective way of reduc-
ing the number of degrees of freedom is to constrain the
rank of the coefficient matrix to be learned. Low-rank
constraints lead however to non-convex optimization
problems for which the structure of critical points and
the behavior of standard optimization algorithms, like
gradient descent, stochastic block coordinate gradient
descent and their proximal counterparts, are difficult
to analyze. These difficulties have lead researchers to
either use these algorithms without guarantee or to
consider convex relaxations in which the low-rank con-
straint is replaced by a trace-norm constraint or penalty.
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In the last few years however, a better understanding
of the geometry of these problems (Li et al., 2016; Zhu
et al., 2017b), new tools from non-convex analysis (At-
touch and Bolte, 2009; Frankel et al., 2015; Karimi
et al., 2016; Csiba and Richtárik, 2017; Khamaru and
Wainwright, 2018) as well as results on the behavior of
standard algorithms around saddle points (Lee et al.,
2017) were developed under regularity assumptions to
analyze their convergence and eventually prove rates
of convergence.

Formulations that require to learn a low-rank matrix or
its factors appear in many problems in machine learn-
ing, from variants of Principal Components Analysis
and Canonical Correlation Analysis, to matrix com-
pletion problems and multi-task learning formulations.
Reduced-Rank Regression (RRR) is a fundamental
model of this family. It corresponds to the multiple
outputs linear regression in which all the vectors of pa-
rameters associated with the different dimensions are
constrained to lie in a space of dimension r ∈ N∗. Pre-
cisely, if X ∈ Rn,p is a design matrix and Y ∈ Rn,k has
columns corresponding to the multiple tasks, then the
problem is usually formulated with || · ||F the Frobenius
norm as

min
W∈Rp,k: rank(W )≤r

1

2
||Y −XW ||2F . (1)

The solution of Problem (1) can be obtained in closed
form (Velu and Reinsel, 2013) and requires to project
the usual multivariate linear regression parameter esti-
mate on the subspace spanned by the top right singular
vectors of the matrix (XTX)−1/2XTY .

Sparse Reduced-Rank Regression (SRRR) is a variant
in which the objective is regularized by the group-Lasso
norm ||W ||1,2 =

∑
i(
∑
jW

2
ij)

1/2, in order to induce row-
wise sparsity in the matrix W , which corresponds to
simultaneous variable selection for all tasks. Given
λ > 0, the optimization problem takes the form

min
W∈Rp,k: rank(W )≤r

1

2
||Y −XW ||2F + λ||W ||1,2. (2)

For this formulation, there is no closed form solution
anymore, and the conceptually simple algorithms that
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have been proposed to solve Problem (2) are not so
computationally efficient.

In the last decade, many optimization problems of the
form

min
W∈Rp,k: rank(W )≤r

F(W ) (3)

with F a convex function have been tackled via the
convex relaxation obtained by replacing the rank con-
straint with a constraint or a regularization on the
trace-norm ||W ||∗; unfortunately, these formulations
often lead to expensive algorithms and the relaxation
induces a bias. A recent literature revisited a number
of these problems based on an explicit parameterization
of the low-rank matrix, as biconvex problems of the
form

min
U∈Rp,r, V ∈Rk,r

F(UV T ). (4)

In particular, it is natural to formulate Problem (1)
and Problem (2) in this form.

In this paper, we additionally impose V TV = Ir with-
out loss of generality and we reformulate the SRRR
problem as a non-convex non-differentiable optimiza-
tion problem of a single thin matrix U . Based on
the geometry of the objective (see Corollary 6), we es-
tablish in Corollary 9 a generalized Polyak-Łojasewicz
inequality (Polyak, 1963; Karimi et al., 2016) in a neigh-
borhood of the minima which can be leveraged to show
in Corollary 10 asymptotic linear convergence of the
proximal gradient algorithm and of stochastic block co-
ordinate proximal descent algorithms. Our results are
also relevant to solve very large-scale RRR instances
for which the direct computation of the closed form
solution would not be possible.

The paper is structured as follows. In Section 2, we
discuss related work. In Section 3, we reformulate the
RRR/SRRR problems. In Section 4, we obtain global
convergence results. To analyze the local convergence
in Section 5, we review the structure of RRR and es-
tablish properties based on the orthogonal invariance
of the objective as well as the convexity of its restric-
tion on certain cones in a neighborhood of the optima.
Thus, we obtain a Polyak-Łojasiewicz inequality and a
generalized Polyak-Łojasiewicz inequality respectively
for RRR and SRRR in a neighborhood of the global
minima. Finally Section 6 illustrates with numerical
experiments the performances of the proposed algo-
rithms.

2 Related Work

Velu and Reinsel (2013) studied Problem (1) and
showed that it is one of the few low-rank matrix prob-
lems which has a closed form solution. Baldi and
Hornik (1989) studied thoroughly the biconvex version

of Problem (1) and identified its critical points to show
that its local minima are global. Bunea et al. (2011,
2012); Chen and Huang (2012); Ma and Sun (2014);
Mukherjee et al. (2015); She (2017) considered Prob-
lem (2) and highlighted the statistical properties of
the estimator. The algorithms proposed in these pa-
pers all consist essentially in optimizing alternatingly
with respect to U and V an objective of the form (4)
(and more precisely the objective (5) introduced in
Section 3) under the constraint V TV = Ir. The full
optimization w.r.t. V requires to compute an SVD of
the matrix Y TXU ∈ Rk,r which is of reasonable size,
but the full optimization w.r.t. U requires to solve a
full group-Lasso problem.

Among others, iterative first-order algorithms that are
classical for the jointly convex setting may be applied
to the non-convex Problem (4). Until recently, pre-
cise convergence guarantees were relatively rare but
the observation of good empirical rates of convergence
motivated a finer analysis. In particular, a number of
recent papers established stronger theoretical results
for these algorithms in the smooth non-convex case.
Notably, Jain et al. (2017) obtained the first global lin-
ear rate of convergence for the very particular case of
the matrix square-root computation. For more general
biconvex formulations, Park et al. (2016) and Wang
et al. (2016) established convergence rate guarantees
for the gradient descent algorithm for Problem (4) pro-
vided an appropriate initialization is used and penalties
such as 1

4 ||UTU − V TV ||2F are added to the objective
as regularizers.

As a consequence of the aforementioned performances,
there was a regain of interest for the biconvex problems
like (4) and their geometry has been studied in numer-
ous papers. Bhojanapalli et al. (2016); Boumal et al.
(2016); Ge et al. (2016, 2017); Kawaguchi (2016); Li
et al. (2018, 2017); Zhu et al. (2017a) studied critical
points and made use of the strict saddle property to
show global convergence results for gradient descent
and stochastic variants. Some of these works define a
partition of the space and characterize the behavior of
gradient descent in each region (Li et al., 2016; Zhu
et al., 2017b).

Besides, it was shown recently that appropriate first-
order algorithms cannot converge to saddle points when
the curvature of the objective is strict around them (Lee
et al., 2017; Panageas and Piliouras, 2016; Sun et al.,
2015). These algorithms actually spend only a limited
amount of time near the saddle points if the Hessian is
Lipschitz (Du et al., 2017; Jin et al., 2017). However,
these papers do not provide general convergence rate
results, in particular not in the non-differentiable case.

From the performances of classical first-order algo-
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rithms originated attempts to characterize convergence
and to possibly prove rates based on the local geometry
of non-convex objective functions around minima. In
particular, Karimi et al. (2016) reviewed and provided
a unified point of view of the recent literature on the
Polyak-Łojasiewicz inequality (Polyak, 1963). This
type of results was leveraged by Csiba and Richtárik
(2017) to prove convergence rates. A parallel thread of
research focused on the Kurdyka-Łojasiewicz inequal-
ity (KŁ), with the motivation that all semi-algebraic
functions satisfy it. Attouch and Bolte (2009); Attouch
et al. (2013); Frankel et al. (2015); Ochs et al. (2014)
were able to characterize asymptotic convergence rates
for the forward-backward algorithm under the KŁ in-
equality. These types of results were extended for block
coordinate descent schemes in Attouch et al. (2010);
Bolte et al. (2014); Xu and Yin (2017); Nikolova and
Tan (2017), and for accelerated proximal descent algo-
rithms in Chouzenoux et al. (2014); Li and Lin (2015).
However, in general, it remains difficult to prove a spe-
cific rate for a given problem, because the exact rate
depends on the best exponent that can be obtained
in the KŁ inequality, and with the exception of some
results provided in Li and Pong (2017), determining
this exponent remains difficult.

3 Reformulation and algorithm

3.1 A new formulation for RRR and SRRR
with a single thin matrix U

We reformulate the biconvex version of SRRR

min
U∈Rp,r, V ∈Rk,r

1

2
||Y −XUV T ||2F + λ||UV T ||1,2, (5)

by eliminating V as follows. First, we can impose
V TV = Ir as in Chen and Huang (2012) without loss
of generality. Then, expanding the Frobenius norm and
using the invariance of the norms to the transformation
U 7→ UV T with V ∈ Rk,r such that V TV = Ir, the
objective becomes 1

2 ||XU ||2F − 〈Y,XUV T 〉 + λ||U ||1,2
where 〈·, ·〉 is the Frobenius inner product. The value
of the orthogonal Procrustes problem

max
V ∈Rk,r:V TV=Ir

〈Y,XUV T 〉

is the trace-norm ||Y TXU ||∗ (cf. Fact 25 in Ap-
pendix C). So, letting f(U) := f1(U)− f2(U) with

f1(U) =
1

2
||XU ||2F and f2(U) = ||Y TXU ||∗

and Fλ(U) := f(U) + λ||U ||1,2, RRR and SRRR are
respectively reformulated as

min
U∈Rp,r

f(U), (RRR)

min
U∈Rp,r

Fλ(U). (SRRR)

The objectives, as differences of convex functions, are
clearly non-convex. However, they are still orthogonal-
invariant i.e. for any U ∈ Rp,r and R ∈ Rr,r
such that RTR = Ir, we have f(UR) = f(U) and
Fλ(UR) = Fλ(U). Note that the above derivations
would still be valid if we replaced the row-wise group-
Lasso || · ||1,2 by any regularizer which is invariant when
the argument is multiplied on the right by an orthogo-
nal matrix.

Also, note that although f involves a trace-norm, its ar-
gument, Y TXU , is of dimensions k× r while, in convex
relaxations of low-rank formulations like Problem (3),
the rank constraint is substituted with a trace-norm
regularizer ||W ||∗ that is computed for a typically large
matrix W of dimensions p× k.

3.2 Characterization of the optima of the
classical RRR formulation

Velu and Reinsel (2013) characterized the closed form
solution of Problem (1) when XTX is invertible as
follows. Let W ∗ := (XTX)−1XTY denote the full-
rank least squares estimator. Let PSQT be the reduced
singular value decomposition of (XTX)−

1
2XTY . If the

latter has rank ` then P ∈ Rp,` and Q ∈ Rk,` have
orthonormal columns and S ∈ R`,` is the diagonal
matrix with singular values s1 ≥ . . . ≥ s` > 0. The
solution of Problem (1) is unique if sr > sr+1 : let
Qr ∈ Rk,r be the matrix obtained by keeping the first
r columns of Q, the solution is W ∗r := W ∗QrQTr .

3.3 Algorithms and complexity

The algorithms that we consider are essentially prox-
imal gradient algorithms with line search, except for
the fact that f2 is not differentiable when Y TXU is
not full-rank, which entails that f is not differentiable
everywhere. To address this issue, and given that f is a
difference of a smooth convex function and a continuous
convex function, we consider the subgradient-type algo-
rithms proposed in Khamaru and Wainwright (2018).

Given U ∈Rp,r, the idea is to use a subgradient zU of
f2. We assume that XTX is invertible but consider a
more general case in Appendix D.1.2 where we detail
the computations. Given R1DR

T
2 a singular value

decomposition of Y TXU such that Im R1 ⊂ Im Y TX,
we compute zU = XTY R1R

T
2 with R1 ∈ Rk,r,

RT1 R1 = Ir, D = diag(d1 ≥ . . . ≥ dr) ∈ Rr,r
with dr ≥ 0 and R2 ∈ Or. With a slight abuse
of notation, we define ∇f(U) := ∇f1(U) − zU .
Note that this is the gradient of the natural DC
programming upper bound. We introduce for any
t > 0 the t-approximation functions of f and Fλ at U ,
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f̃t,U (U ′) := f(U) + 〈∇f(U), U ′ − U〉+ 1
2t ||U ′ − U ||2F

and F̃λt,U (U ′) := f̃t,U (U ′) + λ||U ′||1,2. At each iteration
of Algorithm 1, U is updated with Algorithm 2 to
U+ the unique minimizer of F̃λt,U if the line search
condition

F̃λt,U (U+) ≥ Fλ(U+) (LS)

is satisfied. Otherwise, t is decreased by a multiplica-
tive factor β < 1. We explain why Algorithm 2 ter-
minates in Appendix E.2. The obtained algorithm is
almost a gradient descent algorithm when λ = 0 and a
proximal gradient descent algorithm when λ > 0 (see
Appendix D.2). In practice, our algorithms stay away
from points where f is non-differentiable and reduce
to plain gradient descent and plain proximal gradient
descent respectively. This motivated us to also consider
for the experiments the accelerated proximal gradient
algorithm of Li and Lin (2015), designed for the non-
convex setting. We adapt in Section 4 parts of the
global convergence results of Khamaru and Wainwright
(2018) to our algorithms.

Algorithm 1 Proximal Gradient Descent with LSP
Input: data X, Y , t̄, starting point Ū
Initialize k = 0, U0 ← Ū , t−1 ← t̄
while not converged do
Compute t, U+ with tk−1, Uk and Algorithm 2
tk ← t
Uk+1 ← U+

k = k + 1
end while

Algorithm 2 Line Search Procedure (LSP)
Input: tk−1, Uk, parameters β ∈ (0, 1), π ∈ (0, 1]
Set t← tk−1

β with probability π, o/w t← tk−1

U+ ← argminU ′ F̃
λ
t,Uk

(U ′)
while (LS) is not satisfied do
t← βt
U+ ← argminU ′ F̃

λ
t,Uk

(U ′)
end while
Output: t, U+

To discuss the complexity of the algorithm, we as-
sume that XTX and Y TX are computed in advance.
Although the computation of zU requires an SVD
of Y TXU , the latter costs only O(kr2). Computing
∇f(U) has then a complexity of O(p2r + pkr). The
biconvex formulation of Park et al. (2016) leads to it-
erations with the same theoretical complexity for RRR
but it is incompatible with SRRR. Additionally, exper-
iments show that our algorithm is faster (cf. Section 6
and Appendix M).

4 Global convergence results

Although recent papers such as Lee et al. (2017) have
shown that the gradient descent algorithm escapes
saddle points by leveraging the strict saddle property,
global convergence for Algorithm 1 is not obvious be-
cause f is not smooth. Besides, to the best of our
knowledge, none of the papers that exclude conver-
gence towards saddle points deals with regularizers or
line search.

4.1 Convergence to a critical point for RRR

For RRR, results of Khamaru and Wainwright (2018)
apply to our formulation and show that our algorithm
converges towards a critical point. Precisely, f1 is con-
tinuously differentiable with Lipschitz gradients, f2 is
continuous and convex and the difference f is bounded
below by − 1

2 ||Y ||2F . Besides, as a difference of semi-
algebraic functions, f satisfies the Kurdyka-Łojasiewicz
property whose definition is given in Appendix B.4.
Therefore, for gradient descent, our setting satisfies
the conditions of Theorems 1 and 3 of Khamaru and
Wainwright (2018) and we can prove that our algorithm
converges from any initial point to a critical point in
the sense of Definition 21 in Appendix B.5. This is
more formally stated in Appendix F.1.

4.2 Convergence to a critical point for SRRR

In addition to the properties of f1 and f2 discussed
above in Section 4.1, the norm || · ||1,2 is clearly proper,
lower semi-continuous and convex so our setting for
proximal gradient descent satisfies the conditions of the
first part of Theorem 2 in Khamaru and Wainwright
(2018). The latter can be adapted to prove that all limit
points of the sequence are critical points in the sense
of Definition 21 in Appendix B.5. However, to prove
actual convergence of the sequence, their Theorem 4
formally requires that f2 is a function with locally
Lipschitz gradient, which is not true when Y TXU is
not full-rank.

Actually, an inspection of the proof of Theorem 4 in
Khamaru and Wainwright (2018) shows that the local
smoothness condition is only required in a neighbor-
hood of the limit points of the sequence. We prove in
Appendix F.2 that if all groups of at least r rows of
XTY are assumed full-rank, which holds almost surely
if X and Y contain for example continuous additive
noise, and unless local minima are so sparse that the
number of selected variables is strictly smaller than r,
then any local minimum U ∈ Rp,r is such that Y TXU
is full-rank. As a consequence, if we assume that the
limit points of the sequence produced by the algorithm
are a subset of the local minima, then these limit points
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are contained within a compact set where the function
is smooth and the proof of Theorem 4 of Khamaru and
Wainwright (2018) can be adapted in a straightforward
manner to obtain global convergence.

5 Local convergence analysis

In this section, we prove linear convergence rates in
a neighborhood of the global minima for RRR and
under a condition on the regularization parameter λ
for SRRR. Precisely, we first study the geometry around
the optima of (RRR) via a change of variables. Then, a
continuity argument shows that the structure remains
approximately the same for (SRRR) with a small λ > 0.
Finally, we introduce and leverage Polyak-Łojasiewicz
inequalities to prove local linear convergence.

5.1 A key reparameterization for RRR

The relation between RRR and PCA and the form of
the analytical solution given by Velu and Reinsel (2013)
will allow us to show that our study of the objective of
RRR can be reduced to the study of the particular case
in which X and Y are full-rank diagonal matrices, via
a linear change of variables based on the singular value
decomposition PSQT introduced in Section 3.2 of the
matrix (XTX)−

1
2XTY . From now on, we assume that

the rank parameter r is smaller than the rank of XTY
i.e. r ≤ ` := rank(XTY ). It makes sense to assume
that the imposed rank is less than the rank of the
optimum for the unconstrained problem, otherwise the
rank constraint is essentially useless. We also assume1
that s1 > . . . > s` and that XTX is invertible.

With the notations of Section 3.2, let P⊥ ∈ Rp,p−` be a
matrix such that P⊥TP⊥ = Ip−` and PTP⊥ = 0, and
consider the linear transformation U = τ(A,C) where

τ :

{
R`,r × Rp−`,r → Rp,r

(A,C) 7→ (XTX)−
1
2 (PSA+ P⊥C)

. (6)

Defining fa(A) = 1
2 ||SA||2F − ||S2A||∗, we show in Ap-

pendix G.1 that

(f ◦ τ)(A,C) = fa(A) +
1

2
||C||2F . (7)

Since τ is invertible, the minimization in (RRR) w.r.t.
U is equivalent to the minimization of f ◦τ w.r.t. (A,C).
We can therefore study the original optimization prob-
lem by studying fa.

1These assumptions are also reasonable and will hold
in particular if (X,Y ) are drawn from a continuous den-
sity. We discuss the case where XTX is not invertible in
Appendix G and in Appendix H.2, we show why these
assumptions are needed.

Figure 1: Graph of fa for A ∈ R2,1. In this particular
case, Ω∗a = {(1; 0), (−1; 0)} and O1 = {−1, 1}.

Similarly to Baldi and Hornik (1989), we characterize
the minima of fa using the connexion between PCA
and RRR, with a proof given in Appendix G.2.
Lemma 1. The set of minima of fa is

Ω∗a :=
{
ĨR | R ∈ Or

}
with Ĩ :=

[
Ir

0`−r,r

]
∈ R`,r.

In words, Ω∗a is the image by the linear trans-
formation R 7→ ĨR of the Stiefel manifold
Or :=

{
R ∈ Rr,r, RTR = Ir

}
. In particular, Ω∗a has

two connected components. We also classify the criti-
cal points of fa in Appendix G.3 :
Lemma 2. Rank-deficient matrices cannot be critical
points of fa. Critical points of fa among full-rank ma-
trices are differentiable points and either global minima
or saddle points. Therefore, all local minima of fa are
global.

5.2 Local strong convexity on cones

Although fa is not convex even in the neighborhood
of its minima, we will show that it is locally convex
around them in the subspace orthogonal to the set of
minima. For any A ∈ Rp,r, let

ΠΩ∗a(A) := argmin
B∈Ω∗a

‖B −A‖2F

be the closest minima to A, and for any R ∈ Or, let
Ca(R) be defined as follows

Ca(R) := {A ∈ R`,r | ĨR ∈ ΠΩ∗a
(A)}.

Ca(R) is the set of points that are associated with the
same minimum parameterized by ĨR. As shown in the
following lemma, the sets Ca(R) are actually convex
cones that are images of each other by orthogonal matri-
ces; this result is essentially a consequence of the polar
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decomposition and of the orthogonal invariance of fa.
Let S+

r ⊂ Rr,r denote the set of positive-semidefinite
matrices.

Lemma 3. For each R ∈ Or, Ca(R) is a cone in R`,r
and

Ca(Ir) =

{[
A1

A2

]
| A1 ∈ S+

r , A2 ∈ R`−r,r
}
, (8)

Ca(R) = {AR | A ∈ Ca(Ir)} and
⋃

R∈Or

Ca(R) = R`,r.

Note that the cones Ca(R) do not form a partition of
R`,r because if A1 is not invertible, its polar decom-
position is not unique so [AT1 AT2 ]T is in several cones.
However the relative interiors of all the cones partition
the set of matrices [AT1 AT2 ]T such that A1 is invertible
(cf. Fact 51 in Appendix H.1). The decomposition on
these cones is motivated by the fact that for r ≥ 2,
the function fa in a neighborhood of each of the two
connected components of Ω∗a can be informally thought
of as having the shape of the base of a glass bottle with
a punt. This is illustrated on Figure 2.

Thus, given R ∈ Rr,r, we focus on the restriction
fa|Ca(R) of fa on the cone Ca(R). The next result states
in particular that fa|Ca(R) is smooth and strongly con-
vex2 in a neighborhood of ĨR.

Theorem 4. For any 0 < µa < s2
`(1 −

s2r
s2r+1

), there

exist a non-empty sublevel set Va ⊂ R`,r of fa such
that fa is s2

1-smooth in Va and for any R ∈ Or, the
restriction fa|Ca(R) is µa-strongly convex in Va∩Ca(R).

Via τ these properties of fa carry over to f . Let νX and
LX be respectively the smallest and largest eigenvalues
of XTX and C(R) := τ(Ca(R),Rp−`,r) with τ defined
in Equation (6).

Corollary 5. For any 0 < µ < νX(1 − s2r+1

s2r
), there

exist a non-empty sublevel set V0 of the function f
that can be partitioned into disjoint convex elements
{C(R)∩V0}R∈Or such that f is LX-smooth on V0 and
is µ-strongly convex on every V0 ∩ C(R).

To extend partially the previous result to (SRRR), we
apply Theorem 6.4 of Bonnans and Shapiro (1998) :
given that (a) the objective Fλ of (SRRR) is locally
strongly convex on the cone C(Ir) around the minimum,
(b) for every fixed λ in some interval [0, λ̃), f is locally
Lipschitz with a constant that does not depend on
λ and, (c) Fλ − F 0 = λ‖ · ‖1,2 is locally Lipschitz
with a constant √pλ which is O(λ), then by Bonnans
and Shapiro (1998, Theorem 6.4), there exists λ̌ > 0

2The definitions of µ-strong convexity, L-smoothness
and sublevel sets are recalled in Appendix B.

a1
a 2

f a
(A
)

Ca(R)
0

fa|Ca(R)(A)

Figure 2: Schematic 2D graph of fa around one of the
connected components of Ω∗

a when r ≥ 2. Here, the com-
ponent of Ω∗

a is a circle and the cones are half-lines with
extreme points at the origin.

such that for all 0 ≤ λ < λ̌, the minimum of Fλ in
C(Ir) is a continuous function of λ. This is detailed in
Appendix H.4.

Corollary 6. There exists λ̄ > 0 such that for any
0 ≤ λ < λ̄ and 0 ≤ µ < νX(1 − s2r+1

s2r
), there exists a

non-empty sublevel set Vλ of Fλ that can be partitioned
into disjoint convex elements {C(R) ∩ Vλ}R∈Or

so that
f is LX-smooth on Vλ and Fλ is µ-strongly convex on
every C(R) ∩ Vλ.

These characterizations of the geometry in a neigh-
borhood of the optima immediately lead to Polyak-
Łojasiewicz inequalities that entail the linear conver-
gence of first-order algorithms.

5.3 Polyak-Łojasiewicz inequalities and
proofs for linear convergence rates

Polyak-Łojasiewicz (PŁ) and Kurdyka-Łojasiewicz in-
equalities (KŁ) were introduced to generalize to non-
convex functions (or just not strongly convex) proofs of
rates of convergence for first-order methods (Attouch
and Bolte, 2009; Karimi et al., 2016, and references
therein). In particular, PŁ generalizes the fact that,
for a differentiable and µ-strongly convex function f
with optimal value f∗,

f(x)− f∗ ≤ 1

2µ
||∇f(x)||2. (PŁ)

Karimi et al. (2016) and Csiba and Richtárik (2017)
proposed a generalization to a proximal PŁ inequality
of relevance for forward-backward algorithms applied to
non-differentiable functions. In this section , we summa-
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rize an immediate extension allowing a line search pro-
cedure, of results established for first-order algorithms
to prove locally a linear rate of convergence. Consider
d ∈ N∗ and a function3 Fλ = f + λh defined on Rd
and with optimal value Fλ,∗, where f is an L-smooth
function and h is a proper lower semi-continuous con-
vex function. We define the t-approximation f̃t,x and
F̃λt,x of f and Fλ at x as in Section 3.3. The t-decrease
function is defined as

γt(x) := −1

t
min
x′∈Rd

[
F̃λt,x(x′)− Fλ(x)

]
. (9)

Given x, assume that the minimum in Equation (9)
is attained at a point x+ for t > 0 such that the (LS)
condition F̃λt,x(x+) ≥ Fλ(x+) is satisfied. Then the
decrease in the objective value Fλ(x)−Fλ(x+) is lower
bounded by tγt(x), hence the name t-decrease function
(see Fact 33 in Appendix E.1). We make use of a natural
generalization of the proximal PŁ inequality proposed
by Karimi et al. (2016) and Csiba and Richtárik (2017).
For x such that Fλ(x) > Fλ,∗, with Fλ,∗ the minimum
of Fλ, we define the t-proximal forcing function :

αt(x) :=
γt(x)

Fλ(x)− Fλ,∗ .

We can now state the following theorem that bounds
the optimal gap for our algorithm iteratively.
Theorem 7. (From Lemma 13 in Csiba and
Richtárik, 2017) Let x ∈ Rd and x+ be defined by
x+ = argminx′ [F̃

λ
t,x(x′)− Fλ(x)], where t is chosen so

that the line search condition (LS) is satisfied. Then
we have

Fλ(x+)− Fλ,∗ ≤ [1− t αt(x)]
[
Fλ(x)− Fλ,∗

]
.

Given t > 0, we say that Fλ satisfies the
(t-strong proximal PŁ) inequality in a set V ⊂ Rd if
there exists α(t) > 0 such that for any x ∈ V where
Fλ(x) > Fλ,∗, we have

αt(x) ≥ α(t). (t-strong proximal PŁ)

If λh = 0, then γt(x) = 1
2 ||∇f(x)||2 and it is easy to see

that (t-strong proximal PŁ) boils down to (PŁ) with
µ = α(t).

5.4 Proving local linear convergence

We now return to the functions f and Fλ defined for
(RRR) and (SRRR) with minimal values f∗ and Fλ,∗,
and we establish the (PŁ) and (t-strong proximal PŁ)
inequalities in a neighborhood of their respective global
minima.

3In this section we use a general variable x but we keep
using f and Fλ.

Corollary 8. Let 0 ≤ µ < νX(1− s2r+1

s2r
) and V0 as in

Corollary 5. For all U ∈ V0, f(U)−f∗ ≤ 1
2µ ||∇f(U)||2F .

In light of Corollary 6, we can also prove the (t-strong
proximal PŁ) inequality for Fλ with small values of λ.
To this end, we consider λ̄ > 0 as in Corollary 6.

Corollary 9. Let 0 ≤ µ < νX(1− s2r+1

s2r
) and

0 ≤ λ < λ̄. For any t > 0, Fλ satisfies the (t-
strong proximal PŁ) inequality with α(t) := min( 1

2t , µ).
In other words, for any t > 0 and U ∈ Vλ, we have

γt(U) ≥ α(t)
[
Fλ(U)− Fλ,∗

]
with γt(U) := −1

t
min

U ′∈Rp,r

[
F̃λt,U (U ′)− Fλ(U)

]
.

So, leveraging Theorem 7 and Corollary 8/9 for
(RRR)/(SRRR), we obtain the linear rate of conver-
gence which is proved in Appendix J.3. Indeed, if LX
denotes the largest eigenvalue of XTX and β the step-
size decrease factor in Algorithm 2, then we have the
following result :

Corollary 10. Let 0 ≤ λ < λ̄ and k ≥ 0. Assume that
tk−1 >

β
LX

and Uk+1 is generated as in Algorithm 1
from Uk ∈ Vλ. Then Uk+1 ∈ Vλ, tk > β

LX
and denot-

ing ρ = min( 1
2 , β

µ
LX

), we have

Fλ(Uk+1)− Fλ,∗ ≤ (1− ρ)
[
Fλ(Uk)− Fλ,∗

]
.

As explained in Fact 35 in Appendix E.2, there is only
a finite number of steps at the beginning of Algorithm 1
for which the assumption tk > β

LX
may fail. The con-

vergence is therefore linear. We propose a direct proof
of Corollary 10 based on Corollary 9 and Theorem 7. It
should be noted that the geometric structure leveraged
for Corollary 9 can also be used to obtain Corollary 10
as a consequence of the Kurdyka-Łojasiewicz inequality
(cf. Appendix L).

6 Experiments on RRR and SRRR

We perform experiments on simulated data both for
RRR and SRRR to assess the performance of the algo-
rithms in terms of speed.

For RRR, we compare gradient descent algorithms
in U space and in (U, V ) space. In the former
case, we just minimize (RRR), whereas in the lat-
ter, following Park et al. (2016), we minimize
F(UV >) + g(U, V ), with F(W ) = 1

2‖Y −XW‖2F and
g(U, V ) = 1

4‖U>U − V >V ‖2F ; this objective has the
same optimal value as F(UV >), but the regularizer g
was shown to improve the convergence rate of the algo-
rithm (see Appendix M.1). Note that the formulation
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of Park et al. (2016) does not apply to SRRR because
the regularizer g is not compatible with the use of the
group-Lasso norm.

For SRRR, we implement proximal gradient descent
algorithms and compare in speed with the RRR case
and with the alternating optimization algorithm pro-
posed4 in Bunea et al. (2012). In each case we consider
variants of these first-order methods with and without
line search.

For the alternated procedure, each inner minimization
of the matrix U is stopped when a duality gap becomes
smaller than the desired precision 10−4. Since it takes
more than seconds to optimize, it justifies the relevance
of RRR/SRRR.

As in Bunea et al. (2012), we sample the rows of X
from a zero-mean Gaussian with a Toeplitz covariance
matrix Σ where Σi,j = ρ|i−j| and ρ ∈ (0, 1). We set
n = 103, p = 300 and k = 200. We let W0 = U0V

>
0

for U0 ∈ Rp,r and V0 ∈ Rk,r uniformly drawn from
the set of orthonormal matrices with r0 = 30 columns.
For SRRR, each row of W0 is then set to zero with
probability p0. Then we compute Y = XW0+E for E a
matrix of i.i.d. centered scalar Gaussians with standard
deviation σ = 0.1. Finally, we solve all formulations
for a matrix W of rank r = 20. For all algorithms, we
initialize U (and V if relevant) at random.

We report results for ρ = 0.6 in Figure 3 and in Ap-
pendix M for additional values of ρ and p0. For RRR,
these results show that the algorithms based on our
proposed formulation are significantly faster, both in
terms of the number of function/gradient evaluations
and in terms of time; moreover they benefit more from
the line search. We do not report curves with both line
search and acceleration because this combination does
not yield any speed increase.

For (SRRR) and (RRR) all algorithms exhibit at least
linear convergence. Compared with (RRR), the con-
vergence for (SRRR) typically seems as fast or faster.
Additionally, the line search plays a significant role in
accelerating the convergence of the algorithm.

Conclusion

We considered a reformulation of RRR and SRRR prob-
lems as non-convex and non-differentiable optimization
problems w.r.t. to a matrix U with r columns. We pro-
posed to apply subgradient-type algorithms proposed
by Khamaru and Wainwright (2018), which correspond
essentially to gradient descent for RRR and proximal
gradient descent for SRRR.

The algorithms are provably convergent to critical
4Ma and Sun (2014) consider a similar algorithm.

0 200 400 600 800 1000 1200 1400 1600
number of function/gradient evaluations

10−5

10−4

10−3

10−2

10−1

100

101

102

103

f
(U

k
)−

f
∗

f
∗

RRR - ρ =0.6, p0 =0, λ =0

GD U cst st - 0.2 sec

GD U ls - 0.11 sec

GD U acc - 0.16 sec

GD UV cst st - 3.2 sec

GD UV ls - 1.3 sec

GD UV acc - 1.1 sec

0 200 400 600 800 1000 1200 1400
number of function/gradient evaluations

10−5

10−4

10−3

10−2

10−1

100

101

102

103

F
λ
(U

k
)−

F
λ
(U

T
)

F
λ
(U

T
)

SRRR - ρ =0.6, p0 =0.2, λ =0.01

ProxGD U cst st - 1.2 sec

ProxGD U ls - 0.48 sec

ProxGD U exa - 9.3 sec

Figure 3: (Top) RRR : Convergence of f(Uk) − f∗ for
gradient descent on our formulation in U with constant
step size (GD_U_cst_st), with line search (GD_U_ls), with
the acceleration (GD_U_acc) proposed by Li and Lin (2015)
and gradient descent for the formulation of (Park et al.,
2016) with constant step size, line search and acceleration
(GD_UV_cst_st, GD_UV_ls, GD_UV_acc). (Bottom) SRRR
with λ = 0.01 : Convergence for T large of Fλ(Uk)−Fλ(UT )
for proximal gradient descent on our formulation with and
without line search (ProxGD_U__ls, ProxGD_U__cst_st),
compared with the alternating optimization algorithm
(ProxGD_U__exa) proposed in Bunea et al. (2012). The
running time to reach a precision of 10−4 is given at the
top right.

points under reasonable assumptions. We show that
for a certain range of regularization coefficients λ the
objective satisfies a Polyak-Łojasiewicz inequality in a
neighborhood of the global minima, which entails local
linear convergence if the algorithm converges to them.

For RRR, gradient descent converges to a critical point
and if a global minimum of the original objective has
been found, it can easily be certified.

Future work could try to determine if convergence to
saddle points of SRRR can be excluded and if global
linear convergence results can be obtained. Another
interesting direction of research is to extend these types
of results to other matrix optimization problems with
low-rank constraints.
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