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Abstract In this paper, a closed-form approach is presented
to estimate rapidly the equivalent stiffness of boards used
in Cross Laminated Timber (CLT) panels from local or-
thotropic behavior at ring scale for varying sawing patterns.

It is first assumed that narrow edges are glued. In this
case, closed-formReuss and Voigt bounds are derived for the
equivalent layer behavior of CLT. An application to Norway
spruce boards is presented and reveals that the cross-layer
(rolling) shear behavior lies between 100 and 150 MPa with
a careful selection of the board sawing pattern. Then, using
finite element method, upper bounds for the cross-layer shear
stiffness modulus of boards with and without glued edges
are calculated and theoretical predictions are compared with
recommendations and experimental data from the literature.
Finally, it appears that these bounds remain relevant for CLT
layer with unglued narrow edges for common aspect ratios.

1 Introduction

Cross-Laminated-Timber (CLT) consists of lumber layers
stacked crosswise and glued on their lower and upper faces.
Its quick and easy assembling, its low self-weight and its low
environmental impact make this product competitive. In the
last few years, several timber buildings made of CLT were
built mainly in Northern America and in Western Europe
such as Murray Grove in London (Lomholt, 2009) and the
Treet in central Bergen (Mairs, 2016).
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Nevertheless, the behavior of CLT panels is complex be-
cause of several heterogeneities at different scales. Here, only
heterogeneities larger than the annual ring are considered. At
ring scale, wood elastic behavior is generally modeled as an
orthotropic material with three main directions: the longitu-
dinal direction L corresponding towood fiber orientation, the
radial and tangential directions R and T . The fibers orienta-
tion leads to a strong stiffness and strength contrast between
the stiff longitudinal direction and the soft radial and tan-
gential directions. At board scale, another heterogeneity is
due to the rotation of the material orthotropic coordinate
system (O, L,R,T) (Figure 1) where O is located at the pith.
The global orthotropic system of the board is defined as
(O, L,C, Z) where C and Z stand for cross and normal di-
rections (Figure 1). The behavior of the board depends on
the distribution of rings through the board section, called the
sawing pattern. At layer scale, individual boards can be glued
or not on their narrow edges depending on the manufactur-
ing process. Free narrow edges lead to stress concentrations
lowering the stiffness and strength of CLT panels under par-
ticular loads. Note that, for free narrow edges, self-contact
may be ignored since there is a small gap between boards
in practice. Finally, CLT are multi-layered panels strongly
heterogeneous because of cross-wise orientations of layers.
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Fig. 1 Local and global orientations in a board
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From these observations, the mechanical behavior of
CLT panels is difficult to model properly. The scales of het-
erogeneities cited above are not clearly distinct: the curvature
radius and the thickness of annual rings are comparable with
the thickness of boards, the board width is larger than the
layer thickness, the number of layers in CLT is small (from
three to eleven). Thus, these heterogeneities require careful
attention when using homogenization techniques.

Nevertheless, in current recommendations for the de-
sign of CLT, panels are often modeled as multilayer plates
or beams. This is the case of the γ-method recalled in Eu-
rocode 5 (Eurocode 5-1-1, 2004, 2015) and adapted toCLT in
the European Technical Agreement ATE-08/0271 for Stora
Enso products where cross-layers are modeled as mechanical
joints between longitudinal layers with a stiffness related to
the equivalent cross-layer shear stiffness. In theCLT-designer
software, Thiel and Schickhofer (2010) suggest to use Tim-
oshenko beam theory and derived the shear stiffness of CLT
beams from the Jourawski method. Advanced models have
also been suggested by Franzoni et al (2016b) for the bend-
ing of CLT panels and by Perret et al (2016) for the buckling
of CLT panels. In these methods, it is assumed that the me-
chanical behavior of each layer, composed of several boards,
can be modeled as homogeneous. It is thus assumed that
there exists an equivalent layer mechanical behavior which
adequately takes into account the effect of lower scale het-
erogeneities such as ring distribution and narrow edges gaps.

This equivalent behavior is often based on an educated
guess for a small collection of plate solicitations which
emerge from practical applications. First, the longitudinal
and cross Young’s moduli EL and EC are involved in the
bending stiffness for CLT floors (Kreuzinger, 1999; Gagnon
and Pirvu, 2013; Thiel and Schickhofer, 2010) and in the
in-plane stiffness for CLT walls (Thiel and Schickhofer,
2013; Thiel and Krenn, 2016; Perret et al, 2016). Because
of the high stiffness contrast between EL and EC , the cross
Young’s modulus EC is often neglected (Thiel and Schick-
hofer, 2010). Moreover, because of the thickness of CLT and
of the cross layers, the out-of-plane shear stiffness of CLT,
composed of the longitudinal shear stiffness modulus GLZ

and of the cross-layer shear stiffness modulus GCZ , is also
involved in the bending (Franzoni et al, 2016b) and the buck-
ling behavior of CLT (Perret et al, 2016). In the γ-method
– detailed in (Gagnon and Pirvu, 2013)– GLZ is neglected
because of the stiffness contrast compared to GCZ . On the
contrary, both GLZ and GCZ are involved in the shear anal-
ogy method – (Kreuzinger, 1999) also detailed in (Gagnon
andPirvu, 2013) – and theTimoshenko beam theory since the
influence of GLZ is generally not negligible in CLT beams.
Finally, the in-plane shear stiffness modulus GLC is involved
in shear walls. Particularly, the narrow edge gluing and the
board aspect ratio have a strong influence on GLC (Moos-
brugger et al, 2006; Bogensperger et al, 2010; Franzoni et al,

2017). All these parameters necessitate recommendations
depending on timber strength class, on the board aspect ratio
and on the narrow edge gluing as suggested in the draft for a
revised version of the Eurocode 5-1-1 (2015), but the sawing
pattern may also be taken into account.

In this direction, Aicher et al (2001, 2016), Jakobs (2005)
and Ehrhart et al (2015) investigated experimentally the ef-
fect of the sawing pattern on various equivalent layer stiffness
moduli perpendicular to the grain and observed that this pa-
rameter has a strong influence on the mechanical behavior
of the layer. Indeed, stress and strain fields are not uniform
in the board because of the varying orientation of the wood
material properties. This encouraged numerical parametric
studies (Aicher and Dill-Langer, 2000; Jakobs, 2005; Nairn,
2007; Gustafsson and Danielsson, 2013; Aicher et al, 2016;
Nairn, 2017). These investigations differ in the wood solici-
tation direction and the boundary conditions to apply to the
board section in order to retrieve equivalent properties. How-
ever, they all rely on finite element simulations which may
not be convenient for practical design.

In order to give a fast and reasonable estimate of the elas-
tic behavior of CLT, closed-form expressions of the equiv-
alent stiffness of a single board depending on its sawing
pattern and the local elastic moduli are suggested in this pa-
per. First, in Section 2.1, the equivalent stiffness is calculated
from the average of the local stiffness and compliance ma-
trix in all directions of the radial-tangential plane. Then, in
Section 2.2, a finer estimation of the equivalent stiffness is
established using Reuss lower bound and Voigt upper bound
for a given sawing pattern. An application to Norway spruce
boards with various sawing patterns is presented in Section 3
for boards with glued edges. In order to extrapolate these re-
sults to boards with free edges, the impact of edge gluing on
the equivalent layer stiffness is first discussed in Section 4.
Then, using finite element method, upper bounds for the
cross-layer shear stiffness modulus GCZ of boards with and
without glued edges are calculated and theoretical predic-
tions are compared with recommendations and experimental
data from the literature. Conclusions are finally drawn on
the relevance of these bounds for the either analytical or
numerical modeling of CLT panels.

2 Closed-form expressions for the equivalent stiffness of
a single board

In this section, the equivalent stiffness of a single board
is estimated from local behavior of wood using averaging
techniques. It is based on the fundamental assumption that
the applied average strain or stress is uniform at the scale of
the board. The equivalent behavior of the board is expressed
in the global orthotropic system (O, L,C, Z) of the board
(Figure 1). For doing so, wood variability is ignored as a
first approach. Hence the annual rings are perfect concentric
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circles. It is also assumed that the local constitutive behavior
of the wood in the frame (O, L,R,T) is known and only
dependent on the local orientation θ of the ringwith respect to
the frame (O, L,C, Z). This excludes the distinction between
earlywood and latewood which may have an influence on
the equivalent stiffness behavior as pointed out in previous
studies (Nairn, 2007). This also excludes the presence of
juvenile wood with reduced mechanical properties close to
the pith.

2.1 Stiffness and compliance averages

For a given board, the sawing pattern is not known a priori.
A first approximation of the global behavior can be obtained
by averaging the local behavior in all directions of the radial-
tangential plane (O,R,T). For this purpose, the constitutive
law between the local strain ε and the local stressσ is written
using Kelvin’s notation in the (O, L,R,T) frame:

©­­­­­­­­«

εL
εR
εT√
2εRT√
2εLT√
2εLR

ª®®®®®®®®¬
=

©­­­­­­­«

S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

ª®®®®®®®¬

©­­­­­­­­«

σL

σR

σT√
2σRT√
2σLT√
2σLR

ª®®®®®®®®¬
, (1)

where S is the three-dimensional compliance matrix of the
local orthotropicmaterial. Considering localYoung’smoduli
E , shear moduli G and Poisson’s ratio ν, components of the
three-dimensional compliance matrix S are expressed as:

S11 =
1
EL
, S12 = −νLR

EL
, S13 = −νLT

EL
,

S22 =
1
ER
, S23 = −νRT

ER
, S33 =

1
ET
,

S44 =
1

2GRT
, S55 =

1
2GLT

, S66 =
1

2GLR
.

(2)

With Kelvin’s notation, the rotation matrix R around longi-
tudinal axis L by an angle θ (Figure 1) is defined as:

R (θ) =

©­­­­­­­­«

1 0 0 0 0 0
0 c2 s2 √

2cs 0 0
0 s2 c2 −

√
2cs 0 0

0 −
√

2cs
√

2cs c2 − s2 0 0
0 0 0 0 c −s
0 0 0 0 s c

ª®®®®®®®®¬
, (3)

where c = cos(θ) and s = sin(θ). The compliance tensor
S(θ) after rotation by an angle θ is given by:

S(θ) = R (θ) · S · TR (θ) , (4)

where TR is the transpose of R.

The average of the compliance matrix S(θ) in the domain
θ ∈ [0,2π] gives a compliance matrix S̄ corresponding to a
transversely isotropic material:

S̄ =

©­­­­­­­«

S̄11 S̄12 S̄12 0 0 0
S̄12 S̄22 S̄22 − S̄44 0 0 0
S̄12 S̄22 − S̄44 S̄22 0 0 0
0 0 0 S̄44 0 0
0 0 0 0 S̄66 0
0 0 0 0 0 S̄66

ª®®®®®®®¬
, (5)

where


S̄11 = S11,

S̄12 =
1
2 (S12 + S13) ,

S̄22 =
1
8 [3 (S22 + S33) + 2 (S23 + S44)] ,

S̄44 =
1
4 (S22 + S33 + 2 (S44 − S23)) ,

S̄66 =
1
2 (S55 + S66) .

(6)

This averaged compliance S̄ defines apparent moduli of
a transversely isotropic elastic behavior. Let ES , GS and
νS denote the Young’s moduli, shear moduli and Poisson’s
ratios from the averaged compliance. They are defined by the
following expressions:



ES
L =

1
S̄11
= EL,

ES
N = 1

S̄22
= 8

(
3−νRT

ER
+ 3−νT R

ET
+ 1

GRT

)−1
,

νSLN = − S̄12
S̄11
= νLT+νLR

2 ,

GS
LN =

1
2S̄66
=

(
1

2GLR
+ 1

2GLT

)−1
,

GS
NN =

1
2S̄44
= 2

(
1

GRT
+ 1+νRT

2ER
+ 1+νT R

2ET

)−1
.

(7)

Since there is no distinction here between cross and normal
directionsC and Z of the board, the notation N is used for the
normal directions of the board (perpendicular to the grain).

In the following, the three-dimensional stiffness matrix
C (θ) = S−1 (θ) is averaged in all directions of the radial
tangential plane. Since Kelvin’s notations are used here, the
same rotation matrix R (θ) is used to calculate the stiffness
matrix C leading to similar results. The averaged stiffness
matrix C̄ also corresponds to a transversely isotropic mate-
rial:

C̄ =

©­­­­­­­«

C̄11 C̄12 C̄12 0 0 0
C̄12 C̄22 C̄22 − C̄44 0 0 0
C̄12 C̄22 − C̄44 C̄22 0 0 0
0 0 0 C̄44 0 0
0 0 0 0 C̄66 0
0 0 0 0 0 C̄66

ª®®®®®®®¬
, (8)

where


C̄11 = C11,

C̄12 =
1
2 (C12 + C13) ,

C̄22 =
1
8 [3 (C22 + C33) + 2 (C23 + C44)] ,

C̄44 =
1
4 (C22 + C33 + 2 (C44 − C23)) ,

C̄66 =
1
2 (C55 + C66) .

(9)
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Note that the elastic behavior calculated from the stiffness
average is not the same as the elastic behavior calculated
from the compliance average: C̄ , S̄−1. From the stiffness
matrix C̄, it is first necessary to compute C̄−1 in order to
identify engineering moduli as previously (7). Here, only the
longitudinal shear stiffness modulus has a simple expression:

GC
LN =

1
2
(GLR + GLT ) . (10)

2.2 Reuss lower bound and Voigt upper bound for a specific
sawing pattern

One can then go further in the estimation of average prop-
erties, based on the geometry of boards. Indeed, assuming
an equivalent layer with glued narrow edges, it is possible
to derive bounds taking explicitly the board aspect ratio and
the relative distance to the pith into account.

The Reuss lower bound compliance matrix SR is the
average of the local compliance matrix S(θ), where θ is the
ring orientation, over the full board section. Averaging the
compliance matrix is equivalent to assume a uniform stress
state σ over the whole section. This lower bound is first
derived for a centered boardwith respect to the pith (Figure 2)
and then generalized to other configurations (Figure 4, 5
and 6).

2.2.1 Reuss lower bound for a centered board

For a rectangular board with the pith at the center (Figure 2),
SR can be expressed as:

SR =
1

4bt

∫ b

−b

∫ t

−t
S (θ) dCdZ . (11)

α

θ
r

Z

CL

b

t

A1

A2

Fig. 2 Scheme of the board section

Note that for symmetry reasons, S(θ) = S(π+ θ). Hence,
the Reuss bound will be the same for the rectangular board

surrounded with a dashed-dotted line or the triangular do-
main surrounded wit a dashed line in Figure 2. The most
convenient domain for closed-form calculation being the lat-
ter, we have:

SR =
1

A1 + A2

(∫
A1

S(θ)dA +
∫
A2

S(θ)dA
)
, (12)

where A1 and A2 are triangular sub-domains in Figure 2.
Furthermore, the board having always an axis of symmetry
ensures that the averaged behavior is orthotropic.

α

Z

Cb

t

θ

s

A1

Fig. 3 Integration of mechanical properties on A1

In Figure 3, geometrical parameters used for the integra-
tion ofmechanical properties on the section A1 are presented.
For an angle θ, the area is s = b2

2 tan θ and the elementary
area is then ds = b2

2
dθ

cos2 θ
. In (4), S(θ) is expressed as a sum

of power function of sinus and cosinus functions weighted
by local mechanical properties Si j . These functions have
to be integrated on the section A1 for θ ∈ [−α;α] where
tanα = t/b. For example:

∫ α

−α
cos4(θ)ds =

b2

2

∫ α

−α
cos2(θ)dθ = b2

2
(cosα sinα + α) .

The integration on A2 is similar to the integration on A1.
From the previous results, it is possible to determine the
average

〈
cos4(θ)〉 on the entire section:

〈
cos4(θ)〉 = 1

4
[
3 − f + (α) + 2 f − (α)] , (13)

where:

f ± (α) = α

tanα
±

( π
2
− α

)
tanα (14)

Proceeding the same way for all functions s4, c2s2, c2 and s2

and including them in the expression of S(θ) (4), it is possible
to express the Reuss lower bound SR (α) as an orthotropic
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material function of α and local mechanical properties:




SR
11 (α) = S11, (15a)

SR
12 (α) =

1
2
[S12 + S13 + (S12 − S13) f − (α)] , (15b)

SR
13 (α) =

1
2
[S12 + S13 + (S13 − S12) f − (α)] , (15c)

SR
22 (α) =

1
4


3 (S22 + S33) − 2 (S23 + S44)
+2 (S22 − S33) f − (α)
+ (2S23 + 2S44 − S22 − S33) f + (α)


,(15d)

SR
33 (α) =

1
4


3 (S22 + S33) − 2 (S23 + S44)
+2 (S33 − S22) f − (α)
+ (2S23 + 2S44 − S22 − S33) f + (α)


, (15e)

SR
23 (α) =

1
4

[
6S23 + 2S44 − S22 − S33
+ (S22 + S33 − 2S23 − 2S44) f + (α)

]
, (15f)

SR
44 (α) =

1
2

[
2S23 + 4S44 − S22 − S33
+ (S22 + S33 − 2S23 − 2S44) f + (α)

]
,(15g)

SR
55 (α) =

1
2
[S55 + S66 + (S55 − S66) f − (α)] , (15h)

SR
66 (α) =

1
2
[S55 + S66 + (S66 − S55) f − (α)] . (15i)

From the expression of the Reuss lower bound of the
compliance SR, the engineering constants of the associated
orthotropic material can be calculated with the following
expressions:




ER
L =

1
SR

11
, ER

C =
1
SR

22
, ER

Z =
1
SR

33
,

νRLC =
SR

12
SR

11
, νRLZ =

SR
13

SR
11
, νRCZ =

SR
23

SR
22
,

GR
LC =

1
2SR

66
, GR

LZ =
1

2SR
55
, GR

CZ =
1

2SR
44
.

(16)

2.2.2 Reuss lower bound for a shifted board

This approach may easily be extended taking into account
the distance z1 to the pith (Figure 4). The Reuss lower bound
of the equivalent layer stiffness of the board delimited by
the dashed rectangle in Figure 4 can then be calculated as
follows thanks to the additivity of the integral:

SR (α, z1) = z2S
R (α2) − z1S

R (α1)
t

. (17)

2.2.3 Reuss lower bound for a symmetric assembly of
shifted boards

This approach may also be generalized to a symmetric as-
sembly of two boards as presented in Figure 5 with a lateral
distance c1 to the symmetry axis. This symmetric config-
uration ensures that the equivalent stiffness is orthotropic
in the (O, L,C, Z) frame. Otherwise a coupling – often ne-
glected in engineering practice – would be present between

Z

C

L

α

z1

z2

t

b

α1

α2

Fig. 4 Scheme of the board section with a distance z1 to the pith

shear and normal equivalent stiffnesses. The corresponding
Reuss lower bound SR of the symmetric arrangement can be
calculated from:

SR (α, z1, c1) = c2z2S
R (α2)−c2z1S

R (α1)−c1z2S
R (α3)+c1z1S

R (α4)
bt

.

(18)

Z

C

L

α

z1

z2

t

c2

α1α2
α4

α3

c1 b

Fig. 5 Scheme of a symmetric assembly of a board section with a
position z1eZ + c1eC with respect to the pith

2.2.4 Further generalizations

Only configurations leading to an orthotropic equivalent
elastic behavior have been presented in detail. It is useful
to mention that the present approach may be easily extended
to non-orthotropic configurations. Two cases are briefly dis-
cussed here.

First, considering only one board in Figure 5 simply re-
quires the derivation of odd contributions in θ in Equation (4)
which do not vanish.

Second, the case of a spiral grained lumber may also be
addressed (Figure 6). In such case, the local orientation of
the grain follows a helix (frame (l,R, t), rotated by a twist
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β l

t
T

L

Fig. 6 Local orientation of a spiral grained wood

angle β with respect to the ring frame (L,R,T). For a fixed
twist angle, the previous approach may be directly applied to
the rotated material constants from (l,R, t) to (L,R,T).

2.2.5 Voigt upper bound

The same procedure may be followed for deriving the Voigt
upper bound of the equivalent stiffness defined as:

CV =
1

4bt

∫ b

−b

∫ t

−t
C (θ) dCdZ, (19)

Averaging the stiffness matrix is equivalent to assume a uni-
form strain state ε over the whole section. Since Kelvin’s
notation are used, similar expression are found for the stiff-
ness matrix CV of the Voigt upper bound, replacing S by C
in (11-18).

As in Section 2.1, the corresponding compliance matrix
SV =

(
CV

)−1 is introduced. Then, the engineering constants
associated with the Voigt upper bound are calculated from
(16) by replacing the superscript R by V . Again SV , SR.

Let us recall that, 1
2
Tε · CV · ε is an upper bound of the

potential energy of the board for any average strain ε and
1
2σ · SR · σ is an upper bound of the complementary energy
for any average stress σ. From Legendre-Fenchel transform
applied to the potential energy, it is possible to prove:

∀σ, Tσ ·
(
SV

)−1
· σ ≤ Tσ · SH · σ ≤ Tσ · SR · σ (20)

where SH is the equivalent compliance tensor to be esti-
mated. Considering for instance a state of pure traction in
direction L: Tσ = (1,0,0,0,0,0) in (20) leads to:

1
EV
L

≤ 1
EH
L

≤ 1
ER
L

or ER
L ≤ EH

L ≤ EV
L (21)

which illustrates that Young’s moduli as well as shear moduli
of the equivalent stiffness are bounded by those of the Reuss
lower bound and the Voigt upper bound.

Although relatively cumbersome, there is no difficulty
in the application of the method and the evaluation of the
various bounds is straightforward from the material local
properties as will be shown in the next section.

3 Equivalent-layer stiffness of Norway-spruce with
glued narrow edges

An application of preceding formulas is made to estimate
the equivalent layer stiffness of boards with glued edges
from the local behavior at ring scale measured by Keunecke
et al (2007, 2008) on Norway spruce (Table 1). Only saw-
ing patterns of boards including an axis of symmetry are
investigated (17).

3.1 Equivalent Young’s moduli

3.1.1 Equivalent longitudinal Young’s modulus EL

The equivalent longitudinal Young’s modulus EL is an im-
portant characteristic of the CLT behavior particularly under
bending and under in-plane load. The Reuss bound ER

L of
the equivalent longitudinal modulus is equal to the local lon-
gitudinal modulus EL for any sawing pattern (see 16). The
equivalent longitudinal modulus EV

L estimated numerically
from the Voigt upper bound is almost equal to the Reuss
bound for varying sawing patterns: the relative difference is
lower than 0.2‰ for 2b

t < 20 and z1
2b < 1.5. This is a conse-

quence of the high stiffness contrast between EL and ER and
ET . Thus, the sawing pattern of boards is indifferent in prac-
tice regarding the equivalent longitudinal Young’s modulus
EL of CLT with glued edges.

3.1.2 Equivalent normal and cross Young’s moduli EZ and
EC

The equivalent normal Young’s modulus EZ has only a lim-
ited role in the behavior of CLT panels: it plays a role mostly
when the CLT panel is placed between two vertical elements
and is locally punched. Figure 7 shows EZ calculated from
Reuss and Voigt bounds for a varying board aspect ratio 2b

t

and for a varying relative distance to the pith z1
2b . It is observed

that EZ varies strongly between 620MPa and 230MPawhich
is approximately one third of the local radial modulus ER. It
is minimum for a relative distance to the pith z1

2b between 0.2
and 0.4 and a board aspect ratio 2b

t > 4 which corresponds to
common sawing patterns used for cross-layer. Using directly
local moduli ER and ET in applications may thus overesti-
mate the equivalent modulus from 200% to 274%. Similar
conclusions were drawn in previous studies based on FEA
(Nairn, 2007; Gustafsson and Danielsson, 2013).

The equivalent cross Young’s modulus EC is involved
in the calculation of the bending and membrane stiffness. In
Figure 7, the equivalent cross Young’s modulus EC calcu-
lated from Reuss and Voigt bounds is plotted for a varying
board aspect ratio 2b

t and for a varying relative distance to
the pith z1

2b . It is observed that the equivalent cross Young’s
modulus EC varies strongly with the sawing pattern. It can
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EL ER ET GLR GLT GRT νLR νLT νRT

Value (MPa) 12800 625 397 617 587 53 0.36 0.45 0.48
CoV (%) 9.2 20.4 10.3 12.1 10.2 10.9 13.2 8.2 19.2

No. of specimen 10 13 11 120 120 120 10 10 13

Table 1 Elastic Properties of Norway spruce (Keunecke et al, 2007, 2008)

be equal to 220 MPa which is almost three times lower than
the local Young’s modulus ER. This value is in contradiction
with what is suggested in current recommendations for a re-
vised version of the Eurocode 5.1.1 (Eurocode 5-1-1, 2015)
where a value of 450MPa is suggested which could underes-
timate deformations due to cross layers. Note, however, that
EC is generally assumed negligible compared to EL in the
calculation of the bending and membrane stiffness of CLT.

In Figure 8, the equivalent cross and normal Young’s
moduli ER

C , EV
C
, ER

Z and EV
Z are compared to the compliance

average ES
N and the stiffness average EC

N . As expected, for
α = arctan t

b close to 0° and 90°, the bounds tend to the
local behavior since the ring orientation is almost uniform
in the section: local orientations coincide with the global
orientations. It is further observed that, for α between 30°
and 60° which corresponds to practical values of the aspect
ratio, the equivalent Young’s moduli of Voigt and Reuss
bounds can be approximated directly by the moduli from
averages of the stiffness EC

N and of the compliance ES
N .
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Fig. 8 Young’s moduli of Voigt and Reuss bounds for z1 = 0

3.1.3 Poisson’s ratio νLC and νCL

In current recommendations, the bending stiffness D of lon-
gitudinal layers in CLT is considered proportional to EL and
not to the plane-strain Young’s modulus EL

1−νLCνCL
as should

be done in Classical Lamination Theory. From Reuss and
Voigt bounds, the Poisson’s ratios product νLCνCL varies
between 0.003 to 0.007. Thus, the assumption of EL ≈

EL

1−νLCνCL
is valid for CLT panels.

3.2 Equivalent shear moduli

3.2.1 Equivalent longitudinal-layer and in-plane shear
moduli GLZ and GLC

From calculations, for varying board aspect ratio 2b
t and

relative distance to the pith z1
2b , the gap between bounds of the

longitudinal-layer shear modulusGLZ and the in-plane shear
modulus GLC is less than 0.1%. Indeed, because local shear
moduli GLR = 617 MPa and GLT = 587 MPa are rather
close,GLZ andGLC vary slightly between these values. This
might not be the case for other species, and larger variations
may be be observed. Finally, it is not surprising that the
stiffness and compliance averages GS

NN ≈ GC
NN = 602 MPa

appears as good approximations of GLR and GLT for CLT
with glued narrow edges.

3.3 Equivalent cross-layer shear stiffness modulus GCZ

In Figure 7, Reuss and Voigt bounds of equivalent layer
shear stiffness modulus GCZ are plotted for varying board
aspect ratios 2b

t and for relative distance to the pith z1
2b . It

is observed that, if the board aspect ratio is large enough,
there is a sawing pattern, corresponding to a relative dis-
tance to the pith 0.2 < z1

2b < 0.3, which maximizes GCZ . For
these boards, the equivalent cross layer shear stiffness mod-
ulus lies between 100 and 150 MPa approximately which is
twice to three times higher than the local rolling shear stiff-
ness modulus GRT . Hence, the present closed-form bounds
confirm previous observations obtained from experiments
as well as numerical simulations (Aicher and Dill-Langer,
2000; Jakobs, 2005; Perret et al, 2018; Ehrhart and Brand-
ner, 2018).

In this section, upper and lower bounds were calculated
for boards with glued edges. These bounds are also valid for
any assembly of identical boards such as GLT. Nevertheless,
most of CLTmanufacturers do not glue narrow edges. Hence,
free narrow edges effects, which are specific to CLT, are
discussed in the following section.



Equivalent stiffness of timber used in CLT: Closed-form estimates and numerical validation 9

4 Influence of free narrow edges on the cross-layer shear
stiffness modulus GCZ

4.1 Influence of free narrow edges

In this section, the impact of free narrow edges on the global
behavior of CLT compared to results of Section 3 is dis-
cussed . The free narrow edges boundary condition imposes
σCC = σLC = σCZ = 0 on narrow edges. Since a uniform
strain is assumed for the Voigt upper bound calculation, it is
also an upper bound when narrow edges are free. In contrast,
these conditions are not always compatible with the uniform
stress assumption in the Reuss lower bound calculation. The
longitudinal Young’s modulus ER

L , the normal Young’s mod-
ulus ER

Z and the longitudinal shear modulus GR
LZ are calcu-

lated assuming uniform stress σLL , σZZ and σLZ which are
compatible with the free narrow edges boundary condition.
Hence, ER

L , ER
Z and GR

LZ are also lower bounds of the corre-
sponding homogenized engineering constants for CLT with
free narrow edges and the results obtained in the previous
section still hold for these moduli. Nonetheless, the equiva-
lent crossYoung’smodulus ER

C , the equivalent in-plane shear
modulus GR

LC and the equivalent cross-layer shear modulus
GR

CZ are calculated from an assumption of uniform stress
σCC , σLC and σCZ over the whole board. Hence, ER

C , GR
LC

and GR
CZ are no lower bounds of the corresponding homoge-

nized engineering constants for CLT with free narrow edges.
Actually these moduli are involved in more complex plate
behavior of CLT which are now briefly reviewed.

Even if GLZ and GLC have similar values for glued nar-
row edges, they are involved in different plate mechanisms:
GLZ contributes to the global out-of-plane shear behavior
whereas GLC plays a central role in the in-plane shear be-
havior of CLT panels. For CLT with free narrow edges, the
in-plane shear and torsion behavior, depending on GLC , is
more complex than for glued edges. Indeed, in-plane shear
stress cannot be transferred directly to the neighboring board
because of free edges (Silly, 2010). The behavior is thus in-
trinsically 3D and stiffness can only be estimated considering
a superposition of layers. In particular, Moosbrugger et al
(2006) studied the in-plane shear behavior of an infinitely
thick CLT with regular gaps between neighboring boards.
They observed a significant decrease in the apparent in-plane
shear modulus GLC up to half the one estimated for boards
with glued edges. These results were compared later with
3-ply and 5-ply CLT by Bogensperger et al (2010). Follow-
ing Hashin (1986, 1987) variational principles, Nairn (2017)
also suggested an equivalent layer in-plane shear modulus.
Finally, Franzoni et al (2017, 2018) also studied this behavior
at the scale of a CLT plate with small or large gaps by means
of a periodic plate homogenization scheme and suggested
closed-form formula.

Similarly to the in-plane shear behavior, a 3D study is
necessary for the equivalent cross Young’smodulus EC since
stress cannot be transmitted directly from one board to the
other (Nairn, 2017). However, this mechanical behavior was
less investigated as this stiffness and strength direction is
often neglected in practice.

Finally, the detailed treatment of the cross layer shear
stiffness GCZ requires also a 3D analysis as it involves com-
plex interactionswith the upper and lower longitudinal layers.
Neglecting the influence of the sawing pattern, this analysis
was achieved by Franzoni et al (2017, 2018) and closed-form
formula were suggested as well. This required a modeling
based on a thick plate homogenization scheme (Lebée and
Sab, 2012b; Sab and Lebée, 2015).

4.2 Numerical upper bounds for the cross-layer shear
stiffness modulus GCZ

In order to compare the suggested bounds for the equiva-
lent cross layer shear stiffness modulus GCZ with existing
experimental data available in the literature, a simpler and
approximate approach is followed in this section.

Indeed, because of the stiffness contrast between the lon-
gitudinal layers and the cross layers it is possible to argue
that the cross layer is mostly sheared by the longitudinal lay-
ers (Lebée and Sab, 2012a). Hence in practice the equivalent
cross layer shear modulus is mostly determined experimen-
tally from single lap shear tests (Ehrhart et al, 2015; Ehrhart
and Brandner, 2018) where narrow edges are free. Follow-
ing this global picture, a numerical finite elements study is
achieved in order to compute an upper bound of the equiva-
lent cross-layer shear stiffness modulus GCZ with glued and
free narrow edges. Several similar studies have already been
performed (Aicher and Dill-Langer, 2000; Jakobs, 2005) but
only for free narrow edges.

It is assumed that the cross-layer is sheared by the rel-
ative displacement of the adjacent longitudinal layer. Since
the displacement is imposed, the cross-layer shear stiffness
modulus Gnum

CZ
calculated numerically is an upper bound of

GCZ . This upper bound is more precise than Voigt upper
bound since displacement conditions are imposed only on
the boundary whereas a uniform shear strain field is imposed
in the whole board for the Voigt upper bound. However,
when narrow edges are free, the estimation from this upper
bound may be far from the exact value since no lower bound
is available. This may appear when the aspect ratio of the
board is small and will be discussed in the next section.

Note that, in Aicher and Dill-Langer (2000) and Jakobs
(2005), the cross-layer was modeled as well as the longi-
tudinal adjacent layer (Figure 9). Because of the stiffness
contrast between layers, this approach is almost equivalent
to imposing directly displacement conditions on the upper
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and lower faces of the cross-layer. Indeed, Lebée and Sab
(2012a) demonstrated that it is possible to isolate the core of
a sandwich (corresponding here to the cross-layer), from the
skins (here the longitudinal layers) and to obtain an upper
bound of the cross-layer shear stiffness by imposing a relative
displacement between upper and lower faces.

y
x

σ x b

0t

t

Fig. 9 2D numerical simulation for calculation of the equivalent cross-
layer shear stiffness (Aicher and Dill-Langer, 2000)

The cross-layer is assumed to be periodic with an alterna-
tive orientation of the sawing patterns (Figure 10). Hence, for
glued narrow edges, a representative volume element (RVE)
can be modeled as two adjacent boards. It is then possible to
consider symmetry to reduce the problem to only two half
board sections (Figure 10) called Sub-Representative Vol-
ume Element (SRVE). Consequently, symmetry conditions
are imposed on lateral sections for a board with glued edges
(Figure 11). For free edges, only half a board is modeled
with a free boundary condition and a symmetry condition
as shown in Figure 12. For each board, the local orientation
of timber is varying according to the given sawing pattern.
Finally, because the problem is invariant in direction L and
symmetric with respect to any plane of normal eL , only a 2D
numerical simulation is required with in-plane deformations.

Z

Z

Infinite cross layer of CLT

RVE

SRVE

Periodicity

Symmetry

C

C

Fig. 10 Simplification of the model thanks to periodicity and symme-
tries

The equivalent cross-layer shear stiffness modulus GCZ

can be estimated from the strain energy in the board Wela:

Wela =
1
2

GCZγ
2bt, (22)

{
uC = tγ
uZ = 0

{
uZ = 0
σCC = 0

bb

Z

O

O′

C

t

{
uZ = 0
σCC = 0

{
uC = 0
uZ = 0

z1

Fig. 11 2D SRVE for the calculation of the equivalent cross-layer shear
stiffness of CLT with glued edges

{
uC = tγ
uZ = 0

{
σCC = 0
σCZ = 0

b

Z

O

C

t

{
uZ = 0
σCC = 0

{
uC = 0
uZ = 0

z1

Fig. 12 2D SRVE for the calculation of the equivalent cross-layer shear
stiffness of CLT with free edges

where γ = 2εLC = uC
t is the averaged shear strain in the

specimen.

4.3 Comparison with experimental data

In this section, closed-form as well as numerical bounds are
compared to direct measurements of the equivalent cross-
layer shear stiffness modulus GCZ found in the literature.
As in Section 3, all theoretical values are derived from the
local stiffness measured by Keunecke et al (2007, 2008) on
Norway spruce (Table 1) whereas the data for the direct
measurement comes from other samples. This may explain
some discrepancies in addition to wood natural variability.

4.3.1 Data from Franzoni et al (2016a) and Perret et al
(2018)

Franzoni et al (2016a) performed double lap shear tests on
a small batch of CLT boards whose typical cross section
is given in Figure 1. This corresponds approximately to
z1 = t/10. Perret et al (2018) performed 4-point bending
on sandwich beams on the same batch. Hence, in Franzoni
et al (2016a) tests, narrow edges were free, whereas in Perret
et al (2018) tests, narrow edges were glued. Because of the
small number of different boards, the variability observed
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is not statistically representative of the species but allows
qualitative observations.

In Figure 13, predicted andmeasured values of the equiv-
alent cross-layer shear stiffness modulus GCZ are plotted for
α ∈ [0°,90°] and z1 = t/10. The closed-form Reuss lower
bound and Voigt upper bound are plotted as well as both
numerical upper bounds for free and glued narrow edges.

Significant free edge effects for

CLT without glued narrow edges

ḠS
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Fig. 13 Equivalent cross-layer shear moduli as a function of α for
z1 = t/10

As already noted in Section 3, GCZ may be up to 2.5
times larger than the local rolling shear modulus GRT . In
addition, for 30° < α < 60°, the closed-form bounds GR

CZ

and GV
CZ

can be well approximated by direct averages GS
NN

and GC
NN derived in Section 2.1.

As expected, both numerical upper bounds are lower than
the closed-form upper bound. The free narrow edge upper
bound is lower than the glued narrow edge bound as well.
This will be the case for all further comparisons. For small
angle α, numerical upper bounds for glued and unglued nar-
row edges are similar. Indeed in this range of aspect ratio,
the boards are thin and free edges effects are negligible.
Nevertheless, for α > 30°, (2b/t < 4), the difference be-
tween free and glued narrow edges numerical upper bounds
is becoming significant as the free edges bound is dropping
rapidly (recall that the closed-form lower bound is only valid
for glued edges). Hence for aspect ratios smaller than 4, the
closed-form bound should be used with care and more re-
fined approaches are required for estimating the cross-layer
shear stiffness modulus, such as periodic plate homogeniza-
tion techniques (Sab and Lebée, 2015; Franzoni et al, 2017),
taking annual rings orientation into account.

Finally, considering wood variability, the experimental
data is in agreement with the theoretical predictions. A
slightly higher value was measured by Perret et al (2018)
since tests were performed with glued narrow edges con-
trary to Franzoni et al (2016a).

4.3.2 Data from Ehrhart et al (2015)

Ehrhart et al (2015) performed single lap shear tests on
boards with three different aspect ratios and three relative
distances to the pith. In this study, the sampling is broader
and boards were tested individually with free narrow edges.

In Figure 14, cross-layer shear moduli are plotted as a
function of the angle α for a fixed relative distance to the
pith z1

t = 1.5. Closed-form bounds, numerical upper bounds
and the recommendations from Ehrhart et al (2015) and
Schickhofer et al (2016) are compared to the experimen-
tal data from Ehrhart et al (2015). The prediction given by
theoretical bounds is in very good agreement with experi-
mental data and provides a slightly finer description of the
influence of the aspect ratio on the cross-layer shear stiffness
modulus than current recommendations. Again, for α > 20°

Significant free edge effects for
CLT without glued narrow edges
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Ḡc
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Fig. 14 Equivalent cross-layer shear moduli as a function of α for
z1 = 1.5t

(2b/t < 6), the difference between free and glued narrow
edges numerical upper bounds is becoming significant.

In Figure 15, the influence of the relative distance to the
pith z1

t is investigated for an angle α = 26.6° (2b/t = 4). This
aspect ratio corresponds to the limit value where Schickhofer
et al (2016) recommend to drop the cross-layer shear stiff-
ness from 100 MPa to 65 MPa. For this aspect ratio, the
difference between glued and free narrow edges numerical
upper bounds is rather large (about 20%) showing already
important free edges effects. Experimental data is globally in
agreement with theoretical predictions except for boards fur-
thest to the pith which yielded a rather low measured shear
stiffness. No reasonable explanation of this lower value was
found.
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Fig. 15 Equivalent cross-layer shear moduli as a function of z1 for
α = 26.6°

5 Conclusion

Closed-form upper and lower bounds were derived to esti-
mate the equivalent stiffness of timber from averages over
the board section for varying sawing pattern. These bounds
are relevant for estimating the equivalent layer stiffness of
CLT panel with glued narrow edges.

From these results, it was observed that the Young’s lon-
gitudinal modulus EL is almost constant for varying sawing
patterns and can be estimated from usual local tests. Fur-
thermore, the cross and normal Young’s moduli EC and EZ

may decrease strongly compared to local stiffnessmoduli and
could take lower values than those suggested in the revised
version of the Eurocode 5.1.1 (Eurocode 5-1-1, 2015).

It was also observed that for varying sawing patterns, the
in-plane shear modulusGLC and the longitudinal shear mod-
ulusGLZ have almost the same value for glued narrow edges.
Nevertheless, it is well established that they are involved in
very different mechanism regarding CLTwhen narrow edges
are free. More specifically, GLZ is a priori not influenced by
free narrow edges conditions whereas a significant reduc-
tion of GLC is observed between boards with glued and
free narrow edges. This observation is in contradiction with
what is recommended in the revised version of the Eurocode
5.1.1 (Eurocode 5-1-1, 2015) where no distinction is made
between these two parameters.

Finally, the equivalent cross-layer shear stiffness GCZ

varies strongly with the sawing pattern.With a careful choice
of boards, it may be equal to 100 MPa to 150 MPa. Whereas
for glued narrow edges, the bounds yield very relevant es-
timate of GCZ , a significant impact of free narrow edges
was observed from numerical simulations. For boards with
aspect ratio 2b/t smaller than 4, the suggested bounds may
be used for identifying trends but not as predictive formulas.

In terms of CLT design, closed-form formulas confirm
the common intuition that having growth ring oriented 45° is
favorable in terms of cross-layer shear stiffness. This suggests

that a careful alternation of quarter sawn boards may yield
significantly stiffer layers. The second advantage of having
closed-form formula is the possibility to perform sensitivity
analysis as well as reliability analysis which is critical with
bio-based materials.
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