

Innovative combination of tracing methods to differentiate between legacy and contemporary PAH sources in the atmosphere-soil-river continuum in an urban catchment (Orge River, France)

Claire Froger, Sophie Ayrault, Johnny Gasperi, Emilie Caupos, Gaël Monvoisin, O. Evrard, Cécile Quantin

▶ To cite this version:

Claire Froger, Sophie Ayrault, Johnny Gasperi, Emilie Caupos, Gaël Monvoisin, et al.. Innovative combination of tracing methods to differentiate between legacy and contemporary PAH sources in the atmosphere-soil-river continuum in an urban catchment (Orge River, France). Science of the Total Environment, 2019, pp.448-458. 10.1016/j.scitotenv.2019.03.150. hal-02067746

HAL Id: hal-02067746 https://enpc.hal.science/hal-02067746

Submitted on 7 Jul2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Innovative combination of tracing methods to differentiate between legacy and contemporary PAH sources in the atmosphere-soil-river continuum in an urban catchment (Orge River, France)

- ⁶ Claire Froger^{*,1,2}, Sophie Ayrault¹, Johnny Gasperi³, Emilie Caupos³, Gaël Monvoisin²,
- 9 Olivier Evrard¹, Cécile Quantin²

10

- 11 *Corresponding author: c
- 12 laire.froger@lsce.ipsl.fr
- 13 Phone: +33 169824357
- 14 Address: Bat. 714, CEA Orme les Merisiers, 91198, Gif-sur-Yvette, France

15

- 16 ¹ Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-
- 17 UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- 18 ² Géosciences Paris Sud (GEOPS), Université Paris-Sud CNRS- Université Paris-Saclay,
- 19 91400 Orsay, France
- 20 ³ Laboratoire Eau Environnement et Systèmes Urbains (LEESU), Université Paris-Est Créteil,
- 21 UMR MA 102- Agro ParisTech, 94010 Créteil, France
- 22
- 23
- 24 <u>Abstract</u>

25 Polycyclic aromatic hydrocarbons (PAH) have been released by human activities during more 26 than a century, contaminating the entire atmosphere - soil - river continuum. Due to their 27 ubiquity in the environment and their potential severe biological impacts, PAH became 28 priority pollutants and were targeted by environmental public agencies. To better manage 29 PAH pollution, it is necessary to identify unambiguously the sources and pathways of those 30 compounds at the catchment scale, and to evaluate the persistence of historical PAH pollution 31 in the environment especially in those urban contexts concentrating multiple PAH sources. 32 Accordingly, the current research monitored the contamination in atmospheric fallout, soils and rivers of a 950-km² catchment (Orge River) characterized by an increasing urban gradient 33 34 in downstream direction, and located in the Seine River basin characterized by a high level of 35 PAH legacy contamination. A combination of various approaches was used, including the widely used PAH diagnostic ratios, together with innovative methods such as PAH 36 37 correlations and sediment fingerprinting using fallout radionuclides to clearly identify both 38 the origin of PAH and their main PAH pathways to the river. The results demonstrated the 39 persistence of legacy PAH contamination in the catchment, responsible for the signature of 40 the suspended particulate matter currently transiting in the Orge River. They underlined the 41 conservation of PAH through the soil - river continuum. Finally, urban runoff was 42 demonstrated to provide the main PAH source to the river in the densely urbanized area by 43 both PAH correlations and sediment fingerprinting. These results were used to model PAH 44 concentrations in those particles supplied from urban areas to the river.

45 Keywords: PAH ratios, urban runoff, legacy contamination, sediment fingerprinting

46

47 1. Introduction

Human activities have led to deleterious impacts on aquatic ecosystems as a result of thedischarge of numerous contaminants into the environment. Among these harmful substances,

50 polycyclic aromatic hydrocarbons (PAHs) released by the incomplete combustion or the 51 pyrolysis of organic matter have been listed as priority pollutants by environmental state 52 agencies since the 1970s due to their adverse effects on health (Grimmer, 1985). Accordingly, 53 policies and regulations have been implemented to improve the river quality and to control 54 further contaminant releases. In Europe, the Water Framework Directive (WFD, Directive 55 2000/60/EC) fixes the target concentrations for multiple contaminants in water bodies, in 56 order to improve their chemical quality. In France, numerous river basins including the Seine River basin exceed the target concentrations with values reaching up to 20 mg.kg⁻¹ in the 57 58 particulate fraction (Fernandes et al., 1997), threatening the achievement of the good chemical 59 status. Accordingly, the identification of those sources supplying PAH contamination to rivers 60 is required to improve the current management of water bodies. As PAH contamination is 61 widespread in Western Europe because of the continuous atmospheric releases of these 62 substances since 1850 (Fernández et al., 2000), it is particularly important to determine 63 whether the high levels of contamination observed nowadays in rivers are mainly explained 64 by the remobilization of legacy pollution or by the current releases of these substances.

Several tracing approaches have been developed during the last several decades to identify the 65 main sources of PAH in the environment (Budzinski et al., 1997; Gateuille et al., 2014b; 66 67 Yunker et al., 2002). The most frequent technique corresponds to the calculation of diagnostic molecular ratios. This approach is based on the use and combination of ratios between 68 69 different PAH, as the contribution of specific molecules is characteristic of a given source 70 type, typically the combustion of either biomass (coal, wood, grass), or that of crude oil and 71 fossil fuel (Ravindra et al., 2008). The combination of two ratios is generally used to 72 discriminate PAH according to their pyrogenic, petrogenic or mixed origin (Kavouras et al., 73 2001; Tobiszewski and Namieśnik, 2012). However, several studies pointed out the 74 sensitivity of those ratios to environmental processes such as oxidation and photo-oxidation 75 leading to the preferential degradation of some PAH, therefore modifying the related ratios 76 (Biache et al., 2014; Zhang et al., 2005). Moreover, as these ratios are not specific to a 77 particular source, their interpretation remains limited and insufficient in complex urban 78 catchments where the identification of well-localized sources is required. Other approaches 79 involve statistical analyses such as principal component analysis (PCA), hierarchical cluster 80 analysis (HCA) or modelling techniques like the positive matrix factorization (PMF) to 81 identify sources (Motelay-Massei et al., 2003; Sofowote et al., 2011; Xu et al., 2016). Those 82 statistical analyses take into account all the PAH molecules measured when processing the 83 datasets, with the particularity for PCA and HCA to cluster PAH molecules or samples 84 sharing similar characteristics. The PMF models are more complex and their results provide 85 theoretical PAH profiles of the sources with their respective contribution, which can then be 86 compared to the potential sources of PAH. Although statistical approaches may be powerful, 87 caution must be taken when interpreting their outputs, as they strongly depend on data quality 88 and quantity, and do not consider the multiple processes that may affect the fate of PAH in the 89 environment (biodegradation, oxidation...). Finally, nitro and oxy-PAHs, which are 90 commonly investigated because of their mutagenicity (Umbuzeiro et al., 2008), appeared to 91 provide powerful tracers of some anthropogenic sources such as diesel combustion (Anyanwu 92 and Semple, 2015; Keyte et al., 2016). However, their measurement requires further analytical 93 developments, currently limiting their widespread use as diagnostic tracers.

In addition, the identification of PAH sources is challenging as their contribution may vary throughout time (Garban et al., 2002; Harrison et al., 1996). The impact of multiple local sources (household heating, vehicular emissions, industrial emissions), combined with longrange emissions or the remobilization of legacy pollution could complicate the identification of those sources (Haugland et al., 2008; Schifman and Boving, 2015). As a consequence, few studies have investigated the pathways of PAH in the atmosphere – soil – river continuum

100 (Gateuille et al., 2014a; Gocht et al., 2007; A. Motelay-Massei et al., 2007). The objective of 101 the current research was to identify the PAH sources and pathways in an urban catchment and 102 to differentiate between legacy and current PAH sources, through the investigation of PAH 103 contamination in the atmosphere, the soil and the river during a hydrological year. To achieve 104 this goal, the Orge River catchment was selected as it is representative of urbanized 105 catchments (Froger et al., 2018) and located in an early industrialized region. Source 106 identification using PAH diagnostic ratios was combined with new approaches such as PAH 107 correlations and the measurement of fallout radionuclides used for sediment fingerprinting to 108 better discriminate both sources and pathways of particle-bound PAH in the atmosphere, the 109 soils and the river.

110

- 111 2. Material and methods
- 112 2.1. Study site

113 All river water, atmospheric and road sediments samples were collected in the Orge River 114 catchment, which is located 30 km south of Paris City and drains into the Seine River (Figure 115 1; see Froger et al., 2018). Four sampling sites were selected based on their urbanization rate 116 and previous work on the catchment (Le Pape et al., 2012): three were located on the main 117 stem of the Orge River, whereas a fourth site was located on its main tributary, the Yvette River. The proportion of urban areas strongly increases in downstream direction, varying 118 119 from 1% in upper catchment parts to 56% at the outlet. This change is reflected by the evolution of the population densities in the drainage areas (from 300 inhabitants per km^{-2} at 120 the most rural study site – Dourdan ("D"), to 5,000 inh.km⁻² at Viry ("V", nearby the outlet). 121 122 The geology of the catchment is characterized by Eocene formations including carbonate rocks, marls and gypsum, and Oligocene formations dominated by Fontainebleau sands (Le 123 124 Pape et al., 2012).

In addition to river water and sediment samples, four road deposited sediments (RDS) were collected at the most urbanized site in Viry, nearby the local river sampling site, and samples of atmospheric fallout were collected on the roof of a building at Orsay.

128

129

2.2. Hydrological conditions

130 River water sampling was conducted during a hydrological year with the organization of five 131 campaigns from January to December 2016. Daily water discharge at the outlet varied throughout the year from 1.6 to 39.5 m³.s⁻¹ with a mean value of 3.5 m³.s⁻¹. The sampling 132 campaigns were organized to be representative of those hydrological conditions observed 133 134 throughout the year in the Orge River (Figure 2). Accordingly, one campaign was organized during the low flow period ($< 2 \text{ m}^3.\text{s}^{-1}$ at the outlet, August 2016), three campaigns occurred 135 when the water flow was comprised between 2 and 5 $m^3.s^{-1}$ (January, November and 136 December 2016) and one campaign was conducted during a flood (water flow exceeding 5 137 m³.s⁻¹; April 2016). Sampling was also conducted during the extreme flood of June 2016 with 138 a peak discharge of 39.5 m³.s⁻¹ recorded at the outlet. 139

140

141

2.3. Sampling and PAH analysis

142 2.3.1. River, atmospheric deposition and road deposited sediment sampling

Punctual samples of river water (n = 32) were collected in the middle section of the river at 20 - 30 cm depth using 2-L brown glass bottles preliminary washed with detergent (TFD4) and grilled at 500°C (Bressy et al., 2012). The extraction protocol was rapidly conducted on the samples on the same day as the sampling. In addition, sediment traps composed of metal bottles submerged in the river (20 – 30 cm depth) were deployed during 4 to 5 days to collect suspended particulate matter (SPM) by sedimentation for a longer period (n = 22). Suspended particulate matter recovered from the traps were decanted, the supernatant was removed and
the suspended solid was freeze-dried (Gateuille et al., 2014a). After the flood of June 2016,
floodplain sediments were collected overbank in Dourdan, Egly, Yvette and Viry after the
flood recession.

Samples of total atmospheric deposition were collected in Orsay, near the Yvette River monitoring site, from the February 1^{rst} , 2016 to March 30, 2017 (Figure 1). Two funnels with 21 and 28 cm diameters were installed and connected to brown glass bottle collectors. Atmospheric fallout samples (n = 26) were collected after variable periods, the median duration between successive sample collections was 16 days.

Finally, four RDS were sampled on the road bordering the river sampling site at Viry. The samples were freeze-dried and sieved to 200 μ m as PAH are considered to be mainly associated with the fine particle fraction (Pratt and Lottermoser, 2007) and the size of particles washed during runoff is mainly under 300 μ m (El-Mufleh et al., 2011; Revitt et al., 2014; Roger et al., 1998).

163

164 2.3.2. Sample preparation

165 The analytical protocol has been detailed in previous studies (Bressy et al., 2012; Froger et al., 166 2019; Lorgeoux et al., 2016). In brief, instantaneous samples of river water and atmospheric 167 fallout were filtered just after sampling, first on quartz filters GF/D (porosity of 2.7 µm) then 168 on GF/F (porosity 0.47 µm) preliminarily grilled at 500°C. Filters were then freeze-dried. 169 Following filtration, extraction was done on a solid phase siliceous cartridge C18 (6 mL and 170 2000 mg). Solid sample extraction (atmospheric particles, river SPM and RDS) was 171 performed using a microwave assisted extraction (Microwave 3000, Anton Paar). Samples 172 were introduced in close bottles with a mixture of dichloromethane and methanol, heated at 173 100°C during 10 minutes (Lorgeoux et al., 2016). A sample of a certified material (i.e. a lake 174 sediment standard, NIST 1944) was also extracted in the same sequence to validate the 175 analytical method. To avoid interferences during the analysis, the purifications of all extracted 176 samples were performed using silica gel columns (2.1 g of silica gel) to separate the different 177 compound families using various solvent mixtures. Before extraction, an internal standard 178 containing 6 deuterated PAH (naphthalene-D8, acenaphtheneD10, phenanthreneD10, 179 pyreneD12, chryseneD12 and peryleneD12) was added to each sample, for both dissolved and 180 particulate fractions.

181

182 2.3.3. PAH analysis

183 PAH concentrations in the dissolved and particulate phases (i.e. SPM) of river water samples 184 and atmospheric fallout, and in the road deposited sediments were measured by gas 185 chromatography coupled with a mass spectrometer (GC-MS, column RTX5SIL-MS (Restek, 186 60 m, 0.25 mm ID, 0.25 µm df)) used in SIM mode. Helium was the vector gas and the 187 injection volume was 1 µL, the samples were heated at 330°C for 6 minutes before 188 measurement. PAH were quantified using internal standards. The following PAH were 189 measured: fluorene (Fl), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flh), pyrene 190 (Pv), benzo(a)anthracene (BaA), chrysene (Chry), benzo(b)fluoranthene (BbF), 191 benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), indeno(1,2,3-cd)pyrene (IndP), 192 dibenzo(a,h)anthracene (DbahA) and benzo(g,h,i)pervlene (BghiP). The results were expressed as the sum of 13PAHs (Σ 13PAHs). QA and QC were detailed in the supplementary 193 194 material of Froger et al. (2019). Results found for naphthalene, acenaphtylene and 195 acenaphtene were not considered in the current research, as these compounds are too volatile 196 to be correctly quantified with the protocol used in this study.

197

198

2.3.4. Modeling the PAH profile of urban particles

199 Fallout radionuclide concentrations measured in the Orge River SPM were reported in a previous paper (Froger et al., 2018) and showed a linear increase in ⁷Be and ²¹⁰Pb_{xs} activities 200 201 in SPM collected in downstream direction (Fig. S2). This finding was interpreted as reflecting 202 the increasing supply of recently eroded particles supplied by urban areas to the river through 203 urban runoff (RDS source; see Froger et al., 2018 for hypothesis development). Moreover, the linear trend suggested that agricultural soils depleted in both ⁷Be and ²¹⁰Pb_{xs} provided the 204 205 main source of particles transiting the river in upper catchment parts. Based on these results, a 206 two end-member equation (Eqs. 1 and 2) was established to estimate the respective proportions of particles supplied by agricultural land (P_{AP}, in %) and those delivered by urban 207 208 areas (P_{UP}, in %) to those SPM transiting the Orge River at each monitoring site.

209
$${}^{7}Be_{SPM} = P_{AP} {}^{7}Be_{old \ particles} + P_{UP} {}^{7}Be_{recent \ particles}$$
 Eq. 1

210
$${}^{210}Pb_{xs_{SPM}} = P_{AP}{}^{210}Pb_{xs_{old particles}} + P_{UP}{}^{210}Pb_{xs_{recent particles}}$$
Eq. 2

211 These proportions were applied to PAH concentrations to estimate the PAH concentrations of 212 the recent particles, which will be referred to as theoretical urban particles (TUP) (PAH_{TUP}). 213 In this model, PAH conservation was assumed during their transfer from the source to the 214 sampling site. All the calculations were conducted using the solver module of the Excel 215 software to find the solution to an equation system with multiple conditions, involving an 216 iterative process to converge to the most accurate result. To calculate the final PAH 217 concentrations of theoretical urban particles, each SPM sample j was modelled to correspond to a mixture of agricultural particles and TUP (MPAH_{SPM.i.i}) (Eq. 3). 218

219
$$[MPAH]_{SPM,i,j} = (P_{AP,j}[PAH]_{i,AP} + P_{UP,j}[PAH]_{i,j TUP})$$
Eq. 3

220
$$e_{j} = \sum_{i=1}^{13} \frac{[MPAH]_{SPM,i,j} - [PAH]_{SPM,i,j}}{[PAH]_{SPM,i,j}}$$
Eq. 4

221 With MPAH_{SPM,i,j} the modeled concentration of the PAH molecule *i* in the SPM sample $j_i P_{AP,j}$ 222 and P_{UP,i} the proportions (in %) of particles originating from agricultural soils and from urban 223 areas in the SPM sample *j* calculated based on the fallout radionuclide results; $[PAH]_{i,AP}$ the 224 concentration of the PAH molecule *i* in particles originating from agricultural soils reported 225 by Gasperi et al., (2016); $[PAH]_{i,i,TUP}$ the modeled concentration of the PAH molecule *i* in 226 theoretical urban particles contained in the SPM sample *j*, which is the unknown value that 227 will be estimated. This estimation is thus the result of iterations minimizing e (Eq. 4), the sum of the differences between the modeled PAH concentrations in SPM (MPAH_{SPM,i,j}) and the 228 229 measured PAH concentrations (PAH_{SPM,i,i}).

The final PAH concentrations profile (Eq. 5) and the associated standard errors in the theoretical urban particles were calculated as the mean value of the $[PAH]_{i,j,TUP}$ estimated from each SPM sample *j*.

$$[PAH]_{i,TUP} = \sum_{j=1}^{n} \frac{[PAH]_{i,j,TUP}}{n}$$
Eq. 5

234

235

3. Results and discussion

236 3.1. PAH contamination levels and variations in sediment

The concentrations of PAH in the atmospheric fallout and river SPM have been detailed in Froger et al., (2019). No temporal tendency in PAH variations was observed in atmospheric fallout particles, characterized by $\sum 13$ PAH concentrations varying from 5 to 93 µg.g⁻¹. On the contrary, SPM contamination of the Orge River ranged from 1.1 to 45.2 µg.g⁻¹ ($\sum 13$ PAH) with an increase in PAH concentrations when moving in downstream direction, from a median value of 3.3 µg.g⁻¹ in Dourdan to 8.5 µg.g⁻¹ in Viry ($\sum 13$ PAH). In addition, the 243 proportions of 4 rings and 5-6 rings PAH amounted to respectively 43% and 44% of the total 244 PAH content, with only 11% of the total provided by the 3 rings PAH. Similar increasing 245 trends in downstream direction were observed for all compounds (Kruskal-Wallis test, p<0.05) although the lowest *p*-value (i.e. 0.0002) was obtained for 4 PAHs indicating their 246 larger spatial variability. The concentrations of 4 rings PAH increased from 1.1 to 3.9 μ g.g⁻¹ 247 248 (median concentrations) from Dourdan to Viry, those of 5-6 rings PAH raised from 1.3 to 3.6 $\mu g.g^{-1}$ whereas the increase was more limited for 3 rings PAH concentrations (from 0.4 to 0.8 249 $\mu g.g^{-1}$; Fig. S1). 250

Moreover, PAH concentrations in road deposited sediments ranged from 5.6 to 15.6 μ g.g⁻¹ (Σ 13PAH) with respective proportions of 4 (45 %) and 5-6 rings (41%) PAH similar to those found in river SPM. The PAH contents in RDS were similar to those measured in road sediments studied by Brown and Peake (2006), although in the lower range of others studies (Aryal et al., 2005; Murakami et al., 2005)

256 3.2. Tracing sources using Molecular Ratios

257 The four most frequently used molecular diagnostic ratios, i.e. Flh/(Flh + Py), BaA/(BaA + 258 Chry), IndP/(IndP + BghiP) and Phe/(Phe + Ant) (e.g. Ravindra et al., 2008), were 259 investigated in this study (Figure 3). Signatures of particulate samples from the Orge 260 catchment, SPM, atmospheric particles, RDS and flood sediments, were compared (Figure 3). As molecular diagnostic ratios found in the Orge River SPM did not vary in downstream 261 262 direction (see Table S2), they were considered as a single group despite their collection at 4 263 different sites. Those PAH ratios from the Orge catchment were compared with the PAH 264 signatures derived from the compilation of literature data (Table 1), including potential 265 sources of particulate-bound PAH corresponding to soil samples (Gaspéri et al., 2018) and runoff particles collected in the densely urbanized catchment of Sucy (south-east of Paris) 266 267 (Gasperi et al., 2018 (Report)). The latter were selected as Sucy catchment presents similar characteristics to those found at Viry site, in terms of drainage surface and urbanization rate.
The signature of legacy PAH contamination was also reconstructed based on the analysis of
successive layers from a sediment core collected in the alluvial plain of the Seine River
(Lorgeoux et al., 2016), which recorded PAH concentrations from the early 1950s to 2004.
Evolution of PAH concentrations showed a drastic increase from 1950 to 1963 before a
decrease between 1963 and 1970 and then a stabilization after 1970. Accordingly, those
values were divided into two periods: '1950 – 1963' and '1970 – 2004'.

275

276 The combination of Ind/(IndP + BghiP) with Flh/(Flh + Py) ratios (Figure 3a) indicated a 277 PAH origin at the boundary between fossil fuel and coal/wood combustion for all particulate 278 samples, except for soils. The molecular ratio of IndP/(IndP + BghiP) (Figure 3a) remained 279 very stable and similar in atmospheric particles, SPM, RDS, Seine River sediments and runoff 280 particles. These constant signatures in very different sample types is supported by Schwientek 281 et al., (2013) study demonstrating similar PAH patterns in river SPM throughout the 282 catchments. In addition, the results of previous studies showing the stability of PAH with a 283 high molecular weight (HMW) in various environmental conditions compared to that of 284 lighter PAH corroborate the conclusion of the current study (Biache et al., 2014; Zhang et al., 285 2005). In contrast, soil samples showed very heterogeneous signatures, which were not related 286 to changes in spatial location or land use. This scattered pattern of values found in soils for 287 this ratio could be explained by the low concentrations, close to the detection limits, of IndP 288 and BghiP found in these samples, resulting in the higher variability of the ratio. Compared to 289 Ind/(IndP + BghiP), the Flh/(Flh + Py) ratio showed the occurrence of differences between the 290 signature of atmospheric particles and that of SPM suggesting a stronger contribution of fossil 291 fuel combustion in atmospheric particles than in SPM. The large range of values found in the signatures of the Orge SPM, with Flh/(Flh + Py) ratios varying from 0.4 to 0.8 was likely 292

related to the sampling period (Kruskal Wallis test, p<0.05), as the highest ratios were found in the samples collected in November 2016 (median value of 0.62 for all sites), whereas the lowest values were found in January 2016 (median value of 0.52). The reason for these temporal variations could not be determined as both campaigns were characterized by similar hydrological and meteorological conditions.

298 When combining the BaA/(BaA + Chry) and the Flh/(Flh + Py) ratios (Fig. 3b), two trends 299 could be highlighted: the first one includes atmospheric particles together with RDS and part 300 of the runoff particles, while the second trend integrates Orge SPM and flood sediments, soil 301 samples, and Seine River sediments. Diagnostic ratios indicated that PAH from the first group 302 originated from the fossil fuel combustion, whereas the second group signatures reflected the 303 occurrence of mixed sources and biomass combustion. This could be due to point-based 304 sources of fossil fuel combustion for atmospheric and road particles (Ravindra et al., 2006), 305 whereas river sediments may cumulate PAH inputs from multiple sources. Finally, the 306 temporal variations observed for the Flh/(Flh + Py) ratio of SPM were not found for the 307 BaA/(BaA + Chry) ratio.

308 The combination of Phe/(Ant + Phe) with Flh/(Flh + Py) ratios, however, underlined a 309 different pattern (Fig. 3c), and most samples (including Orge SPM, RDS, atmospheric 310 particles and soil samples) were shown to match the signatures of crude oil and fossil fuel 311 combustion. Nevertheless, the Phe/(Ant + Phe) ratio was shown to be the most sensitive to 312 environmental processes such as biodegradation and abiotic oxidation inducing the 313 occurrence of significant modifications of source signatures (Alam et al., 2013; Katsoyiannis 314 and Breivik, 2014). The observed petrogenic signature may therefore be attributed to the 315 preferential degradation of anthracene, particularly sensitive to oxidation, which resulted in 316 increased ratio values (Biache et al., 2014; Zhang et al., 2005).

317 Among the explored molecular ratios, the combination of Flh/(Flh + Py) and BaA/(BaA + 318 Chry) (Fig. 3b) provided the most explicit insights into the sources of PAH in the Orge River 319 catchment. On the one hand, PAH found in atmospheric particles and RDS were mainly 320 supplied by the fossil fuel combustion, and their signatures matched those of runoff particles. 321 On the other hand, PAH found in the Orge SPM reflected a fossil fuel and biomass 322 combustion origin, and showed PAH signatures similar to those of soil samples and Seine 323 River sediments. Nevertheless, the contradictions in sources identified by the PAH ratios 324 underlined the caution needed when using these approaches to define PAH sources. 325 Moreover, molecular diagnostic ratios did not reflect the increase in PAH concentrations observed in the Orge SPM from up to downstream sites and therefore provided no additional 326 327 insight into the source of PAH inputs originating from those urban areas located downstream.

328

329 3.3. PAH correlation

330 Correlations between PAH have been used in several studies as a complement to PAH ratios 331 for conducting PAHs source identification (Bertrand et al., 2015; Soclo et al., 2000). In the 332 current research, SPM PAH concentrations for several 4 to 6 rings PAH showed a significant 333 correlation with a coefficient above 0.9 (Table S1). For instance, Chry, Flt and BaA displayed 334 correlation coefficients comprised between 0.90 and 0.97. Higher molecular weight PAH with 335 5 and 6 rings (BaP, IndP, DbahA, BghiP) also showed high intercorrelation with coefficients 336 from 0.93 to 0.99. Interestingly, 4 rings PAHs appeared to better represent PAH inputs from 337 urban areas in the lower section of the Orge River as shown by the increase of PAH 338 concentrations in SPM with the urbanization gradient (see section 3.1, Fig. S1). Accordingly, 339 correlations between Chry, Flt and BaA were tested between all the different types of samples 340 (including SPM, flood sediments, atmospheric particles and RDS), and the potential sources 341 of river particles (soils and urban runoff particles), along with the Seine River sediment 342 providing the signature of legacy contamination (Figure 4). As the range of PAH 343 concentrations found in these samples was particularly large, the graph providing this 344 comparison was plotted in log scale.

Overall, the correlations between Chry, Flt and BaA showed the occurrence of two trends, one composed of atmospheric particles and the second including the rest of the samples (Orge SPM, flood sediments, soil samples, runoff particles and Seine River sediments). Road deposited sediments appeared to be either included in the first (Figure 4a) or the second group depending on the PAH compounds considered (Figure 4b and 4c).

350 The similarities between soil and river samples (including sediments and SPM) highlighted by 351 Chry, Flt and BaA correlations suggest an identical source and the conservation of those 4 352 rings PAH during their transfer. For instance, the alignment observed for the Orge SPM and 353 the Seine River sediments indicated the conservation of the correlation between current Orge 354 SPM and past Seine River SPM, despite the significant differences in their PAH 355 concentrations. Moreover, particles transported during the flood of June 2016 and deposited 356 on banks during the overflow have been identified as old particles, long-term stored in the 357 Orge catchment and remobilized by high water flow (Le Gall et al., 2018). Those floodplain 358 sediments appeared to present a PAH signature similar to the Seine River sediments (Figure 359 4). Therefore, those observations suggest that the current PAH contamination in the Orge 360 River may reflect the global PAH accumulation over the catchment during more than a 361 century of industrial activities (Lorgeoux et al., 2016; Pacyna et al., 2003). The signatures of 362 runoff particles were also aligned with those of river particles and soil samples (Figure 4), 363 although not with that of atmospheric particles. Those results tend to exclude atmospheric 364 deposition as providing the major PAH primary source for runoff particles suggesting PAH 365 released on urban surfaces as the main supply of PAH during runoff (Blanchard et al., 2001). 366 In addition, the similarity between older sediments signature and those of current runoff also

367 supports the hypothesis of a long-term persistence of PAH in the river basin, characterized by 368 the widespread and extensive contamination of soil samples, current Orge River SPM, and 369 urban runoff particles as demonstrated by their PAH signature identical to that of legacy 370 contamination (i.e. Seine River sediments).

371 The conservation of PAH signature over time and during the transfer of particles between the 372 soils and the river observed here could be partly explained by a stabilization process occurring 373 in soils during their aging, known to be responsible for the persistence of PAH in the 374 environment (Biache et al., 2011), associated with their low degradation in the river. 375 Depending on the soil characteristics (structure, organic matter content, microorganisms, etc.), 376 PAH could be sequestered and stabilized in the soil reducing their availability (Cébron et al., 377 2013; Chung and Alexander, 2002), which could be explained by their strong sorption onto 378 organic particles (Ghosh et al., 2003; Yang et al., 2008). Once stabilized in soil particles, the 379 PAH might be less sensitive to degradation during erosion processes, explaining the similar 380 signature found in both river and soil particles. In the river, oxidation processes may also 381 affect PAH depending on the water composition (Miller and Zepp, 1979; Xia et al., 2009), 382 physico-chemical conditions and microbial activity (Quantin et al., 2005). Nonetheless, 383 studies showed that natural oxidation in water might be less important than expected based on 384 the results of laboratory experiments because of the occurrence of multiple external factors 385 such as variations in organic matter type and amount, microbial competition... (Fasnacht and 386 Blough, 2002; Ge et al., 2016), reducing PAH degradation in rivers. Finally, the conservation 387 of the PAH signature may also be explained by the similar degradation of the molecules in 388 soils and sediments leading to a homogeneous signature of the contamination at the scale of 389 the critical zone.

390 In contrast to river sediment and soil signatures, atmospheric particles showed a different 391 pattern, with the occurrence of very variable signatures differing from those in river, soil and

runoff samples (Figure 4). This discrepancy suggests that the direct atmospheric 392 393 contamination does not provide a major source of PAH for river particles, soil particles and 394 urban runoff particles in the Orge River catchment, suggesting the dominance of the legacy 395 contamination. Moreover, the atmospheric contamination was shown to be mainly related to 396 the current PAH production in the atmosphere, such as vehicular emissions (Keyte et al., 397 2016; Oda et al., 2001) or household heating (Motelay-Massei et al., 2007) which could 398 explain the variability of atmospheric particle signatures. In addition, 4 rings signatures of 399 atmospheric particles might be modified by the occurrence of processes such as photo-400 oxidation or chemical oxidation in the atmosphere (Suess, 1976). For instance, the presence of 401 reactive molecules (O₂, NO_x, SO₂) may lead to a degradation of PAH (Finlayson-Pitts, 1997; 402 Nikolaou et al., 1984). Multiple factors may also influence PAH degradation in the 403 atmosphere such as the particle composition, especially the presence of soot particles 404 suggested to protect PAH from photo-degradation (Zelenyuk et al., 2012), or the humidity 405 level and the sunlight intensity (Ringuet et al., 2012). This susceptibility of PAH bound to 406 atmospheric particles to various degradation processes combined with the potential source 407 variability may explain the very scattered pattern of the atmospheric sample signatures 408 compared to the stable pattern found in river sediment and soil samples.

409 Finally, RDS signatures showed a depletion in the BaA content (Figure 4b and c, and Figure 410 3b), differentiating them from those urban runoff particles collected directly in separate storm 411 sewers in Sucy. This depletion of BaA in RDS may be related to the higher sensitivity of BaA 412 to changes in environmental conditions (temperature, availability of reactive compounds) 413 compared to Chry and Flt and its faster degradation rate (Beyer et al., 2003; Butler and 414 Crossley, 1981). As runoff and erosion are known to be particle-size selective, stormflow may 415 have led to the preferential deposition of coarser particles on the road in Viry (i.e. RDS) 416 whereas smaller particles (<100 µm) have been washed away by rainfall (Andral et al., 1999; 417 Owens et al., 2011). These particles were then likely highly exposed to photo-degradation,
418 which may explain the specific decrease in BaA concentrations in RDS collected on the road,
419 further illustrating the great caution required when using BaA as a potential source indicator.

420 The relative conservation of particulate-bound Chr and Flt between soils, urban runoff 421 particles, and river sediment suggests the potential of the Chr - Flt correlation to trace the 422 sources of PAH contamination in the study area. Accordingly, this correlation was tested 423 comparing the values found in the Orge River SPM collected at the different monitoring sites, 424 with those of the potential sources and including soil samples, RDS and urban runoff particles 425 (Figure 5). The correlation between Chr and Flt reflects the increasing PAH input in 426 downstream direction and identifies RDS and urban runoff particles as the potential ultimate 427 sources of particulate PAH contamination to SPM provided by urban areas.

428

429 3.4. Radionuclide model to investigate PAH sources from urban areas

430 The estimated PAH contents in theoretical urban particles (TUP) were finally compared to431 those PAH concentrations found in RDS and runoff particles (Figure 6).

The modelled concentrations of PAH in TUP appeared to be similar to those of both RDS and runoff particles collected from storm sewers (Figure 6). This observation confirmed the conclusion derived from PAH correlations (Figure 5) that those latter particles as provide the major source of PAH transferred to the river from urban surfaces. Therefore, the combination of sediment fingerprinting approach (i.e. radionuclides) with PAH signatures was shown to provide consistent results and underlined urban runoff as the main source of PAH transiting in the Orge catchment.

The model results also indicated that PAH concentrations in TUP were more similar to thosefound in urban runoff particles from storm sewers compared to RDS (Figure 6). This suggests

441 that urban runoff particles collected from these sewers provide a better surrogate of the 442 ultimate source of contaminated urban particles supplied to the river. This further confirms 443 that the PAH composition of RDS might have been affected during their storage on the road 444 and might also be influenced by the sampling method. The depletion in BaA concentrations in 445 RDS supports the hypothesis of degradation processes, especially photo-degradation 446 occurring during RDS storage on the road (Marquès et al., 2017; Xu et al., 2013). In addition 447 to degradation processes, particle size sorting might also explain the lower PAH content 448 found in RDS, as the finest particles enriched in PAH might have been directly supplied to the 449 river by runoff (Aryal et al., 2005), while the coarser particles may have deposited on the 450 road, explaining their lower PAH content. These differences should therefore be considered in 451 future studies considering RDS as potential sources of contaminants in the rivers.

452 In the current research, fallout radionuclides were used to identify and predict the contribution 453 of contrasted PAH sources in the Orge River catchment. However, these results should be 454 interpreted with caution, given the potentially high reactivity of PAH molecules, and their 455 variations depending on their sources and the environmental conditions prevailing in the study 456 site. The transfer time of particles from urban surfaces to the river appears to be crucial, as it 457 may affect to a large extent the PAH degradation rate. In the Orge River system, the fast 458 transfer of particles once they have been supplied to the river (Froger et al., 2018) likely 459 reduces the potential degradation of particulate PAHs in the river because of the absence of 460 sediment storage in the channel in downstream sections of the river. This specific context 461 likely explains the good match observed between the modelled signature of TUP and that of 462 urban runoff particles collected in storm sewers. However, these results may likely not be 463 directly extrapolated to other potential study sites, as the concentration of several PAH may 464 decrease with increasing storage time of sediment in the river channel. Furthermore, 465 additional exposition to PAH sources like vehicle exhaust fumes may explain the higher

466 contamination levels observed in particles stored on urban surfaces (Bomboi and Hernández, 467 1991; Markiewicz et al., 2017). Moreover, the duration and the intensity of precipitation must 468 also be considered when modeling the contamination behavior, as PAH concentrations in 469 urban runoff tend to increase during storms (Blanchard et al., 2001). Nevertheless, the model 470 based on radionuclide measurements to calculate theoretical PAH profiles of urban particles 471 provided promising results: similar approaches could be used as a potential useful tool for 472 characterizing contaminant dynamics and identifying their carrying phases.

473

474 4. Conclusions

475 The current research demonstrated first the persistence of PAH legacy contamination in the 476 catchment and the conservation of those compounds in the soil-river continuum, as PAH 477 diagnostic ratio and PAH correlations showed identical signatures for current Orge River 478 SPM, Seine River basin soils and historical sediments from the Seine River. Atmospheric 479 particles appeared to present another signature indicating a different PAH source and pattern 480 for those samples. Finally, the combination of PAH signature with sediment fingerprinting 481 approach using radionuclides to model PAH concentrations of particles transferred to the river 482 from urban surfaces gave promising results, pointing runoff particles as the main PAH source 483 in urban area. This model also underlined discrepancies between road deposited sediments 484 collected on the road and runoff particles collected from stormsewers showing the need to 485 consider these potential differences when assessing PAH sources in urban catchment.

486

487 Acknowledgements

488This research was financially supported by Paris-Sud University (PhD grant), the "Initiative489de Recherche Stratégique" ACE-ICSEN funded by the University Paris-Saclay and the Seine490RiverresearchprogramPIREN-Seine

- Alam, M.S., Delgado-Saborit, J.M., Stark, C., Harrison, R.M., 2013. Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity. Atmos. Environ. 77, 24–35. https://doi.org/10.1016/j.atmosenv.2013.04.068
- Andral, M.C., Roger, S., Montréjaud-Vignoles, M., Herremans, L., 1999. Particle Size Distribution and Hydrodynamic Characteristics of Solid Matter Carried by Runoff from Motorways. Water Environ. Res. 71, 398–407. https://doi.org/10.2175/106143097X122130
- Anyanwu, I.N., Semple, K.T., 2015. Fate and behaviour of nitrogen-containing polycyclic aromatic hydrocarbons in soil. Environ. Technol. Innov. 3, 108–120. https://doi.org/10.1016/j.eti.2015.02.006
- Aryal, R.K., Furumai, H., Nakajima, F., Boller, M., 2005. Dynamic behavior of fractional suspended solids and particle-bound polycyclic aromatic hydrocarbons in highway runoff. Water Res. 39, 5126–5134. https://doi.org/10.1016/j.watres.2005.09.045
- Bertrand, O., Mondamert, L., Grosbois, C., Dhivert, E., Bourrain, X., Labanowski, J., Desmet, M., 2015. Storage and source of polycyclic aromatic hydrocarbons in sediments downstream of a major coal district in France. Environ. Pollut. 207, 329–340. https://doi.org/10.1016/j.envpol.2015.09.028
- Beyer, A., Wania, F., Gouin, T., Mackay, D., Matthies, M., 2003. Temperature Dependence of the Characteristic Travel Distance. Environ. Sci. Technol. 37, 766–771. https://doi.org/10.1021/es025717w

Biache, C., Ghislain, T., Faure, P., Mansuy-Huault, L., 2011. Low temperature oxidation of a

coking plant soil organic matter and its major constituents: An experimental approach to simulate a long term evolution. J. Hazard. Mater. 188, 221–230. https://doi.org/10.1016/j.jhazmat.2011.01.102

- Biache, C., Mansuy-Huault, L., Faure, P., 2014. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications. J. Hazard. Mater. 267, 31–39. https://doi.org/10.1016/j.jhazmat.2013.12.036
- Blanchard, M., Teil, M.-J., Ollivon, D., Garban, B., Chestérikoff, C., Chevreuil, M., 2001. Origin and distribution of polyaromatic hydrocarbons and polychlorobiphenyls in urban effluents to wastewater treatment plants of the paris area (FRANCE). Water Res. 35, 3679–3687. https://doi.org/10.1016/S0043-1354(01)00078-1
- Bomboi, M.T., Hernández, A., 1991. Hydrocarbons in urban runoff: Their contribution to the wastewaters. Water Res. 25, 557–565. https://doi.org/10.1016/0043-1354(91)90128-D
- Bressy, A., Gromaire, M.-C., Lorgeoux, C., Saad, M., Leroy, F., Chebbo, G., 2012. Towards the determination of an optimal scale for stormwater quality management: Micropollutants in a small residential catchment. Water Res. 46, 6799–6810. https://doi.org/10.1016/j.watres.2011.12.017
- Brown, J.N., Peake, B.M., 2006. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Sci. Total Environ. 359, 145–155. https://doi.org/10.1016/j.scitotenv.2005.05.016
- Budzinski, H., Jones, I., Bellocq, J., Piérard, C., Garrigues, P., 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 58, 85–97. https://doi.org/10.1016/S0304-4203(97)00028-5

- Butler, J.D., Crossley, P., 1981. Reactivity of polycyclic aromatic hydrocarbons adsorbed on soot particles. Atmos. Environ. 15, 91–94. https://doi.org/10.1016/0004-6981(81)90129-3
- Cébron, A., Faure, P., Lorgeoux, C., Ouvrard, S., Leyval, C., 2013. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil:
 Consequences on biodegradation. Environ. Pollut. 177, 98–105. https://doi.org/10.1016/j.envpol.2013.01.043
- Chung, N., Alexander, M., 2002. Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48, 109–115. https://doi.org/10.1016/S0045-6535(02)00045-0
- El-Mufleh, A., Béchet, B., Grasset, L., Rodier, C., Gaudin, A., Ruban, V., 2011. Distribution of PAH residues in humic and mineral fractions of sediments from stormwater infiltration basins. J. Soils Sediments 13, 531–542. https://doi.org/10.1007/s11368-012-0586-x
- Fasnacht, M.P., Blough, N. V, 2002. Aqueous Photodegradation of Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 36, 4364–4369. https://doi.org/10.1021/es025603k
- Fernandes, M.B., Sicre, M.-A., Boireau, A., Tronczynski, J., 1997. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary. Mar. Pollut. Bull. 34, 857–867. https://doi.org/10.1016/S0025-326X(97)00063-5
- Fernández, P., Vilanova, R.M., Martínez, C., Appleby, P., Grimalt, J.O., 2000. The Historical Record of Atmospheric Pyrolytic Pollution over Europe Registered in the Sedimentary PAH from Remote Mountain Lakes. Environ. Sci. Technol. 34, 1906–1913. https://doi.org/10.1021/es9912271

- Finlayson-Pitts, B.J., 1997. Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles. Science (80-.). 276, 1045–1051. https://doi.org/10.1126/science.276.5315.1045
- Froger, C., Ayrault, S., Evrard, O., Monvoisin, G., Bordier, L., Lefèvre, I., Quantin, C., 2018.
 Tracing the sources of suspended sediment and particle-bound trace metal elements in an urban catchment coupling elemental and isotopic geochemistry, and fallout radionuclides. Environ. Sci. Pollut. Res. 25, 28667–28681.
 https://doi.org/10.1007/s11356-018-2892-3
- Froger, C., Quantin, C., Gasperi, J., Caupos, E., Monvoisin, G., Evrard, O., Ayrault, S., 2019. Impact of urban pressure on the spatial and temporal dynamics of PAH fluxes in an urban tributary of the Seine River (France). Chemosphere 219, 1002–1013. https://doi.org/10.1016/j.chemosphere.2018.12.088
- Garban, B., Blanchoud, H., Motelay-Massei, A., Chevreuil, M., Ollivon, D., 2002.
 Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites.
 Atmos. Environ. 36, 5395–5403. https://doi.org/10.1016/S1352-2310(02)00414-4
- Gaspéri, J., Ayrault, S., Moreau-Guigon, E., Alliot, F., Labadie, P., Budzinski, H., Blanchard, M., Muresan, B., Caupos, E., Cladière, M., Gateuille, D., Tassin, B., Bordier, L., Teil, M.-J., Bourges, C., Desportes, A., Chevreuil, M., Moilleron, R., 2018. Contamination of soils by metals and organic micropollutants: case study of the Parisian conurbation. Environ. Sci. Pollut. Res. 25, 23559–23573. https://doi.org/10.1007/s11356-016-8005-2
- Gasperi, J., Sébastian, C., Ruban, V., Delamain, M., Percot, S., Wiest, L., Mirande, C.,
 Caupos, E., Demare, D., Kessoo, M.D., Saad, M., Schwartz, J.J., Dubois, P., Fratta, C.,
 Wolff, H., Moilleron, R., Chebbo, G., Cren, C., Millet, M., Barraud, S., Gromaire, M.C., 2017. Contamination des eaux pluviales par les micropolluants : avancées du projet

INOGEV. Tech. Sci. Méthodes 51-70. https://doi.org/10.1051/tsm/201778051

- Gateuille, D., Evrard, O., Lefevre, I., Moreau-Guigon, E., Alliot, F., Chevreuil, M., Mouchel,
 J.-M., 2014a. Mass balance and decontamination times of Polycyclic Aromatic
 Hydrocarbons in rural nested catchments of an early industrialized region (Seine River
 basin, France). Sci. Total Environ. 470–471, 608–617.
 https://doi.org/10.1016/j.scitotenv.2013.10.009
- Gateuille, D., Evrard, O., Lefevre, I., Moreau-Guigon, E., Alliot, F., Chevreuil, M., Mouchel, J.M., 2014b. Combining measurements and modelling to quantify the contribution of atmospheric fallout, local industry and road traffic to PAH stocks in contrasting catchments. Environ. Pollut. 189, 152–160. https://doi.org/10.1016/j.envpol.2014.02.029
- Ge, L., Na, G., Chen, C.-E., Li, J., Ju, M., Wang, Y., Li, K., Zhang, P., Yao, Z., 2016. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents. Sci. Total Environ. 547, 166–172. https://doi.org/10.1016/j.scitotenv.2015.12.143
- Ghosh, U., Zimmerman, J.R., Luthy, R.G., 2003. PCB and PAH Speciation among Particle Types in Contaminated Harbor Sediments and Effects on PAH Bioavailability. Environ. Sci. Technol. 37, 2209–2217. https://doi.org/10.1021/es020833k
- Gocht, T., Ligouis, B., Hinderer, M., Grathwohl, P., 2007. ACCUMULATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN RURAL SOILS BASED ON MASS BALANCES AT THE CATCHMENT SCALE. Environ. Toxicol. Chem. 26, 591. https://doi.org/10.1897/06-287R.1
- Grimmer, G., 1985. PAH—Their contribution to the carcinogenicity of various emissions[†]. Toxicol. Environ. Chem. 10, 171–181. https://doi.org/10.1080/02772248509357101

- Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ. Sci. Technol. 30, 825–832 ST–Source apportionment of athmospheric.
- Haugland, T., Ottesen, R.T., Volden, T., 2008. Lead and polycyclic aromatic hydrocarbons (PAHs) in surface soil from day care centres in the city of Bergen, Norway. Environ. Pollut. 153, 266–272. https://doi.org/10.1016/j.envpol.2007.08.028
- Katsoyiannis, A., Breivik, K., 2014. Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environ. Pollut. 184, 488–494. https://doi.org/10.1016/j.envpol.2013.09.028
- Kavouras, I.G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E.G., Von Baer, D., Oyola, P., 2001. Source Apportionment of Urban Particulate Aliphatic and Polynuclear Aromatic Hydrocarbons (PAHs) Using Multivariate Methods. Environ. Sci. Technol. 35, 2288–2294. https://doi.org/10.1021/es001540z
- Keyte, I.J., Albinet, A., Harrison, R.M., Harrison, R.M., 2016. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. Sci. Total Environ. 566–567, 1131–1142. https://doi.org/10.1016/j.scitotenv.2016.05.152
- Le Gall, M., Ayrault, S., Evrard, O., Laceby, J.P., Gateuille, D., Lefèvre, I., Mouchel, J.-M., Meybeck, M., 2018. Investigating the metal contamination of sediment transported by the 2016 Seine River flood (Paris, France). Environ. Pollut. 240, 125–139. https://doi.org/10.1016/j.envpol.2018.04.082
- Le Pape, P., Ayrault, S., Quantin, C., 2012. Trace element behavior and partition versus urbanization gradient in an urban river (Orge River, France). J. Hydrol. 472–473, 99–110. https://doi.org/10.1016/j.jhydrol.2012.09.042

- Lorgeoux, C., Moilleron, R., Gasperi, J., Ayrault, S., Bonté, P., Lefèvre, I., Tassin, B., 2016. Temporal trends of persistent organic pollutants in dated sediment cores: Chemical fingerprinting of the anthropogenic impacts in the Seine River basin, Paris. Sci. Total Environ. 541, 1355–1363. https://doi.org/10.1016/j.scitotenv.2015.09.147
- Markiewicz, A., Björklund, K., Eriksson, E., Kalmykova, Y., Strömvall, A.-M., Siopi, A., 2017. Emissions of organic pollutants from traffic and roads: Priority pollutants selection and substance flow analysis. Sci. Total Environ. 580, 1162–1174. https://doi.org/10.1016/j.scitotenv.2016.12.074
- Marquès, M., Mari, M., Sierra, J., Nadal, M., Domingo, J.L., 2017. Solar radiation as a swift pathway for PAH photodegradation: A field study. Sci. Total Environ. 581–582, 530–540. https://doi.org/10.1016/j.scitotenv.2016.12.161
- Miller, G.C., Zepp, R.G., 1979. Effects of suspended sediments on photolysis rates of dissolved pollutants. Water Res. 13.
- Motelay-Massei, A., Ollivon, D., Garban, B., Chevreuil, M., 2003. Polycyclic aromatic hydrocarbons in bulk deposition at a suburban site: assessment by principal component analysis of the influence of meteorological parameters. Atmos. Environ. 37, 3135–3146. https://doi.org/10.1016/S1352-2310(03)00218-8
- Motelay-Massei, A., Ollivon, D., Garban, B., Tiphagne-Larcher, K., Chevreuil, M., 2007.
 Fluxes of polycyclic aromatic hydrocarbons in the Seine estuary, France: mass balance and role of atmospheric deposition. Hydrobiologia 588, 145–157.
 https://doi.org/10.1007/s10750-007-0659-9
- Motelay-Massei, A., Ollivon, D., Garban, B., Tiphagne-Larcher, K., Zimmerlin, I., Chevreuil, M., 2007. PAHs in the bulk atmospheric deposition of the Seine river basin: Source identification and apportionment by ratios, multivariate statistical techniques and

scanning electron microscopy. Chemosphere 67, 312–321. https://doi.org/10.1016/j.chemosphere.2006.09.074

- Murakami, M., Nakajima, F., Furumai, H., 2005. Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust. Chemosphere 61, 783–791. https://doi.org/10.1016/j.chemosphere.2005.04.003
- Nikolaou, K., Masclet, P., Mouvier, G., 1984. Sources and chemical reactivity of polynuclear aromatic hydrocarbons in the atmosphere A critical review. Sci. Total Environ. 32, 103–132. https://doi.org/10.1016/0048-9697(84)90125-6
- Oda, J., Nomura, S., Yasuhara, A., Shibamoto, T., 2001. Mobile sources of atmospheric polycyclic aromatic hydrocarbons in a roadway tunnel. Atmos. Environ. 35, 4819–4827. https://doi.org/10.1016/S1352-2310(01)00262-X
- Owens, P.N., Caley, K.A., Campbell, S., Koiter, A.J., Droppo, I.G., Taylor, K.G., 2011. Total and size-fractionated mass of road-deposited sediment in the city of Prince George, British Columbia, Canada: Implications for air and water quality in an urban environment. J. Soils Sediments 11, 1040–1051. https://doi.org/10.1007/s11368-011-0383-y
- Pacyna, J.M., Breivik, K., Münch, J., Fudala, J., 2003. European atmospheric emissions of selected persistent organic pollutants, 1970–1995. Atmos. Environ. 37, 119–131. https://doi.org/10.1016/S1352-2310(03)00240-1
- Pratt, C., Lottermoser, B.G., 2007. Mobilisation of traffic-derived trace metals from road corridors into coastal stream and estuarine sediments, Cairns, northern Australia. Environ. Geol. 52, 437–448. https://doi.org/10.1007/s00254-006-0471-2
- Quantin, C., Joner, E.J., Portal, J.M., Berthelin, J., 2005. PAH dissipation in a contaminated

river sediment under oxic and anoxic conditions. Environ. Pollut. 134, 315–322. https://doi.org/10.1016/j.envpol.2004.07.022

- Ravindra, K., Bencs, L., Wauters, E., De Hoog, J., Deutsch, F., Roekens, E., Bleux, N., Berghmans, P., Van Grieken, R., 2006. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos. Environ. 40, 771–785. https://doi.org/10.1016/j.atmosenv.2005.10.011
- Ravindra, K., Sokhi, R., Vangrieken, R., 2008. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 42, 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010
- Revitt, D.M., Lundy, L., Coulon, F., Fairley, M., 2014. The sources, impact and management of car park runoff pollution: A review. J. Environ. Manage. 146, 552–567. https://doi.org/10.1016/j.jenvman.2014.05.041
- Ringuet, J., Albinet, A., Leoz-Garziandia, E., Budzinski, H., Villenave, E., 2012.
 Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France). Sci. Total Environ. 437, 297–305. https://doi.org/10.1016/j.scitotenv.2012.07.072
- Roger, S., Montrejaud-Vignoles, M., Andral, M., Herremans, L., Fortune, J., 1998. Mineral, physical and chemical analysis of the solid matter carried by motorway runoff water.
 Water Res. 32, 1119–1125. https://doi.org/10.1016/S0043-1354(97)00262-5
- Schifman, L.A., Boving, T.B., 2015. Spatial and seasonal atmospheric PAH deposition patterns and sources in Rhode Island. Atmos. Environ. 120, 253–261. https://doi.org/10.1016/j.atmosenv.2015.08.056

Schwientek, M., Rügner, H., Beckingham, B., Kuch, B., Grathwohl, P., 2013. Integrated

monitoring of particle associated transport of PAHs in contrasting catchments. Environ. Pollut. 172, 155–162. https://doi.org/10.1016/j.envpol.2012.09.004

- Soclo, H.H., Garrigues, P., Ewald, M., 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) Areas. Mar. Pollut. Bull. 40, 387–396. https://doi.org/10.1016/S0025-326X(99)00200-3
- Sofowote, U.M., Hung, H., Rastogi, A.K., Westgate, J.N., Deluca, P.F., Su, Y., McCarry, B.E., 2011. Assessing the long-range transport of PAH to a sub-Arctic site using positive matrix factorization and potential source contribution function. Atmos. Environ. 45, 967–976. https://doi.org/10.1016/j.atmosenv.2010.11.005
- Suess, M.J., 1976. The environmental load and cycle of polycyclic aromatic hydrocarbons. Sci. Total Environ. 6, 239–250. https://doi.org/10.1016/0048-9697(76)90033-4
- Tobiszewski, M., Namieśnik, J., 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025
- Umbuzeiro, G.A., Franco, A., Martins, M.H., Kummrow, F., Carvalho, L., Schmeiser, H.H., Leykauf, J., Stiborova, M., Claxton, L.D., 2008. Mutagenicity and DNA adduct formation of PAH, nitro-PAH, and oxy-PAH fractions of atmospheric particulate matter from São Paulo, Brazil. Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 652, 72–80. https://doi.org/10.1016/j.mrgentox.2007.12.007
- Xia, X., Li, G., Yang, Z., Chen, Y., Huang, G.H., 2009. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen. Environ. Pollut. 157, 1352–1359. https://doi.org/10.1016/j.envpol.2008.11.039

- Xu, C., Dong, D., Meng, X., Su, X., Zheng, X., Li, Y., 2013. Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation. J. Environ. Sci. 25, 569– 575. https://doi.org/10.1016/S1001-0742(12)60083-7
- Xu, J., Peng, X., Guo, C.S., Xu, J., Lin, H.X., Shi, G.L., Lv, J.P., Zhang, Y., Feng, Y.C., Tysklind, M., 2016. Sediment PAH source apportionment in the Liaohe River using the ME2 approach: A comparison to the PMF model. Sci. Total Environ. 553, 164–171. https://doi.org/10.1016/j.scitotenv.2016.02.062
- Yang, Y., Ligouis, B., Pies, C., Achten, C., Hofmann, T., 2008. Identification of carbonaceous geosorbents for PAHs by organic petrography in river floodplain soils. Chemosphere 71, 2158–2167. https://doi.org/10.1016/j.chemosphere.2008.01.010
- Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D., Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5
- Zelenyuk, A., Imre, D., Beránek, J., Abramson, E., Wilson, J., Shrivastava, M., 2012. Synergy between Secondary Organic Aerosols and Long-Range Transport of Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 46, 12459–12466. https://doi.org/10.1021/es302743z
- Zhang, X.L., Tao, S., Liu, W.X., Yang, Y., Zuo, Q., Liu, S.Z., 2005. Source Diagnostics of Polycyclic Aromatic Hydrocarbons Based on Species Ratios: A Multimedia Approach. Environ. Sci. Technol. 39, 9109–9114. https://doi.org/10.1021/es0513741

Figures and table captions:

Figure 1 : The Orge River catchment - land uses pattern, location of river sampling site and rain water collector (A: location of Seine River basin in Northern France, B: location of the Orge River catchment in the Ile de France Region around Mega Paris City)

Figure 2 : Water discharge of the Orge and Yvette rivers at the sampling sites and timing of the sampling campaigns

Figure 3 : Molecular diagnostic ratios of river SPM, atmospheric particles, flood sediments and RDS from the Orge River catchment along with the corresponding signatures of soils (Gaspéri et al., 2018), runoff particles (Gasperi et al., 2017), and Seine River sediment (Lorgeoux et al., 2016)

Figure 4 : Correlation between fluoranthene, chrysene and benzo(a)anthracene in Log10 displaying Orge River SPM, atmospheric particles, RDS and flood sediments along with soil samples (Gaspéri et al., 2018), runoff particles (Gasperi et al., 2017), Seine River sediments (Lorgeoux et al., 2016)

Figure 5 : Chrysene and fluoranthene content for the Orge River SPM displayed by sampling site, compared to the values found in the potential sources, including RDS samples, soil samples (Gasperi et al., 2016) and urban runoff particles from the Sucy site (Gasperi et al., 2017)

Figure 6 : PAH concentrations of modeled theoretical urban particles along with those of (urban) runoff particles and road deposited sediments

Table 1 : Literature data compiled to trace PAH contamination in the Orge River catchment (see detailed dataset in Table S6)

	Description	Significance	Reference
Soil samples	Samples from the soil surface collected in	Potential source of particulate-bound	(Gaspéri et al.,
	2009 - 2010 across the Seine River basin (n = 32)	РАН	2018)
	(n - 32)		
Runoff particles	storm sewer in Sucy catchment	Potential source of particulate-bound PAH from urban areas	(Gasperi et al., 2017)
		Legacy contamination signature:	
Seine River	Samples from a sediment core collected in	1950 – 1963: maximum PAH	(Lorgeoux et al.,
sediments	the floodplain of the Seine River in 2008	contamination	2016)
		1970 – 2004: stabilized contamination	

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Supplementary_Froger_et_al_Tracing_PAH_source