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 3 

Abstract 4 

Eutrophication is one of the main causes of the degradation of lake ecosystems. Its intensification during the 5 

last decades has led the stakeholders to seek for water management and restoration solutions, including those 6 

based on modelling approaches. This paper presents a review of lake eutrophication modelling, on the basis 7 

of a scientific appraisal performed by researchers for the French ministries of Environment and Agriculture. 8 

After a brief introduction presenting the scientific context, a bibliography analysis is presented. Then the 9 

main results obtained with process-based models are summarized. A synthesis of the scientist recommenda-10 

tions in order to improve the lake eutrophication modelling is finally given before the conclusion. 11 

 12 

1 Introduction 13 

Eutrophication of aquatic ecosystems refers to an ecological state, where biological processes driven by in-14 

creased nutrient loading from their watershed conducts to proliferation of primary producers (phytoplankton, 15 

aquatic plants, cyanobacteria), hypoxia or even anoxia and loss of biodiversity. Worldwide, eutrophication is 16 

one of the main causes of the degradation of the ecological state in inland and coastal waters. Eutrophication 17 

has been observed since the beginning of the twentieth century in industrialized countries (e.g. Le Moal et 18 

al., 2018; Moss, 2012; Takolander et al., 2017; Yao et al., 2018). However, during the last decade, eutrophi-19 

cation has become a more pregnant societal issue, encompassing many different stakes, from ecological to 20 

economic and political, which must be tackled at the scale of the concerned territories by the involved stake-21 

holders.  22 

Lakes and reservoirs are part of the hydrological cycle of their watershed. Fluxes are permanently exchanged 23 

between the lake and the atmosphere, the ground and surface waters. Lakes play an essential role in the bio-24 

geochemical cycles of continental watersheds. Two processes drive these biogeochemical cycles, particularly 25 

Carbon, Nitrogen and Phosphorus cycles: the primary production and the settling of particulate matter.  26 
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In lakes, the current velocities are generally low and the water residence time high. Therefore, lakes provide 27 

us with a time-integrated response to the external forcing. The analysis of their time trajectory can allow us 28 

to better understand the biological and physical, local and global pressures that they face (Perga et al., 2016; 29 

Schindler, 2009). 30 

Lake ecosystems are particularly sensitive to nutrient loading from their catchment because of the thermal 31 

stratification of the water column during the period when the primary production is maximal (spring and 32 

summer). The thermal stratification divides the water column into two layers: the upper layer, the warmer 33 

and lighted epilimnion, where primary production occurs, and a colder deeper layer, the hypolimnion. Ther-34 

mal stratification occurs in all lakes but extending on different time scales. In shallow lakes, thermal stratifi-35 

cation hardly lasts more than a few hours or days. The main morphometric (depth, volume) and hydrological 36 

(discharge of the tributaries, surface and land-use in the catchment) characteristics will determine the lake 37 

vulnerability to eutrophication. 38 

In the early 1960s, lakes were the first water bodies where eutrophication effects were observed, mainly on 39 

the water resources used for drinking water supply (e.g. Dillon and Rigler, 1974a; Vollenweider and 40 

Kerekes, 1982). Actually, lake eutrophication started in industrialized countries since the 1930s as it is indi-41 

cated by recent outcomes based on paleo-limnological studies. This is the case in Europe, for example for 42 

Lake Bourget (France) where eutrophication appeared around 1933 (Giguet-Covex et al., 2010; Jenny et al., 43 

2013).  44 

In the 1960-1980s, lake eutrophication was widely described, in particular in symposia devoted to this topic 45 

like the Madison Symposium (National Academy of Sciences, 1969) or the Symposium of the American 46 

Society of Limnology and Oceanography (ASLO) in 1971. Historically, the description of lake eutrophica-47 

tion was more directed to deep lakes, located in the Northern hemisphere (United States, Canada, and West-48 

ern Europe) and Australia. The general acceptation of lake trophic state classification, “oligotrophic”, 49 

“mesotrophic” and “eutrophic” follows the studies of the Organisation for Economic Co-operation and De-50 

velopment (OECD) in the late 1970s (Vollenweider, 1975; Vollenweider and Kerekes, 1982). 51 

The main effects of lake eutrophication are an increase of phytoplankton biomass, where cyanobacteria fre-52 

quently dominate, a decrease of water transparency and a clear difference between surface layers, rich in 53 

oxygen, and the deoxygenated hypolimnion (Dodds, 2006; Wetzel, 2001). Hypoxia in the hypolimnion leads 54 



3 

 

to an internal phosphorus load released by the sediment, which in turn amplifies the eutrophication of the 55 

system (Dodds, 2006). 56 

Eutrophication has been one of the main threats for water quality in lakes and reservoirs since the 1960s. In 57 

spite of number of  research works conducted during the last five decades, eutrophication remains a major 58 

concern worldwide (Smith et al., 2006). More than 40% of lakes are eutrophic and affected by algal blooms 59 

(Bartram et al., 1999). The issues to be addressed still regard interactions between nutrients, principally 60 

phosphorus which is generally the main cause of lake eutrophication, and the ecological functioning. New 61 

manifestations of eutrophication have emerged during the last two decades (Anderson et al., 2012; Le Moal 62 

et al., 2018; Pomati et al., 2017). Among the phytoplankton species, cyanobacteria have gained an increased 63 

interest, due to the worldwide occurrence of their blooms. The increasing frequency of cyanobacteria blooms 64 

might be linked to climate change.  65 

The management and restoration solutions to control eutrophication must be supported by scientific out-66 

comes, including modelling approaches. Since the 1970s and the awareness of the negative impact of  eutro-67 

phication on lake ecosystems, numerical modelling was considered as an interesting tool (Imboden, 1974; 68 

Vollenweider, 1975; Vollenweider and Kerekes, 1982). Many models were developed, often to obtain pre-69 

dictive tools used as support for lake management and to define targets of nutrient loading reduction by the 70 

catchment. The model key state variables are those that link primary production to nutrients, principally 71 

phosphorus, nitrogen and sometimes silica  (De Senerpont Domis et al., 2014; Reynolds et al., 2001). 72 

Cyanobacteria growth also raises new modelling issues to represent processes such as nitrogen fixation, up-73 

take of nutrient organic forms and mobility of the cells. 74 

In order to support public decision-making, issues raised by public entities, for example a ministry, can be 75 

addressed in the form of a multidisciplinary critical assessment of available scientific knowledge, called col-76 

lective scientific expertise. In 2016, two French ministries respectively in charge of ecology and agriculture, 77 

initiated a collective scientific expertise (Expertise Scientifique Collective, ESCo in French), bringing to-78 

gether scientific knowledge available on the eutrophication issue (Pinay et al., 2017). The objective was to 79 

improve the consistency and effectiveness of public action on eutrophication control. One chapter of the 80 

scientific expertise report was devoted to eutrophication modelling (Crave et al., 2017). This chapter in-81 

cluded five sections respectively entitled “Modelling of non-point nutrient loading in the catchment”, “Mod-82 
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elling in-stream processes”, “A focus on sediment transport modelling”, “Modelling eutrophication in coastal 83 

ecosystems” and “Modelling eutrophication in lake ecosystems”. A review of marine eutrophication models 84 

derived from this scientific expertise study can be found in (Ménesguen and Lacroix, 2018). The paper pre-85 

sented hereafter is based on the chapter focusing on lake eutrophication modelling and including a large re-86 

view of modelling studies.  87 

The bibliographic corpus that we considered is composed of 438 references obtained by using the biblio-88 

graphic search tool proposed by Web of Science (see Appendix 6.1 for details). The paper is organized as 89 

follows. In section 2, the bibliographic corpus is analysed according to the following items: study sites, ob-90 

jectives, model typology and main research topics. Additional statistics about the number of publications and 91 

citations; the general categories, research areas and journal titles; and the keywords of the references includ-92 

ed in the bibliographic corpus are given in Appendix 6. Section 3 is dedicated to the modelling results ob-93 

tained with process-based models. Finally we summarize the scientist recommendations in order to improve 94 

the lake eutrophication modelling in section 4, and we raise some key issues for future achievements in this 95 

research field in the conclusion section.  96 

 97 

2 Bibliography analysis 98 

2.1 Study sites 99 

Several lakes have been considered as case studies for the application of eutrophication models. An auto-100 

matic search routine was implemented to search for the names of lakes in the title, abstract and keywords of 101 

the references of the bibliographic corpus. It led to a list of 118 lake names and 230 references. The reparti-102 

tion of the references according to the continent, the country and the name of the lakes is given in Table 1. 103 

The evolution over the time of the number of publications according to the continent of the studied lake is 104 

given in Figure 1. 105 

Table 1. Number of publications depending on the continent, the country and the name of the studied lake. Only the countries 106 

and the lakes that have been found in three or more than three publications are listed. 107 

 108 

Figure 1. Time evolution of the number of publications according to the continent of the studied lake. 109 

 110 
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The most studied lakes are located in North America (mostly in the USA and Canada) and Asia (in China, 111 

Japan, Turkey and Russia). Lakes of Western Europe (in The Netherlands, Estonia, Switzerland and Ger-112 

many) and Northern Europe (in Finland and the United Kingdom) also receive special attention. The Great 113 

lakes or Laurentian lakes (Lakes Erie, Ontario, Michigan, Superior and Huron) located between the USA and 114 

Canada are the subject of numerous publications. Apart from them, we can mention the particular case of 115 

Lake Taihu (China) that is intensively studied (26 papers), as much as for Lake Erie but at a different pace. 116 

Publications on Lake Erie started in 1984 and on Lake Taihu in 2004. Among the other lakes, there are many 117 

large lakes with a surface area over 100 km
2
, as it is the case of Lake Dianchi (China), Kinneret (Israel), 118 

Balaton (Hungary), Chaohu (China), Okeechobee (USA), Peipsi (Finland) and Kasumigaura (Japan). 119 

Regarding the time evolution, the lakes that were studied during the 1970s and the 1980s are mainly located 120 

in North America (Ditoro et al., 1987; Snodgrass, 1987, 1985). In the 1990s, modelling works were then 121 

carried out on lakes from Western Europe (Asaeda and Van Bon, 1997; Hollander et al., 1993). And since 122 

2000, there has been a significant increase in modelling studies conducted on Chinese lakes, particularly 123 

since 2010 (Hou et al., 2004; Huang et al., 2012; W. Li et al., 2014). In parallel, lake ecosystems from South 124 

America (Fragoso et al., 2008), Southern Europe (Alonso Fernandez et al., 2014), Middle East such as 125 

Karaoun reservoir in Lebanon (Fadel et al., 2017) but mainly Lake Kinneret in Israel (Bruce et al., 2006; Gal 126 

et al., 2009) and Africa (Asaeda et al., 2001) were also modelled.  127 

Finally, models have also been applied to high-altitude or high-latitude lakes in recent years (Patynen et al., 128 

2014; Romshoo and Muslim, 2011). Similarly, the preservation of ecological continuity in the urban and 129 

peri-urban environment and the promotion of Nature-based solutions for the urban water management led to 130 

recent modelling works of small urban lakes (e.g. Gong et al., 2016; Soulignac et al., 2017). 131 

 132 

2.2 Modelling objectives 133 

Several purposes have led to the development of lake eutrophication models. Although eutrophication mod-134 

els are not only used for management purposes but also for research (Simonsen and Dahl-Madsen, 1978; 135 

Vanhuet, 1992), we will focus in this paper mainly on the management objectives. In the keyword analysis, 136 

the words “management”, “simulation”, “prediction” and “restoration” appear respectively, in 54, 49, 31 and 137 
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22 references of the bibliographic corpus, which represents 12%, 11%, 7% and 5% of the references. This 138 

shows how lake eutrophication is a concerning problem for which practical solutions are needed. 139 

In the 1970s, the OECD model (Vollenweider, 1975), that has been calibrated on a data set coming from 140 

more than 200 lakes of several continents, was used to predict the eutrophication response to phosphorus 141 

loading. The nutrient load limits in the USA and Canada have been established from this model. 142 

Some models have been used to assess the conditions for achieving regulatory or management objectives. 143 

For example, the 1D vertical model DYRESM-CAEDYM was used to compute the level of phosphorus in-144 

put reduction necessary to make the ecological status of Lake Ravn (Denmark) comply with the requirements 145 

of the European Water Framework Directive (Trolle et al., 2008).  146 

Models are also developed to perform numerical experiments. Recently, the sharp increase in the number of 147 

reservoirs worldwide (World Commission on Dams, 2000), for irrigation, drinking water production and 148 

hydroelectricity, has led researchers to investigate the effects of eutrophication on the carbon and greenhouse 149 

gas cycle in these water bodies (Chanudet et al., 2012; Stepanenko et al., 2016). Models are also used to 150 

predict the functioning and the impact of a reservoir that is expected to be built (Inkala et al., 1998). Con-151 

versely, some papers focus on the simulation of the impact of climate changes on lake eutrophication (Elliott 152 

and Defew, 2012; Hassan et al., 1998; Schwefel et al., 2016). It includes the increase of temperature (Mark-153 

ensten et al., 2010) and the intensification of extreme climatic events such as floods (Brito et al., 2017) or 154 

storms (Schwalb et al., 2015). 155 

Model of lake eutrophication are also often used to predict the evolution of variables of interest. In the short 156 

term (one or two weeks), the objective can be to predict algal blooms, particularly cyanobacteria blooms. It 157 

makes it possible to anticipate the measures to be taken depending on the water body use: recreational activi-158 

ties such as bathing, production of drinking water, etc. (Huang et al., 2015, 2012; W. Li et al., 2014; Reckna-159 

gel et al., 2016). Over longer time-scales, models are used to predict the response of lake ecosystems to cli-160 

mate change scenarios or local changes in nutrient input (Chapra and Canale, 1991; Pipp and Rott, 1995), 161 

sometimes with a special focus on cyanobacteria dynamics (Howard and Easthope, 2002; Markensten et al., 162 

2010; Varis, 1993).  163 
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Finally, models are also developed to test some control strategies for the restoration of lakes (e.g. Sagehashi 164 

et al., 2001). The reduction of nutrient loads is the most studied strategy (e.g Lindim et al., 2015; Ozkun-165 

dakci et al., 2011). Some papers focus on biomanipulation which consists in adding or removing species 166 

from the ecosystem (Jayaweera and Asaeda, 1996; Ogilvie and Mitchell, 1995; Sagehashi et al., 2001). Other 167 

alternative lake restoration techniques are studied, such as sediment dredging (Sagehashi et al., 2001), water 168 

diversion (Liu et al., 2014), addition of macrophytes (Xu et al., 2014, 1999) or hypolimnetic oxygenation 169 

(Moore et al., 1996; Sahoo and Luketina, 2003; Singleton et al., 2010; Toffolon and Serafini, 2013). 170 

 171 

2.3 Model typology 172 

The scientific community early recognized the value of mathematical modelling for the study of lake ecosys-173 

tems. Researchers have developed numerous models of various types. Recent reviews of lake modelling de-174 

velopments can be found in (Bhagowati and Ahamad, 2018a; Jørgensen, 2010b). Depending on how the 175 

ecosystem is represented mathematically, we can distinguish several classes of models (see for example 176 

(Jørgensen and Fath, 2001; Mooij et al., 2010a)).  Thus, models are generally first separated in two classes: 177 

empirical models and mechanistic models (Fornarelli et al., 2013). 178 

2.3.1 Empirical models 179 

Empirical models, also called data-oriented models (Afshar et al., 2012) or data-driven models (Elshorbagy 180 

and Ormsbee, 2006) are derived from the available data sets. They mainly consist in statistical relationships 181 

(called transfer functions) between predictor variables and response variables of interest. The first empirical 182 

models that were developed were regression models that assume linear relationships between the variables as 183 

it is the case for the nutrient-chlorophyll relationships given in (Dillon and Rigler, 1974a; Reckhow, 1993). 184 

Empirical models present several advantages: they require little a priori knowledge about the ecosystem 185 

processes and the data themselves; few data and “simple mathematics are needed” and these models are ge-186 

neric and “give good predictions for a group of lakes” (Vanhuet, 1992). However, when applied to an indi-187 

vidual lake, empirical models often lead to large uncertainties.  According to Vanhuet (1992), “empirical 188 

models are often applied if only mean annually values are of interest”.  However, due to the rapid progress in 189 

available computational power, and to the increasing use of high frequency measurement systems based on 190 
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in situ sensors, interest in empirical models is still growing. These models are used for different purposes, for 191 

example to re-analyze statistical relationships between nutrients and chlorophyll in different contexts (Brown 192 

et al., 2000; Huszar et al., 2006). New statistical approaches are also proposed to improve the quality of the 193 

models. For example, quantile regression is applied instead of ordinary least square regression in ( Xu et al., 194 

2015) and a Bayesian approach is used to link nutrient and chlorophyll concentrations in (Freeman et al., 195 

2009). Bayesian model averaging has also been proposed to predict the occurrence of harmful algal blooms 196 

(Hamilton et al., 2009). However, these models provide results associated with a very large level of uncer-197 

tainty and over time scales too long to study the short-term response to a decrease in nutrient inputs by the 198 

watershed; they therefore lack precision for use by managers (Reynolds and Elliott, 2010).   199 

Statistical models of the 1970s and 1980s have evolved significantly over the last decade towards "data-200 

driven" models. Such models need large datasets that were not available in the past, but that lake monitoring 201 

systems are now able to collect.  Artificial neural networks (ANNs) are now commonly used to study lake 202 

eutrophication (Chen and Liu, 2014; Ieong et al., 2015; Millie et al., 2006; Rankovic et al., 2010), because of 203 

“their recognized capability in predicting highly nonlinear and complex relationships” (Fornarelli et al., 204 

2013). However, if ANNs provide interesting prediction tools, their construction is a “highly demanding 205 

task, particularly when dealing with short and noisy ecological data” (Chaves and Kojiri, 2007; Fornarelli et 206 

al., 2013; Kim et al., 2012). Other data-driven models using machine learning techniques such as tree-based 207 

models (Fornarelli et al., 2013; Jung et al., 2010; Peretyatko et al., 2012), support vector machines (Diaz 208 

Muniz et al., 2015; Garcia-Nieto et al., 2018; Yunfeng Xu et al., 2015) or random forests (Hallstan et al., 209 

2012) are also proposed. For short-term (day to weeks) forecast, such data-driven models give good results, 210 

but for the simulation of long-term prospective scenarios, they hardly can be used as it is necessary to in-211 

clude knowledge about the driving processes. 212 

2.3.2 Mechanistic models 213 

Mechanistic models, also called process-oriented models (Arhonditsis and Brett, 2004), process-based mod-214 

els (Fornarelli et al., 2013) or theoretical models (Vanhuet, 1992), are based on the a priori knowledge of the 215 

driving processes of the ecosystem. Most of them consist in a set of differential or difference equations 216 

which describe in details the biogeochemical processes and whose solution is obtained by numerical meth-217 
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ods. Several review papers focusing on mechanistic models have been published (e.g. Anagnostou et al., 218 

2017; Arhonditsis and Brett, 2004). 219 

In the 1980s, mechanistic models often compute the steady-state concentration of variables, leading to 220 

nonlinear static relationships between variables of interest (e.g. Imboden, 1974; Schnoor and O’Connor, 221 

1980; Vollenweider, 1975). These models are called “input-output” models (Vollenweider, 1975) or black-222 

box models (Teruggi and Vendegna, 1986) and are sometimes considered as empirical models whereas their 223 

structure is directly deduced from dynamic equations of biogeochemical processes. The data that generally 224 

come from a group of lakes, are only used to identify the model parameters with statistical methods. This 225 

approach has been widely used to estimate the trophic state of numerous lakes (e.g. Jones and Bachmann, 226 

1976; Dillon and Rigler, 1974b). As they are based on a steady-state assumption, input-output models fail to 227 

“predict the dynamic trend of eutrophication in a large reservoir with temporal variation in inflow and stor-228 

age” (Afshar et al., 2012). Moreover, these models “do not describe the biological variables which are of 229 

main interest” and “do not take into account the influence of biological processes on the model parameters” 230 

and some “important interactions between several phytoplankton limiting factors, light, phosphorus, nitro-231 

gen” (Simonsen and Dahl-Madsen, 1978). 232 

Most mechanistic models are dynamic.  Mooij et al. (2010) make the distinction between “minimal dynamic 233 

models”, “complex dynamic models” and “structurally dynamic model”. Minimal dynamic models are sim-234 

ple and composed of only a few differential or differences equations; they “often generate a hypothesis about 235 

a possible cause of a phenomenon that would not easily be arrived at intuitively” (Mooij et al., 2010a). On 236 

the contrary, complex dynamic models (e.g. CAEDYM, PCLake, DELWAQ) include numerous variables 237 

and processes and are designed to be used as a virtual reality for the simulation of the whole ecosystem. 238 

They are therefore often coupled with a detailed hydrodynamic model and validated on field data. A com-239 

parison between nine complex dynamic models commonly used to study eutrophication can be found in 240 

(Anagnostou et al., 2017). Structurally dynamic models have then been proposed to add flexibility in the 241 

structure of the models (Jørgensen, 2015). The idea is to make the model parameters vary over time, based 242 

on the expert knowledge or by optimization of a well-chosen goal function. Kalman filter (Huang et al., 243 

2013) is based on similar idea: by addition of a “correction” term in the equations of the model, it enables to 244 

adjust the model variables to the measurements. Finally, we can mention the particular case of the BLOOM 245 
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model (Los, 1980) which also relies on optimization techniques: it is based on the computation of the opti-246 

mal species composition via linear programming. 247 

In the above-mentioned models, the ecosystem is described at the population level. The need to take into 248 

account some specific features of the populations, such as size distribution or other traits, led the researchers 249 

to use the individual-based approach (DeAngelis and Mooij, 2005). As it is « too computationally demanding 250 

to model all individuals separately » (Mooij et al., 2010a), derived approaches that are computationally more 251 

efficient, have been proposed, such as super-individual models, physiologically structured population mod-252 

els, stage-structures biomass models, and trait-based models. Mention should be made of other approaches 253 

such as energy system language (e.g. Rivera et al., 2007). 254 

Mechanistic models have been applied to many lakes (e.g. Cui et al., 2016; Hou et al., 2004; Takkouk and 255 

Casamitjana, 2016), and their contribution to the study of the spatio-temporal dynamics of ecosystems is 256 

widely recognized. In particular, hydrodynamic processes are represented accurately. However with regard 257 

to biological processes, because of the complexity of the process interplay, and the lack of knowledge, 258 

mechanistic models still need to be improved. Mechanistic models are already complex and involve a large 259 

set of parameters (sometimes more than 100) to be calibrated. As a consequence, the outcomes of simulated 260 

scenarios are hampered with great uncertainty (Gal et al., 2014). The calibration itself is a difficult task be-261 

cause it necessitates the use of extensive data sets (Elshorbagy and Ormsbee, 2006) and because the simula-262 

tions, particularly when coupled with 3D hydrodynamic models, are computationally demanding. Limita-263 

tions concerning their application at the decision-making level have been emphasized  (Fornarelli et al., 264 

2013). Nevertheless, deterministic models remain best suited to simulate the spatio-temporal response of lake 265 

ecosystems to forcing change scenarios. Moreover the increase of the computational power should facilitate 266 

the use of such models in the future. 267 

Note that mechanistic models are often deterministic but the stochastic nature of the events and pathways 268 

leading to eutrophication should encourage the use of stochastic components (Kutas and Toth, 1985; Sarkar 269 

and Chattopadhayay, 2003; Wang and Qi, 2018). 270 

 271 

2.3.3 From box models to 3D models 272 
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To reproduce accurately the ecosystem dynamics, mechanistic models are frequently coupled with a hydro-273 

dynamic model that can be quite simple, simulating only the water temperature and the regime of tempera-274 

ture stratification and mixing or more complex, simulating also the current velocities and patterns. 275 

The spatial dimension of the coupled models varies from zero (box models): in that case “the water body of a 276 

lake or of each box within a lake is represented as a completely mixed stirred tank reactor” (Nyholm, 1978), 277 

to three : the spatial heterogeneity of the ecosystem is taken into account in all three dimensions. If a box 278 

model alone cannot account for the lake spatial heterogeneity, this can be obtained using a set of intercon-279 

nected box models (Muraoka and Fukushima, 1986; Nyholm, 1978). For example, Smiths lake has been 280 

divided into 11 boxes, each of them is represented as a well-mixed reactor, connected to its neighbouring 281 

boxes through fluxes (Everett et al., 2007). For the vertical dimension, some models simulate the thermal 282 

stratification by using 2-box models with one box for the epilimnion and one box for the hypolimnion (Frisk, 283 

1982; Imboden, 1974; Imboden and Gächter, 1978; Rodriguez Reartes et al., 2016). 284 

Vertical 1D models are also frequently used to simulate the thermal stratification and its influence on phyto-285 

plankton, nutrient and oxygen dynamics (Bell et al., 2006; Fennel et al., 2007; Trolle et al., 2008). 2D mod-286 

els, more rarely used, are developed for large but shallow systems where thermal stratification is negligible 287 

(Fragoso et al., 2008; Huang et al., 2012; Zhang et al., 2008). 3D models appeared in the early 2000s (Kuo 288 

and Thomann, 1983), but it was in the 2010s, due to the increase of computational power and of in situ 289 

measurements, that 3D models have been increasingly applied on lakes (Carraro et al., 2012; Deus et al., 290 

2013; Leon et al., 2011; Schwalb et al., 2015; Soulignac et al., 2017). 291 

The coupling of models can be a difficult task. The Framework for Aquatic Biogeochemical Models 292 

(FABM) has been developed to facilitate the coupling between several hydrodynamic models and ecological 293 

models (Trolle et al., 2011a). 294 

2.4 Main research topics studied with lake models 295 

As shown by the keywords analysis (see appendix 6.4 ), the models can represent different components of 296 

the ecosystem. In the following section, we will analyse more in details how these components are repre-297 

sented: (1) phytoplankton; (2) nutrients; (3) sediments; (4) oxygen; (5) cyanobacteria. 298 

2.4.1 Phytoplankton 299 
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A significant number of references of the bibliographic corpus (115 references, 26% of the total) are marked 300 

with the keyword “phytoplankton” which shows the importance given to the modelling of phytoplankton 301 

dynamics (Elliott and Thackeray, 2004; Frisk et al., 1999; Hillmer et al., 2008; Reynolds and Irish, 1997; 302 

Rukhovets et al., 2003; Seip, 1991).  303 

In many models, in particular empirical models but also water quality models, only the total phytoplankton 304 

biomass is represented. In recent years,  the study of changes in phytoplankton community composition has 305 

received special attention, leading to the development of phytoplankton succession models (Rigosi et al., 306 

2010). The phytoplankton community is divided into different groups, either by modelling all the species 307 

individually or by incorporating community information into the models (Hallstan et al., 2012). The phyto-308 

plankton modelling relies on a representation of the functional characteristics of species (Hallstan et al., 309 

2012; Jones and Elliott, 2007; Kerimoglu et al., 2017a; Mieleitner and Reichert, 2008, 2006). In a few cases, 310 

models seek to represent the functioning of individuals in a phytoplankton population during the different 311 

stages of their life cycle through the use of "agent-based" or "individual based models" (Hellweger et al., 312 

2008). These models can be used to predict either short-term changes in phytoplankton community composi-313 

tion (Huang et al., 2014, 2012), or  medium to long term changes (Elliott et al., 2005; Markensten et al., 314 

2010). 3D models allow for better consideration of spatial heterogeneities in phytoplankton development 315 

(Hillmer et al., 2008; Leon et al., 2012, 2011). 316 

Some studies focus on the modelling of particular processes, such as: (1) the influence of physical function-317 

ing on phytoplankton dynamics (Bernhardt et al., 2008; Elliott et al., 2009; Elliott and Defew, 2012; Gulliver 318 

and Stephan, 1982; Jones and Elliott, 2007; Na and Park, 2006; Patynen et al., 2014; Verhagen, 1994); (2) 319 

the relationships between external or internal nutrient inputs and phytoplankton dynamics (Burger et al., 320 

2008; Cui et al., 2016; Li et al., 2015); (3) the interactions between phytoplankton and macrophytes (Asaeda 321 

et al., 2001). 322 

2.4.2 Nutrients 323 

Within the bibliographic corpus, numerous references, precisely 117 references (17%), 46 references (11%) 324 

and 74 references (17%), are marked respectively with the keywords “phosphorus”, “nitrogen” and “nutri-325 

ent” (see section Error! Reference source not found.). These references do not necessary focus on the 326 

modelling of nutrients only. Phosphorus is the most studied nutrient as it is generally considered as the main 327 
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limiting nutrient of phytoplankton growth in most lakes (e.g. Schindler, 2006; Sondergaard and Jeppesen, 328 

2007). 329 

As for phytoplankton, some models – mostly the empirical and static ones – only represent the total phos-330 

phorus (Dillon and Rigler, 1974b, 1974a; Nürnberg and LaZerte, 2004; Seo and Canale, 1996) and/or the 331 

total nitrogen concentrations (Brown et al., 2000; Ji et al., 2014; Milstead et al., 2013; Reckhow, 1993).  332 

However, to describe correctly the nutrient cycle and its dynamics, the different nutrient forms are often dis-333 

tinguished. The phosphorus is generally divided into two groups: particulate and dissolved phosphorus (Lung 334 

et al., 1976). Other models make the distinction between organic and inorganic nutrients (Deus et al., 2013).  335 

Among the dissolved inorganic nitrogen pool, nitrate and nitrite are often separated from the ammonium 336 

(Lindim et al., 2015; Wu et al., 2017), the nitrification and denitrification processes being considered as es-337 

sential for the ecosystem dynamics. In complex models such as CAEDYM (Hipsey et al., 2011), in addition 338 

to the forms previously mentioned (particulate/dissolved, organic/inorganic, nitrate/nitrite/ammonium), the 339 

organic compartments can also be divided into labile and refractory forms.  340 

Finally the carbon, nitrogen and phosphorus contents of biological organisms such as zooplankton, phyto-341 

plankton, bacteria or macrophytes can be described, through the use of either constant or variable 342 

stoichiometric ratios (see CAEDYM model (Hipsey et al., 2011)). Fernandez et al. (1997) introduced as 343 

model variables the soluble reactive, the soluble non-reactive and the particulate phosphorus cell quotas in 344 

phytoplankton, which are defined as phosphorus amount per biomass unit (Droop, 1968). The phosphorus 345 

content in shoots, secondary shoots and roots of macrophytes can also be included (Asaeda et al., 2000). 346 

In order to simulate accurately the nutrient concentration dynamics in lakes, interactions between nutrients 347 

and other components of the ecosystem are often represented (Asaeda et al., 2001). Nutrient outputs through 348 

evaporation, denitrification and rivers or ground outflows can be included, as it is the case of nutrient exter-349 

nal inputs coming from the watershed, the atmospheric deposition, the rainfall, and the ground. Some papers 350 

deal specifically with nutrients external loadings that are computed from watershed models such as SPAR-351 

ROW (Benoy et al., 2016; Milstead et al., 2013; Robertson and Saad, 2011), from specific models such as 352 

PCLoad (van Puijenbroek et al., 2004) or from satellite images (Politi and Prairie, 2018). In  (Liu, 2013), an 353 

empirical model is introduced to estimate the nutrient release from industrial manufacturing, livestock breed-354 

ing, crop agriculture, household consumption and atmospheric deposition. Nutrient internal loading is in-355 
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creasingly considered in the models (Burger et al., 2008; Li et al., 2015) as its impact on the lake nutrient 356 

concentrations and the phytoplankton growth limitation is now recognized (Wu et al., 2017). To simulate the 357 

internal cycling it can be necessary to take into account some bio-physical processes such as nutrient upwell-358 

ing fluxes (Hamblin et al., 2003), sediment resuspension (Chung et al., 2009) and nutrient release from sedi-359 

ments (Riverson et al., 2013). 360 

2.4.3 Sediment 361 

About 10% of the references (46 references out of 438) have “sediment” as keyword. Sediment is an impor-362 

tant pool of nutrients that play a key role in the nutrient cycles. Most of the models that specifically focus on 363 

sediment are 0D models, namely box-models (Chapra and Canale, 1991) or 1D vertical models (Chung et al., 364 

2009; Gudimov et al., 2016). The main processes considered in these models are: (1) sediment diagenesis 365 

which refers to the set of biogeochemical processes within the sediment (Gudimov et al., 2016; Paraska et 366 

al., 2014); (2) sediment resuspension (Chung et al., 2009); (3) and nutrient and/or oxygen exchanges between 367 

the sediment and the water column (Smits and van der Molen, 1993; Snodgrass, 1987; Walker and 368 

Snodgrass, 1986). 369 

2.4.4 Oxygen 370 

The word “oxygen” appears in 46 of the 438 selected references, which represents 10% of the bibliographic 371 

corpus. Most of oxygen models are mechanistic (Antonopoulos and Gianniou, 2003; Bell et al., 2006; Bon-372 

net and Poulin, 2004; Chapra and Canale, 1991), but some empirical models have also been developed (Chen 373 

and Liu, 2014; Elshaarawi, 1984; Rankovic et al., 2010). Oxygen dynamics is generally modelled by includ-374 

ing one variable, the oxygen concentration, and several related processes. Depending on the other variables 375 

of the model, reaeration, aerobic respiration of living organisms, photosynthesis of plants, oxidation of the 376 

organic matter and denitrification can be included (Stansbury et al., 2008; Xu and Xu, 2016). Sometimes, 377 

sediment oxygen demand (SOD) is also represented (Antonopoulos and Gianniou, 2003; Deus et al., 2013; 378 

Terry et al., 2017), to account for the quantity of oxygen uptake by sediment when it is not explicitly repre-379 

sented. In general, oxygen models are coupled with sediment models (Gudimov et al., 2016; Moore et al., 380 

1996). 381 

2.4.5 Cyanobacteria 382 
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The keyword “cyanobacteria” has been found in 35 references of the bibliographic corpus, which corre-383 

sponds to 8% of the selected references.  384 

According to many authors (e.g. Carey et al., 2012; Gkelis et al., 2014; Newcombe et al., 2012; O'Neil et al., 385 

2012), eutrophication and climate change promote algal blooms and more specifically cyanobacterial 386 

blooms. Since the 1990s, cyanobacteria has been the subject of modelling works related to eutrophication 387 

(Easthope and Howard, 1999; Patterson et al., 1994), but the number of articles devoted to this subject has 388 

particularly increased since the mid-2000s. On the 5
th
 of July 2018, the databases available on the Web of 389 

Science that we queried with the search equation “TITLE=((lake model*) AND (cyanobacter* OR 390 

bloom*))” gave a list of 71 references, more than 85% of which were written after 2005. The models of 391 

cyanobacteria range from simple regression models (Onderka, 2007) to 3D coupled hydrodynamic-392 

ecological models (Carraro et al., 2012). Models that are dedicated to the prediction can be mechanistic but 393 

are mainly empirical (Carvalho et al., 2011; Cha et al., 2014) and increasingly based on “data-driven” ap-394 

proaches (Obenour et al., 2014; Zhang et al., 2015). 395 

Cyanobacteria, which are procaryotic  phytoplankton, can be represented either with the same variable as 396 

phytoplankton (Shan et al., 2014) - in that case it is assumed to be dominant throughout the year – or as a 397 

sub-group of phytoplankton. In CAEDYM model (Hipsey et al., 2011) for example, phytoplankton can be 398 

decomposed into five groups: dinoflagellates, cyanobacteria, chlorophytes, cryptophytes and diatoms. 399 

Cyanobacteria can also appear under the name of “blue-green algae” as a sub-group of phytoplankton (e.g. 400 

Harada et al., 2013). Some specific processes of cyanobacteria are sometimes represented, as for example its 401 

flotation capacity in the water column (Aparicio Medrano et al., 2013; Walsby, 2005). 402 

2.5 Model selection 403 

The previous paragraphs give an overview of the different types of models that are used for the modelling of 404 

lake eutrophication. We can then wonder how to choose among these different types of models. Answering 405 

to this question is not simple, but general trends can nevertheless help our choice. The selection of the model 406 

type and structure will depend on the available knowledge and data, and on the modelling objective. With 407 

little knowledge about the ecosystem, only empirical models can be considered. Regression models can be 408 

obtained from few data and are useful to estimate mean annual values. On the other hand, data-driven models 409 

based on machine learning techniques require a large amount of data and manage to make short-term predic-410 
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tion. On the opposite, process-based models will be considered only if sufficient knowledge about the proc-411 

esses of the ecosystem is available. Data are nevertheless also required for such models, especially for the 412 

calibration of the model parameters. However, the results of process-based models can also be used for 413 

qualitative studies.  In that case, the model outputs are validated by confrontation with the already acquired 414 

knowledge. Finally, when both knowledge and data are available, we can consider mixed approaches. For 415 

example, we can use a Kalman filter technique that requires data to adjust the parameters of a process-based 416 

model. Concerning the structure of the model, the variables to be represented are the variables of interest for 417 

the study, namely the variables that we want to simulate and the variables on which they depend. In the same 418 

way, we will represent the processes of interest and the ones that we assume to have an impact on the system 419 

we intend to represent. The time-scale of the targeted simulations will also determine the processes to be 420 

included.For example, it may be useless to take into account daily variations of some processes if we are 421 

interested on the annual variations of the ecosystem. Finally, depending on the level of ecological description 422 

(individuals, species, populations, etc.), different types of models can be considered: individual based-423 

models, population equations, meta-ecosystems.  424 

3 Main results obtained with process-based models  425 

In the sequel, we only review the results obtained with process-based models because this type of models is 426 

required when models are to be used in prospective scenarios. Indeed, for assessing ecosystem evolution, at 427 

long or mid-term, in response to local and global changes (e.g. climate change, urbanization, …) or restora-428 

tion actions, it is mandatory in our opinion that the main processes involved in the ecosystem functioning are 429 

taken into account. 430 

Many eutrophication models of lake ecosystems have been applied to study sites for which monitoring data 431 

are available. Model description, including represented processes and equations, as well as calibration and 432 

validation results are presented in many articles (e.g. Bruce et al., 2006; Elliott and Thackeray, 2004; Elliott 433 

et al., 2007; Hamilton and Schladow, 1997; Leon et al., 2011; Lewis et al., 2002; Los and Brinkman, 1988; 434 

Reynolds et al., 2001, 2001; Riley and Stefan, 1988, 1988; Rukhovets et al., 2003). These models are mainly 435 

applied to simulate phytoplankton biomass, nutrients, oxygen, and in some cases cyanobacteria. The results 436 

of these models are given in the sequel. 437 

 438 
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3.1 Phytoplankton dynamics 439 

Aimed at better understanding phytoplankton dynamics, process-based models are run at seasonal to mul-440 

tiannual time scales. The main issues addressed are as follows: biomass of the main phytoplankton groups 441 

and/or of total phytoplankton, total chlorophyll concentration, values at different depths or mean values in 442 

the epilimnion, phenology of phytoplankton blooms (biomass peak dates, duration of threshold overpass), 443 

etc.  444 

Phytoplankton data are generally biovolumes of species identified by microscopy. Because of the long time 445 

necessary to obtain this type of data, the measurements are frequently performed in mean samples, for exam-446 

ple collected in the euphotic layer or at a specific depth (Bruce et al., 2006; Elliott et al., 2007). Chlorophyll 447 

is frequently considered as a proxy of phytoplankton biomass. For example, the results of multiannual simu-448 

lations over 11 years in Lake Erken (Sweden) are expressed as monthly mean total chlorophyll in the surface 449 

layer (0-10m) (Elliott et al., 2007). 450 

In large lakes, 3D modelling can be required. Hillmer et al. (2008) compare the results of 1D vertical 451 

(DYRESM-CAEDYM) and 3D (ELCOM-CAEDYM) models on the same study site, Lake Kinneret. Taking 452 

into account the horizontal heterogeneity of the lake makes it possible to obtain better results. In Lake Erie 453 

(Leon et al., 2011) mesoscale physical processes such as upwelling and general circulation in the lake have 454 

been modelled with the 3D ELCOM model. The spatio-temporal evolution of the variables is well simulated 455 

even if the authors underline the difficulty of comparing the simulation results of the phytoplankton succes-456 

sion with the measurements because of the necessary aggregation of the species in the model.  457 

Concentrations of chlorophyll or carbon are derived from field measurements of biovolumes, by using con-458 

version factors, which vary widely between authors. The quality of the phytoplankton biomass results, when 459 

evaluated in relation to the total chlorophyll concentration, is generally considered satisfactory. To judge the 460 

acceptability of the results, one criterion  frequently used, is that the model results  remain within a range of 461 

two standard deviations from the mean of the measured values (Elliott et al., 2007). 462 

Functional traits have been introduced in the definition of phytoplankton groups in order to better model the 463 

functional characteristics of an ecosystem and its responses to changes in nutrient inputs (Mieleitner and 464 

Reichert, 2008). This should also make the model more generic and allow better portability to other study 465 
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sites. Nevertheless the predictive capacity of these models remains modest. The ability of 124 models to 466 

replicate the dynamics of functional phytoplankton groups has been studied recently (Shimoda and Arhondit-467 

sis, 2016). The authors note a very large variability in the characterization of the functional phytoplankton 468 

groups as well as in the mathematical formulations that describe the main physiological processes of these 469 

groups (growth, nutrient absorption kinetics, mobility, etc.). 470 

 471 

3.2 Cyanobacteria dynamics  472 

Cyanobacteria strongly impair lake ecological functioning. Moreover they cause significant public health 473 

problems. Modelling their dynamics and the processes that control them are therefore the subject of many 474 

studies (Belov and Giles, 1997; Carraro et al., 2012; Elliott, 2012; Guven and Howard, 2006; Hense and 475 

Beckmann, 2006). According to many authors (e.g. Carey et al., 2012; Gkelis and Zaoutsos, 2014; New-476 

combe, 2012; O’Neil et al., 2012; Paerl and Huisman, 2008; Paerl and Paul, 2012), the ongoing climate 477 

change is likely to result in an increase in global cyanobacterial biomass as well as in occurrences of blooms. 478 

Guven and Howard (2006) provide a review and critical analysis of 12 main models of cyanobacteria devel-479 

opment in lake ecosystems. Two modelling approaches are discussed: deterministic models and neural net-480 

work models. These models generally focus on describing either the biological processes involved in the 481 

growth of biomass or the processes involved in the motion of cells. Few people combine all the aspects that 482 

affect the dynamics of cyanobacteria. 483 

Migration in the water column is a characteristic process of cyanobacteria: the rate of settling or flotation in 484 

the water column varies according to their density, which itself varies according to the amount of carbohy-485 

drates and volume of vacuoles in the cells. This is a very complex, non-linear process, with many feedbacks. 486 

It involves the intensity of photosynthesis, which is itself a function of the intensity of light in the water col-487 

umn, and therefore of the location of cyanobacteria in the water column. In addition, the different species of 488 

cyanobacteria form colonies whose morphometric characteristics affect the mobility. The models depict the 489 

migration process with different levels of complexity. 490 

In Kromkamp and Walsby (1990), the density change depends on two simultaneous processes: an increase 491 

controlled by the light intensity received by the cells and a decrease as a function of time. The parameter 492 
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values of the equations were obtained from experimental data of density change of a cyanobacterium species 493 

(Planktothrix aghardii) as a function of time and light intensity. The results show that the size of the colonies 494 

influences the migration rate but not the depth reached in the water column. The biomass vertical location 495 

fluctuates according to the rise of the floating colonies and the settling of others towards the bottom. Phos-496 

phorus deficient cells migrate to greater depths than light-limited cells.  497 

Howard et al. (1996) propose a cyanobacterial growth and transport model that accounts for, on the one 498 

hand, the photosynthesis production, the cell density variation and the vertical migration of cells and on the 499 

other hand, the turbulent mixing in the water column that also affects cyanobacteria motion.  500 

Belov and Giles (1997) present a dynamic model of cyanobacteria motion based on the properties of regula-501 

tion of cell buoyancy under simplified conditions: an isothermal water column where nutrients are not limit-502 

ing factors. The main factor controlling cell mobility is the nycthemeral cycle of light. The article focuses on 503 

analysing under these conditions the mathematical behaviour of the equations involved in the model. 504 

One of the specificities of cyanobacteria is the ability of certain species, the diazotrophic species, to fix at-505 

mospheric nitrogen. Accounting for this process allows the models to better represent the control of the suc-506 

cession of species by the available nutrients. Hense and Beckmann (2010) propose several versions of a 507 

model of the life cycle of diazotrophic cyanobacteria, considering the active phase of nitrogen fixation and 508 

the vegetative phase of cells. The ecological characteristics, life cycle of cyanobacteria and interactions with 509 

hydrodynamics are particularly complex (Figure 2). The simplified approach satisfactorily describes the dy-510 

namics of cyanobacteria, in particular the time patterns of blooms and the intensity of nitrogen fixation. The 511 

proposed set of equations can be inserted into different types of lake models of cyanobacterial dynamics. 512 

 513 

Figure 2. General sketch of main steps of cyanobacteria life cycle (Hense, 2010). 514 

 515 

In Lake Pusiano, Carraro et al. (2012) validated the 3D model ELCOM coupled to the CAEDYM biological 516 

model with high frequency measurements to identify the factors, including hydrodynamic factors, which 517 

drive the spatial distribution of the cyanobacterium P. rubescens. 518 
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Regarding the impact of climate change on cyanobacteria, Elliott (2012) reviewed different predictive mod-519 

els. Most of the analysed results show an increase in the relative biomass of cyanobacteria due to an increase 520 

in water temperature, an increase in residence time and an increase in nutrient loading from the watershed. 521 

The main effect of climate change is to alter the phenology of cyanobacterial blooms and the abundance of 522 

their biomass. The lake food web is also changing due to the low nutritional value of cyanobacteria for zoo-523 

plankton. 524 

 525 

3.3 Integration of models in early warning system 526 

For management applications, models are often integrated into warning systems to predict short-term phyto-527 

plankton blooms, particularly to improve operational control of cyanobacterial blooms (Shimoda and Arhon-528 

ditsis, 2016). Most articles describe the models used and the architecture of the system. But few a posteriori 529 

comparisons of the forecasts with measurements made afterwards, are performed.  530 

In order to predict algal blooms in Lake Taihu, the EcoTaihu model has been integrated into a Windows 531 

software platform (Zhang et al., 2013). The results of the simulations generally show a good agreement with 532 

the measurements. But the authors also point out that no model is able to integrate all ecological processes. 533 

The forecast discrepancies are not only due to the model but also to data uncertainties and because modelling 534 

results and field measurements are not directly comparable. 535 

 536 

3.4 Ecosystem response to local management strategies 537 

Eutrophication models can be used to study prospective scenarios and compare the impact of local manage-538 

ment alternatives. Several management scenarios of Los Molinos reservoir (Argentina) were tested with a 539 

model describing the dynamics of nutrients and phytoplankton (Rodriguez Reartes et al., 2016). After cali-540 

bration and validation of the model, scenario simulation results highlighted the impact on water quality of 541 

livestock husbandry practices and of insufficient wastewater treatment, especially septic tanks. According to 542 

the model simulations, the combination of wastewater treatment in the reservoir direct watershed and meas-543 

ures to reduce nutrient loading (N and P) from livestock would be the most beneficial to preserve the quality 544 

of the lake. 545 
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The effects of different actions to reduce eutrophication of a lake in Sweden (reduction of nutrient inputs, 546 

biomanipulation, herbicide application) were analysed with a vertical 1D biogeochemical model (Pers, 547 

2005). According to the simulation results, the best effects are obtained with a nutrient reduction and bioma-548 

nipulation of the fish species. 549 

The comparison of different prospective scenarios should include a reference scenario. This is not the case in 550 

most of the performed modelling studies. This is due to the lack of sufficiently long-term historical data sets. 551 

Moreover, it is particularly complex to achieve a reliable assessment of the environmental conditions prior to 552 

the onset of eutrophication. For total phosphorus, reference values of the watershed loading can be estimated 553 

by different approaches (export coefficients, morpho-edaphic indices, paleolimnological estimates). But the 554 

results of these different methods have rarely been compared. A study performed on 35 sub-alpine lakes in 555 

northern Italy (Salerno et al., 2014) highlighted the need of deterministic watershed models to estimate the 556 

total reference phosphorus inputs. 557 

An expected outcome of the prospective simulations regards the level of nutrient loading by the watershed 558 

that must not be overpassed to avoid eutrophication of a lake. But even when the targets to be achieved are 559 

derived from modelling results, the authors remind that these values must be considered with caution as the 560 

models are not able to anticipate accurately the changes in the trophic web that would occur in response to 561 

nutrient reduction (e.g. Trolle et al., 2008).   562 

Modelling studies mainly focus on the advantages of the modelling approach developed and its transferabil-563 

ity to other systems. The model is generally implemented on a particular study site for which a sufficient data 564 

set exists. Despite the transferability of process-based models, they must be implemented in a configuration 565 

adapted to the characteristics of each lake in order to estimate the required threshold of nutrient loading 566 

(Trolle et al., 2008). Moreover, due to the complexity of the ecological functioning of lake ecosystems, many 567 

processes are not taken into account or are very simplified in the models (role of sediment, change of phyto-568 

plankton assemblages, mobility of certain species, etc.).  When recommendations are made, the authors are 569 

very cautious and they immediately nuanced the recommendations. Thus, the total phosphorus loading which 570 

would allow Lake Ravn (Denmark) to achieve the objectives of good ecological status required by the Euro-571 

pean Framework Directive on Water, was estimated thanks to a vertical 1D model (Trolle et al., 2008). The 572 

authors recommend a reduction of at least 50% of the total phosphorus inputs by the watershed. In parallel, 573 
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they raise awareness on the possible cascade effects within the food web, not simulated by the model, and 574 

which could lead to an unpredictable evolution of the ecosystem. 575 

 576 

3.5 Ecosystem response to global changes 577 

A common application of models is the study of expected effect of global changes, especially climate 578 

change. Climate change will impact precipitation patterns, wind speeds, solar radiation, and air temperature 579 

(e.g. Arnell and Gosling, 2013; Beniston et al., 2007; European Environment Agency, 2012). Most models 580 

simulate the effect of climate change on different aspects of lake functioning related to eutrophication: 581 

mainly oxygen concentrations (Fang and Stefan, 1997, 2009), phytoplankton growth (Hassan et al., 1998) 582 

and the dominance of cyanobacteria (e.g. Elliott, 2012). The consideration of climate change is mainly based 583 

on two approaches: (1) the use of outputs from regional climate models treated by downscaling techniques to 584 

obtain meteorological forcing at the studied lake level; or (2) a meteorological forcing sensitivity analysis 585 

where actual measured meteorological data are modified by a range of factors. 586 

Very often the analysis of the influence of climate change, in particular of global warming, focuses on 587 

cyanobacteria. Global warming is supposed to have a positive effect on the increase of cyanobacteria bio-588 

mass (e.g. Carey et al., 2012; Newcombe, 2012; Paerl and Paul, 2012; Posch et al., 2012; Wagner and 589 

Adrian, 2009). Nevertheless, very few reliable predictive simulations of the dominance of cyanobacteria 590 

have still been performed (Elliott, 2012). 591 

In Lake Windermere (Great Britain), the effect of an increase in water temperature and phosphorus loading 592 

on phytoplankton has been studied with the PROTECH model (Elliott, 2011). The results show an earlier 593 

spring peak of diatoms (2-3 days/°C). The biomass of diatoms, which is controlled mainly by light is little 594 

changed. On the other hand, the biomass of cyanobacteria increases with the increase of the two factors stud-595 

ied. These two factors act in synergy, the predominant influence being due to phosphorus inputs. The domi-596 

nance of cyanobacteria is enhanced in late summer. Temperature impacts mainly succession and seasonal 597 

phytoplankton community whereas nutrient inputs affect the amount of produced biomass. 598 

Howard and Easthope (2002) used the predictions of the HADCM2 climate model over a period of 90 years, 599 

until the end of the 21st century, to simulate the evolution of the growth of the cyanobacterium Microcystis 600 
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in Farmoor Lake (Great Britain). The main meteorological variables used are the monthly averages of wind 601 

speed, cloud cover and solar radiation. The results do not show an overall increase in the annual biomass of 602 

cyanobacteria. On the other hand, the growth period of cyanobacteria would be longer with higher biomass 603 

than currently in spring (May) and autumn (September). These results only quantify the direct effect of cli-604 

mate change because the long-term change in rainfall on loading from the watershed is not taken into ac-605 

count. 606 

The effect of global warming predicted until the end of the 21
st
 century has been studied in three lakes in 607 

New Zealand (Trolle et al., 2011b). A regional climate model based on the IPCC A2 scenario predicts an 608 

average annual increase in air temperature of about 2.5 ° C in the 2100s in the studied lake region. The future 609 

climate conditions are described in a very simplified way; only the change of air temperature is taken into 610 

account. The average annual increase in air temperature forecast for the year 2100 has been added to the 611 

average daily temperatures over the period 2002-2007. The morphometric and trophic characteristics of the 612 

three modelled lakes are different. The first is quite deep (33.5m) and oligo-mesotrophic, the second shallow 613 

(13.5m) and eutrophic and the third very shallow (2.5m) and very eutrophic. Cyanobacteria are present only 614 

in the second lake. Modelling results show an increase in phytoplankton biomass in summer and an increase 615 

in the dominance of cyanobacteria in the second lake. The average annual biomass increases in the oligo-616 

mesotrophic and eutrophic lakes but decreases in the highly eutrophic lake. The phytoplankton biomass de-617 

creases in winter and spring, especially diatoms. 618 

A recent analysis of ten modelling studies (Elliott, 2012) on the impact of climate change on cyanobacteria 619 

has shown an increase in the relative abundance of cyanobacteria with an increase in water temperature, an 620 

increase in the residence time of the water and an increase in nutrient loading by the catchment. 621 

The direct effects of climate change mainly relate to phenology of phytoplankton dynamics but little to the 622 

annual amount of total biomass. These changes in phytoplankton succession may result in nitrogen limitation 623 

in some lakes, and thus favour the dominance of nitrogen-fixing cyanobacteria. In addition, warmer water in 624 

spring can increase nutrient uptake by the phytoplankton community, which in some lakes causes nitrogen 625 

limitation later in the year, potentially favourable for some nitrogen-fixing cyanobacteria. The increase in the 626 

relative abundance of cyanobacteria may also impact the higher levels of the ecosystem food web due to the 627 

low grazing of cyanobacteria by zooplankton. 628 
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3.6 Coupled models of lake and watershed 629 

Coupling watershed modelling and lake response modelling is a key issue for an efficient use of models in 630 

eutrophication control. But to our knowledge, few research results are still available.  631 

Most often, the coupling between watershed model and lake model is not effective. A hydrological model of 632 

Lake Cayuga watershed (USA) has provided estimates of nutrient loading by lake tributaries (Haith et al., 633 

2012). But this watershed model is not coupled with a model of the lake itself. This is also the case for Lake 634 

Gucheng watershed in China (Huang et al., 2009) or for Lake Tahoe watershed (USA) (Riverson et al., 635 

2013). 636 

Since the 2000s, integrated modelling of the watershed and the lake has been undertaken. Lake watershed 637 

modelling is conducted with the objective of providing the lake model with input data to then simulate the 638 

lake response to watershed loadings. But the limits of these coupled models come from the cumulative un-639 

certainties of the hydrological model and the lake model. If the inflows are fairly well simulated, the main 640 

uncertainties are due to errors in computing nutrient concentrations in the lake tributaries (Liu et al., 2006; 641 

Silva et al., 2016; van Puijenbroek et al., 2004).  642 

Carraro et al. (2012b) propose for Lake Pusiano (Northern Italy) a coupled model of loading by the water-643 

shed (SWAT model) and a deterministic model of the lake response (DYRESM-CAEDYM model). The 644 

results obtained for different scenarios are discussed and compared, but no quantified recommendation for a 645 

percentage of reduction in loadings or concentrations to be achieved is given.  646 

Very few studies have focused on coupling climate, watershed and lake models. To study phytoplankton 647 

biomass in a large shallow lake, Lake Malaren (Sweden), a regional climate model, a hydrological model, 648 

and a lake model were used in sequence (Markensten et al., 2010). In this lake, warming increases the dura-649 

tion of phytoplankton production, slightly increases total biomass, and modifies the phytoplankton composi-650 

tion to the advantage of nitrogen-fixing cyanobacteria. According to the authors, the change in the hydro-651 

logical regime and therefore the nutrient loading to the lake drives the dominance of cyanobacteria. 652 

The aquatic continuum, from headwaters to the ocean, is at the heart of current research on biogeochemical 653 

processes in inland waters. This is reflected in the topic of the special issue of Limnology and Oceanography, 654 

a reference journal in the field, entitled "Headwaters to oceans: ecological and biogeochemical contrasts 655 
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across the aquatic continuum" (Xenopoulos et al., 2017). In this area, progress on knowledge integration is 656 

rapid and modelling of the continuum, still in its infancy, should make significant progress in the coming 657 

years.  658 

 659 

4 Discussion and perspectives 660 

The development of lake eutrophication models is still a growing field in limnology. However several au-661 

thors complain that the performances of the biological models remain relatively low (Mooij et al., 2010; 662 

Shimoda and Arhonditsis, 2016). According to Trolle et al., (2011a), the problem is not the “lack of knowl-663 

edge about ecosystem functioning, but rather the limited extent of open communication, inadequate collabo-664 

ration and lack of suitable structure to support the aquatic scientific modelling community”. In their paper, 665 

these authors argue for the adoption of good practices for developing, using and sharing models effectively 666 

and correctly, which should help improving the models. Mooij et al. (2010) identified two challenges for 667 

making further progress in lake ecosystem modelling: to avoid developing more models largely following 668 

the concept of others (‘reinventing the wheel’) and to avoid focusing on only one type of model, while ignor-669 

ing new and diverse approaches that have become available (‘having tunnel vision’)” (Mooij et al., 2010a). 670 

This suggests to merge different modelling approaches, such as 1D hydrodynamic-ecological model and 671 

super individual-based model (Makler-Pick et al., 2011), or machine learning models and physical dynamical 672 

models (Crisci et al., 2017). 673 

To improve the models, the complexity of the predictive ecosystem models should also be increased, because 674 

“there is a lot of knowledge that we are not using” (Hellweger, 2017). The most striking example is the al-675 

most systematic use of the Monod function for representing the growth of a phytoplankton population 676 

whereas the  use of internal (vs. external) nutrient quota (Droop, 1968) could be represented (Hellweger, 677 

2017). Another example is the use of Michaelis-Menten kinetics for nutrient uptake by phytoplankton, which 678 

does not enable to represent the variable stoichiometry of biomass and of nutrient uptake (Flynn, 2010, 2005; 679 

Smith et al., 2014) whereas size- and trait-based kinetics give promising results (Fiksen et al., 2013; Smith et 680 

al., 2014). In the same way, the process of mineralization of the organic matter by bacteria, which has been 681 

proved to be important for the cyanobacteria dynamics, is often represented as a simple chemical reaction 682 

with a rate either constant or dependent on the bacteria concentration at best (Li et al., 2014). Xu et al. (2015) 683 
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also claim that the use of more advanced statistical methods, such a quantile regression, can improve the 684 

models of lake eutrophication.  685 

Even if the relationship between complexity and uncertainty of models is not so clear (Håkanson, 1995; 686 

Hellweger, 2017; Jørgensen, 1990), it is obvious that the outcomes of simulated scenarios are limited by 687 

great uncertainty (Arhonditsis and Brett, 2004). Some authors have attempted to quantify model errors due to 688 

uncertainty (Bennett et al., 2013; Hongping and Yong, 2003; Reckhow, 1994; Scavia et al., 1981; Snodgrass, 689 

1985; Stow et al., 1997; Van Straten and Keesman, 1991), but few models include thorough uncertainty 690 

analyses (Hongping and Yong, 2003). 691 

This uncertainty partly comes from the large set of parameters (sometimes more than 100) to be calibrated. 692 

To quantify the effect of parameter uncertainties on the model outputs, sensitivity analysis can be conducted 693 

(Arhonditsis et al., 2007; Brett et al., 2016; Janse et al., 2010; Yi et al., 2016). However, as for general uncer-694 

tainty analysis, sensitivity analysis is not always performed. Two articles (Arhonditsis and Brett, 2004; Shi-695 

moda and Arhonditsis, 2016) have investigated whether the conventional methodological procedures for 696 

sensitivity analysis, calibration and validation, are reported in the papers or not. They show that only half of 697 

the papers present sensitivity analysis results and that “manual” or “trial and error” calibration is the most 698 

applied calibration procedure. Very few papers use automatic calibration procedures that are either based on 699 

optimization or on Monte Carlo and Bayesian inference. Moreover these papers only deal with 0D or 1D 700 

models. 701 

Another part of output uncertainty comes from the model structure itself. To reduce it, several “ensemble 702 

approaches” have been proposed, similar to those used for weather forecasts. In (Gal et al., 2014; Nielsen et 703 

al., 2014) an ensemble of model runs obtained with several “equivalent” set of parameters are used to im-704 

prove the model predictive power. In (Trolle et al., 2014), the same scenario is simulated using an ensemble 705 

of models. Bayesian model averaging (BMA) can also be used to improve the predictive performance of the 706 

models (Hamilton et al., 2009).  707 

Another effective way is to conduct cross-comparisons of similar models on the same study sites. This type 708 

of comparative studies has been performed recently for 1D models (Bruce et al., 2018; Perroud et al., 2009; 709 

Stepanenko et al., 2012, 2010). To our knowledge very few attempts have been made for hydrodynamic-710 

ecological models (Trolle et al., 2014) and none for 3D models. 711 
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Nevertheless, to perform such studies, portability of the model software is required. This type of concern is 712 

just starting to be addressed by the modeller community. A Fortran-based Framework for Aquatic Biogeo-713 

chemical Models (FABM - Bruggeman and Bolding, 2014; Trolle et al., 2011) enables to easily couple hy-714 

drodynamic models with ecological models, whereas the project “Framework for Interoperable Freshwater 715 

Models” (FIFM) has investigated flexible computer-based frameworks for integrating freshwater models 716 

(Elliott et al., 2014). The Database Approach To Modelling (DATM -Mooij et al., 2014) enables to auto-717 

matically implement the same model under different frameworks. In order to facilitate the comparison of 718 

models or the application of one model on several lakes, it is also necessary to share the codes and the data 719 

sets (Mooij et al., 2010a). Just as importantly, the datasets must be of good quality and enriched with meta-720 

information (such as the type of sensor used and their accuracy). This is mandatory for the good interpreta-721 

tion and use of the data (Mooij et al., 2010a). The use of high-frequency sensors (Brentrup et al., 2016; Car-722 

raro et al., 2012; Soulignac et al., 2017), as well as satellite images (Curtarelli et al., 2015; Dash et al., 2011; 723 

Tyler et al., 2006; Yacobi, 2006), will also enrich significantly the data sets. Using such enriched and good-724 

quality data sets can improve the model performances. Indeed, the more data we use for calibration, com-725 

parison with model outputs or to feed machine learning models, the greater the accuracy of the model will 726 

be.  727 

 728 

5 Conclusion 729 

 Early lake eutrophication models in the 1970s were empirical models linking in-lake phosphorus and chlo-730 

rophyll concentrations, as well as models of watershed nutrient loading and in-lake chlorophyll concentra-731 

tion. These models, very easy to implement, were useful for providing targets of nutrient and chlorophyll 732 

concentrations, required for reducing or controlling lake eutrophication. Dynamic deterministic models have 733 

been then developed, whose characteristics are very diverse as regards the spatial dimension (well-mixed 734 

system, 1D vertical to 3D models), the sediment exchange with the water column, the complexity of ecologi-735 

cal functioning and the hydrodynamics. Most of these models represent the pelagic zone of the lake. The 736 

most represented state variables include phytoplankton, considered as a single group or divided into main 737 

groups, nutrients (phosphorus and nitrogen) and oxygen. Among the phytoplankton groups, cyanobacteria 738 

have been increasingly represented since the mid-2000s. The dynamics of macrophytes and their possible 739 
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competition with phytoplankton are accounted for in some rather recent models. One notable development 740 

over the past decade has been the modelling of phytoplankton dynamics based on the functional traits of 741 

dominant species. The objectives of the modelling studies are frequently related to the assessment of the 742 

expected mid-and long-term evolution of lake eutrophication under the influence of global changes (nutri-743 

ents, urbanization, climate…). Among these changes, the effects of global warming are the most frequently 744 

addressed. At these time scales, a main barrier that models have to face, regards the evolution of the phyto-745 

plankton succession and its cascading effects on lake ecological functioning. Recent evolutions show a 746 

strong coupling between modelling and acquisition of new types of experimental data (remote sensing, high 747 

frequency field sensors, biology molecular data…). A strong trend seen in papers published in the last dec-748 

ade is the increasing number of application of 3D models coupled with satellite images of phytoplankton 749 

biomass spatial distribution. 750 

6 Appendix 751 

In this appendix, we first give some details about the method applied for obtaining the bibliographic corpus 752 

considered in this review. We then present some simple statistics about: (1) the number of publications and 753 

citations; (2) the general categories, research areas and journal titles; (3) the keywords of the references in-754 

cluded in the bibliographic corpus. 755 

6.1 Selection of the bibliographic corpus 756 

The present review was performed, using the bibliographic search tool proposed by Web of Science. The 757 

first database search of February 2017 (Crave et al., 2017) was updated on 1
rst

 June 2018 with the following 758 

search equation: 759 

TITLE=((eutrophic* OR oxygen* OR hypox* OR anox* OR phytoplankton* OR "harmful alga"* OR nutri-760 

ent* OR cyanobact* OR proliferat*) AND (model* OR numerical* OR simulat*) AND (lake* OR reser-761 

voir*)) 762 

All citation databases were consulted for all available years (from 1956 to 2018). Among the references ob-763 

tained, we kept only the journal articles written in English. This query provided us with a list of 487 refer-764 

ences from which we removed 49 references that were not relevant. We finally get a bibliographic corpus of 765 

438 references among which 431 references are indexed in the Web of Science core collection, 62 in the 766 



29 

 

MEDLINE database, 1 in the KCI Korean Journal Database and 1 in the Scientific Electronic Library Online 767 

(SCIELO) database. Each reference may be indexed in several databases.  768 

6.2 Number of publications and citations 769 

The first referenced paper (Droop, 1968) was published in 1968. Since then, the number of publications per 770 

year has obviously increased (Figure 3), following the global tendency observed for the total number of sci-771 

entific publications. In average, 8.6 articles were published per year, and each article was cited 17 times. The 772 

total number of citations is 7447, which corresponds, since 1968, to a mean value of 146 citations per year.  773 

Figure 3. Number of publications and citations per year, based on the ISI Web of Science citation report. 774 

 775 

6.3 General categories, research areas and journal titles 776 

The repartition of the references are given in terms of general categories, research areas and journal titles 777 

(Table 2). We note that most of the references of the bibliographic corpus come from the “science technol-778 

ogy” and “life sciences biomedicine” categories. This shows that the studies are motivated both by academic 779 

objectives to improve knowledge and by more applied objectives to develop management strategies (see 780 

section 2.2). One third of the references (respectively one quarter) also belongs to the category of “physical 781 

sciences” (respectively "technologies"), knowing that one reference may belong to several categories.  782 

The repartition according to the research areas shows that lake eutrophication modelling is a multi-783 

disciplinary field of research. Most of the references (two thirds) are in the field of “environmental sciences 784 

and ecology”, but the research areas of “marine and freshwater biology”, “water resources” and “engineer-785 

ing” also contain a significant number of references (from 20 to 30%). Note that some publications in 786 

“mathematics” and “computer science” are also included in the bibliographic corpus, which is not surprising 787 

as we focus on modelling studies. 788 

The journal in which most papers (16%) have been published is “Ecological modelling”, perhaps because it 789 

is one of the few journals in environmental sciences that only focus on modelling. The scope of the other 790 

most represented journals cover the research area of water sciences in general, without restriction to model-791 

ling approaches. 792 

 793 
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Table 2. Repartition of the publications according to their general categories, their research areas and the journal title (pro-794 

vided by Web of Science). Only the research areas (respectively the journal titles) that represent more than 2% (respectively 795 

1.5%) of the bibliographic corpus are listed. 796 

 797 

6.4 Keywords 798 

An automatic search routine was implemented to sort the keywords according to the number of publications 799 

in which they appear. The routine does not search for an exact match but for an inclusion. For example, a 800 

publication with "lake models" as keyword will be counted for the keywords "lake model", "models", 801 

"model" and "lake". Only the keywords that appear in more than 20 publications of the bibliographic corpus 802 

have been considered. The obtained sorted list has then been divided in sub-groups as presented in Table 3. 803 

Not surprisingly, the most common keywords are “lake”, “water” and “eutrophic”.  804 

This classification of the keywords give an interesting overview of the research works presented in the ana-805 

lysed bibliographic corpus. Each sub-group will be discussed more in details in the following sections. 806 

 807 

Table 3. Classification of keywords according to the number of publications in which they appear. 808 
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Germany 3 Lake Peipsi 3 555 3 

  
Turkey 3 Lake Bassenthwaite 5 3 

  
Russia 3 Lake Columbia 3 3 

    
Lake Spokane 19 3 

    
Lake Kasumigaura 220 3 

 

Table 1. Number of publications depending on the continent, the country and the name of the studied lake. Only the 

countries and the lakes that have been found in three or more than three publications are listed. 
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Environmental Sciences and 

Ecology 
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Water resources 101 23.1 
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Mathematics 10 2.3 

Computer science 9 2.1 

Journal Titles records % of 438 
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Hydrobiologia 25 5.7 

Journal of great lakes research 25 5.7 

Water research 18 4.1 

Water science and technology 13 3.0 
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Ecological engineering 8 1.8 

Freshwater biology 7 1.6 

Science of the Total Environment 7 1.6 

 

Table 2. Repartition of the publications according to their general categories, their research areas and the journal title 

(provided by Web of Science). Only the research areas (respectively the journal titles) that represent more than 2% 
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Figure 1. Time evolution of the number of publications according to the continent of the studied lake. 
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Figure 3. . Number of publications and citations per year, based on the ISI Web of Science citation report. 
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