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We study the plane shear flow of a dense assembly of dissipative disks using discrete simulation and prescribing the pressure and the shear rate. Those shear states are steady uniform, and become intermittent in the quasi-static regime. In the limit of rigid grains, the shear state is determined by a single dimensionless number, called inertial number I, which describes the ratio of inertial to pressure forces. Small values of I correspond to the quasi-static critical state of soil mechanics, while large values of I correspond to the fully collisional regime of kinetic theory. When I increases in the intermediate dense flow regime, we measure an approximately linear decrease of the solid fraction from the maximum packing value, and an approximately linear increase of the effective friction coefficient from the static internal friction value. From those dilatancy and friction laws, we deduce the constitutive law for dense granular flows, with a plastic Coulomb term and a viscous Bagnold term. The mechanical characteristics of the grains (restitution, friction and elasticity) have a small influence in the dense flow regime. At the end, we show that the evolution of the relative velocity fluctuations and of the contact force anisotropy as a function of I provides a simple explanation of the friction law.

I. INTRODUCTION

Due to their importance in geophysics and in various industrial processes, flows of granular materials are the focus of a large number of research, at the frontier between physics and mechanics [1][2][START_REF] Hinrichsen | The physics of granular media[END_REF]. In order to predict propagation, flow-rate or jamming, one of the main objectives of these rheophysical studies is to determine the rheological laws, based on their physical origin at the scale of the grains and of their interactions. One thus tries to express the stress tensor (and especially the pressure P and the shear stress S, positively counted) as a function of the shear rate γ and other variables such as solid fraction ν. However, granular materials are extremely various, depending on the geometry of the grains and the nature of their interactions, and we restrict our attention to assemblies of cohesionless grains, slightly polydisperse, without interstitial fluid. This corresponds to macroscopic grains (diameter larger than hundred microns) in a fluid of low viscosity like air. The rheology is then only dictated by transfer of momentum and dissipation of energy taking place in direct contacts between grains and with the walls. Depending on the conditions, these materials reveal various mechanical behavior, similar to elastoplastic solids in the quasi-static regime, to dense gazes in the case of strong agitation, or to viscoplastic fluids when a flow is provoked. This paper is devoted to this intermediate dense flow regime, which is still not well understood. We first briefly recall the essential results for the two extreme regimes, quasi-static and collisional.

Dense, confined granular assemblies in extremely slow shear flow are usually described as solids abiding by elastoplastic, rate independent, constitutive laws [START_REF] Jackson | Theory of dispersed multiphase flow[END_REF][START_REF] Nedderman | Statics and kinematics of granular materials[END_REF][START_REF] Tardos | [END_REF][START_REF] Vermeer | Physics of dry granular media[END_REF]. After a large enough shear strain, the material reaches the critical state [START_REF] Wood | Soil Behaviour and Critical State Soil Mechanics[END_REF], which does not depend on its initial arrangement (loose or dense), and is characterized by an internal friction angle φ, defined as tan φ = S/P in a simple shear test, by a critical solid fraction ν c , and specific values for coordination number and distribution of contact orientations [START_REF] Radjai | The physics of granular media[END_REF]. φ and ν c depend only negligibly on the confining pressure P . In other words, the continuously sheared material can be modelled with the Coulomb criterion, S = P tan φ, and in the following we shall discuss the effective friction coefficient µ * = S/P .

In the dilute limit and/or for strong agitation, the grains interact through binary, instantaneous, uncorrelated collisions. Then, the generalization of kinetic theory of dense gazes to slightly dissipative grains [START_REF] Haff | [END_REF][11][12][13][14] allows a hydrodynamical description. The stress components depend on the solid fraction and on the velocity fluctuations δv. In the two-dimensional geometry which we study in the following, the stress components are homogeneous to a force divided by a length. For an assembly of disks of diameter d and mass m : (1) Solving a flow problem requires an additional equation of energy in which a dissipation rate Γ associated to dissipative collisions must be added to the usual terms : Γ = F Γ (ν)m(δv/d) 3 .

(

) 2 
The dimensionless functions F i (ν) are completely expressed as functions of the pair correlation function at contact g 0 (ν). In the dense limit (0.2 ≤ ν ≤ 0.67), F i (ν) A i F (ν), with F (ν) = ν 2 g 0 (ν). In two dimension, g 0 (ν) = (16 -7ν)/16(1 -ν) 2 [15]. The pre-factors A i are well-known functions of the restitution coefficient e [12]. In the case of an homogeneous shear flow, where the shear rate and the velocity fluctuations are uniform, the equation of energy reduces to a balance between the work of the shear stress and the dissipation : S γ = Γ. This leads to δv = γd A S /A Γ . Consequently, the stress components are equal to :

   P = G P (ν)m γ2 , S = G S (ν)m γ2 , ( 3 
)
where G P,S (ν) = B P,S F (ν) with B P = A P A S /A Γ and B S = A 3 S /A Γ . We notice that the effective friction coefficient is a constant (µ * = A S A Γ /A 2 P ), and that the solid fraction is a function of the dimensionless quantity I = γ m/P (ν = G -1 P (1/I 2 )). This fully collisional description is relevant in the dilute limit when the inertial effects dominate.

In this paper, we focus our attention on the intermediate dense flow regime, where the solid fraction is close to a maximum solid fraction, so that the grains interact both through enduring contacts and through collisions. There is a contact network more or less percolating through the material and very fluctuating in space and time [16]. Such flows are beyond the quasi-static regime, since the inertia of the grains (and so the shear rate) certainly comes into play. On the other hand, the assumption of binary, instantaneous, uncorrelated collisions of kinetic theory is clearly in trouble. Due to the very strong correlations of motion and force, the theoretical description of those dense flows is very difficult and is still a matter of debate (see [17] for a recent review). Advances have come in the last decade from the combination of discrete numerical simulations and experiments on model materials in simple geometry, confined or free surface flows, and in various mechanical configurations. A detailed review of these works can be found in [18]. Depending on the mechanical configurations, the flows are steady, intermittent, or even jam. A localization of the shear, with a width of a few grains, is also frequently observed near the walls or near the free surface, with exponential velocity profiles around. However, the heterogeneity of the stress distribution as well as the presence of walls makes the analysis of the constitutive law difficult. This is the reason why we have chosen to study this dense flow regime in steady homogeneous shear state (uniform stress components, shear rate and solid fraction). We have studied the simplest geometry, plane shear without gravity, in which the stress distribution is uniform inside the shear layer. Furthermore, we have prescribed both the shear rate and the pressure. Using discrete numerical simulations, we have access to microscopic information, at the level of the grains and of the contact network, hardly measurable experimentally, and we are able to vary the parameters describing the grains and the shear state.

Due to its interest in rheology and more specifically in tribology (third body) and in geophysics (sliding of faults at the origin of earthquakes), this plane shear geometry has already been the subject of numerous discrete simulation studies [16,[19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35].

Sec. II is devoted to the description of the simulated system. We show in Sec. III that we obtain steady uniform shear states in term of structure (solid fraction), kinematics (shear rate) and stress distribution. In Sec. IV, we discuss the dimensionless numbers which enter in the rheological laws, especially the inertial number I which describes the shear state and the contact stiffness number κ which describes the typical deformation of the grains. In Sec. V, we measure the evolution of two macroscopic quantities (solid fraction and effective friction coefficient) as a function of I in the dense flow regime, from which we deduce the constitutive law. In Sec. VI, from a parametric study, we show that this constitutive law is not very sensitive to the mechanical properties of the grains, once they are frictional, dissipative and rigid.Then, we describe microscopic information on the fluctuations of the grain motion (Sec. VII) and on the contact network (Sec. VIII), from which we propose an explanation for the friction law (Sec. IX). For a more detailed account of the results, we refer to [36].

II. SIMULATED SYSTEM

The simulated system is two dimensional (Fig. 1). The granular material is a dense assembly of n dissipative disks of average diameter d and average mass m. A small polydispersity of ±20% is considered to prevent crystallization [15]. The mechanical properties of the grains are described by four independent parameters : a microscopic friction coefficient µ, a restitution coefficient in binary collisions e and elastic stiffness coefficients k n and k t .

The granular material is submitted to a plane shear, without gravity, so that the stress distribution is uniform. The material is sheared between two parallel rough walls, distant of H. One of the wall is fixed, while the other moves at the prescribed velocity V . We call x the flow direction and y the transverse direction. Periodic boundary conditions are applied along the flow direction, and we call L the length of the simulation box (always larger than 40 grains). The wall roughness is made of contiguous grains sharing the characteristics of the flowing grains (same polydispersity and mechanical properties -no rotation). y = 0 corresponds to the center of the glued grains on the fixed wall.

An important feature of our simulation is that we chose to control the lateral pressure Σ yy rather than keeping the solid fraction fixed, which is appropriate to discuss real flows since experimental conditions usually determine stress levels, rather than solid fraction. We shall see in the following that the normal stress components Σ xx and Σ yy are equal, so that Σ yy is equal to the pressure P = (Σ xx + Σ yy )/2. The control of the pressure P is achieved by allowing the dilatancy of the shear cell along y (H is not fixed), through the vertical motion of the moving wall given by Ḣ = (P -P w )L/g p , where g p is a viscous damping parameter, and P w is the normal stress exerted by the grains on the moving wall. Steady state corresponds to P w = P .

The parameters of the simulated system are summarized in Tab. I (anticipating on Sec. IV, we indicate the value of the dimensionless parameters g p / √ mk n and I). Let us consider two grains i and j in contact, of diameter d i,j , mass m i,j , centered at position r i,j , with velocity v i,j and rotation rate ω i,j . Let n ij denote the normal unit vector, pointing from i to j ( n ij = r ij /|| r ij || with the notation r ij = r j -r i ), and t ij a unit tangential vector such that ( n ij , t ij ) is positively oriented. We call

F ij = N ij n ij + T ij t ij
the contact force exerted on the grain j by the grain i. The contact law relates the normal, N ij , and tangential, T ij , components of the contact force to the corresponding components of relative displacements and/or velocities. The relative velocity at the contact point is equal to

V ij = v i -v j +1/2(d i ω i +d j ω j ) t ij . Its normal component V N ij = n ij • V ij
is the time derivative of the normal deflection of the contact (or apparent "interpenetration" of undeformed disks),

h ij = (d i +d j )/2- || r ij ||. Its tangential component V T ij = t ij • V ij is the time derivative of the tangential relative displacement δ ij .
The normal contact force is the sum of two contributions, an elastic one N e and a viscous one

N v : N ij = N e ij +N v ij .
Keeping in mind that contacts have to close to transmit forces ( F ij = 0 if h ij ≤ 0) the linear (unilateral) elastic law reads N e ij = k n h ij , which involves a constant normal stiffness coefficient k n , the value of which is independent of disk radii. Physically, this can be regarded as a simplified version of the Hertz law [START_REF] Johnson | Contact Mechanics[END_REF], N e ∝ h 3/2 . The normal viscous force opposes the relative approaching or receding velocity N v ij = ζ ij ḣij , where ζ ij is related to the normal restitution coefficient e in a binary collision, and chosen such that e is constant for all contacting pairs, whence ζ ij = m ij k n (-2 ln e)/ π 2 + ln 2 e, where m ij = m i m j /(m i + m j ). The viscous dissipation might stem from the visco-elasticity of the grain material [START_REF] Brilliantov | [END_REF]. The total normal force might be either repulsive or attractive, due to the viscous contribution. We could check that setting N ij to zero whenever it becomes attractive (N ij ≤ 0) has but a negligible effect on the simulation results [39].

The Coulomb condition in the contacts involves the microscopic coefficient of friction between grains µ, and is enforced with the sole elastic part of the normal force

|T ij | ≤ µN e ij .
To this end, the tangential component of the contact force is related to the elastic part δ e ij of the relative tangential displacement δ ij , T ij = k t δ e ij , with a tangential stiffness coefficient k t . δ e ij is defined by

dδ e ij dt = 0 if |T ij | = µN e ij and T ij V T ij ≥ 0 and dδ e ij dt = V T ij
otherwise. The contact is termed "sliding" in the first case and "rolling" in the second case.

Table II gives the list of material parameters (anticipating on Sec. IV, we indicate the value of the dimensionless parameter κ).

The interaction law being chosen, numerical simulations are carried out with the molecular dynamics method, as in refs. [40][41][42]. The equations of motion are discretized using a standard procedure (Gear's order three predictor-corrector algorithm [START_REF] Allen | Computer simulation of liquids[END_REF]). The time step is a small fraction (1/100) of the duration τ c of a binary collision between two grains of mass m (τ c = m(π 2 + ln 2 e)/(4k n )).

III. STEADY UNIFORM SHEAR STATE

Two kinds of preparation have been compared. The first kind (which has been used most of the time) consists in starting from an initial configuration where the disks are randomly deposited without contact and at rest between the two distant walls, which provides an average solid fraction of 0.5, and then in applying the pressure to the wall while slowly shearing the granular material. When the pressure on the walls reaches the prescribed value, the prescribed velocity is applied. The second kind consists in starting from a very high solid fraction (of the order of 0.8), obtained by a random deposit followed by a cyclic compaction with frictionless grains, and then to introduce friction between grains and to start the shear with the prescribed velocity and pressure. The two kinds of preparation allow to start either from a loose state (the first case), or from a dense state (the second case). Occasionally, we have used a third kind of preparation consisting in starting from localized shear states near one of the walls (obtained by applying gravity [36]).

We then look for a steady flow, characterized by constant time-averaged quantities of the flowing layer, like kinetic energy and solid fraction. We have observed that, after a sufficient amount of time, the three kinds of preparation lead to the same shear state. We deduce that there is no influence of the preparation on the steady flow characteristics. All the simulations converge to an average steady state. We consider that the shear state is continuous if the relative fluctuations of the measured quantities are small enough (for instance the H fluctuations remain smaller than 1% [36]), otherwise the flow is called intermittent (see Sec. VII A). When a steady state is reached, the simulation is carried on during a sufficient amount of time ∆t, so that the typical relative displacement of two neighboring layers is larger than ten grains ( γ∆t ≥ 10). In this steady state, we consider that the statistical distribution of the quantities of interest (structure, velocities, forces. . . ) are independent of t and x, so that we average both in space (along x) an in time (considering 200 time steps distributed over the period ∆t).

Using averaging methods described in [START_REF] Lätzel | [END_REF]45], we measure the profiles of solid fraction, shear rate and of the components of the stress tensor [36]. The stress tensor Σ is the sum of two contributions [46,[START_REF] Hansen | Theory of simple liquids[END_REF]:

Σ = Σ c + Σ f . ( 4 
)
The first term ("contact"), usual in static of granular materials, is associated to contact forces between grains [START_REF] Christoffersen | [END_REF]49]. The second term ("fluctuations"), usual in fluid mechanics (Reynolds tensor), is associated to the velocity fluctuations of the grains δ v i :

   Σ c = 1 LH i≤j F ij ⊗ r ij Σ f = 1 LH n i=1 m i δ v i ⊗ δ v i (5) 
A third contribution, associated to the rotation of the grains [START_REF] Moreau | Friction, Arching, Contact Dynamics[END_REF], is very small. In the dense flow regime, the stress tensor is dominated by the contact term [36].

We observe that, apart from the five first layers near the walls, the granular material is homogeneously sheared : the solid fraction, shear rate and stress components are approximately constant in the central part of the sheared layer. Consequently, all the averaged quantities are measured in the central part of the sheared layer, excluding the 5 first layers near the walls, and H is chosen large enough so as to limit those wall effects (we have also tested the homogeneity of the shear in the case of a thin layer (H/d ≈ 5) [36]).

This absence of localization is in contrast with other studies [19,27,29,30]. However, we have observed signs of localization in the quasi-static regime where the flow becomes intermittent (Sec. VII), and in the case of a very small polydispersity (≤ 1%), where the granular material crystallizes near the walls and the shear zone reduces to a ten diameters thick central layer [36].

We observe that Σ xx Σ yy (within less than 5%). This has also been observed in other shear geometries (inclined planes, annular shear) and with other discrete simulation methods [35,36,41,45]. This observation is in contrast with the usual Mohr-Coulomb behavior in soil mechanics, where the ratio of Σ xx and Σ yy is equal to an active or passive Rankine coefficient, different from unity [START_REF] Nedderman | Statics and kinematics of granular materials[END_REF]. In discrete simulation of biaxial tests, it has been recently observed that this ratio tends to unity when reaching the critical state [START_REF] Thornton | [END_REF]. Consequently the pressure P = (Σ xx + Σ yy )/2 Σ yy . In the following we call S = -Σ xy .

IV. DIMENSIONLESS NUMBERS A. Dimensional analysis

In our discrete numerical simulations, the physical system is completely described by a list of independent parameters associated to the grains and to the shear state. The grains are described by their size d, mass m, coefficient of restitution e and coefficient of friction µ, elastic stiffness parameters k n and k t . k t is of the same order of magnitude as k n [START_REF] Johnson | Contact Mechanics[END_REF], and as it has a very small influence on the results [31,41], it was fixed to k n /2 in all our calculations. The shear state is described by the prescribed pressure P , the velocity V , the height H, and by the viscous damping parameter g p . As we study the dense granular flow in the uniform sheared layer at distance from the walls, we consider the shear rate γ, rather than V and H separately. We have not studied the influence of the normal motion of the wall controlling the pressure, described by the dimensionless number g p / √ mk n . With the value of 1 chosen in all our simulations, we consider that the time scale of the fluctuations of H is imposed by the material rather than the wall, and that the wall "glues" to the material. Close to the quasi-static regime, its influence may be important, but we notice that in the dense flow regime, the profiles obtained for controlled pressure are in agreement with the one measured at fixed volume [START_REF] Da Cruz | Transient Processes in Tribology[END_REF]. Consequently, the shear state is described by the pressure P and the shear rate γ.

As a way to reduce the number of parameters, it is convenient to use dimensional analysis, which guarantees that all the results can be expressed as relations between dimensionless quantities. There are already two dimensionless quantities e and µ. Apart from the length and mass scales d and m, there remains three dimensional quantities P , γ and k n , from which we can build two dimensionless numbers. Among the various possible choices, we propose to use the following pair :

   κ = kn P , I = γ m P . (6) 
All measured dimensionless quantities (solid fraction ν, effective friction coefficient µ * , relative velocity fluctuations, coordination number, mobilization of friction...) will hereafter be given as functions of I and κ.

We now provide a physical interpretation of those two dimensionless numbers, by considering them as dimensionless ratios of typical quantities in the system, such as time scales : the collision time τ c (which is comparable to the propagation time of the impulse through a grain), the shear time τ s = 1/ γ and the inertial time τ i = m/P (the characteristic displacement time of a grain of mass m submitted to a pressure P ).

B. Contact stiffness number

κ is proportional to the ratio of time scales (τ i /τ c ) 2 . More simply, it is the ratio of the stress scales k n and P , and is inversely proportional to the normal deflection h/d of the contacts for a confining pressure P . Consequently, it may be called contact stiffness number. A large value corresponds to rigid grains, while a small value corresponds to soft grains.

From previous numerical studies on quasi-static deformation [START_REF] Roux | [END_REF], it is known that contact stiffness parameters have a negligible influence on macroscopic mechanical properties at moderate or large strains when κ exceeds 10 4 , which we call the rigid grain limit. Then the elastic deformations stay negligible in comparison with the gaps between neighboring grain surfaces that determine the amplitude of rearrangement events (a more stringent condition than h d). As a way to give an estimate for κ in a realistic problem, we consider a layer of glass beads submitted to its own weight. This cannot be directly compared with the simulated system where there is no gravity. However, the weight of the layer (50 cm thick) provides a typical scale of pressure (P = 10kP a). For Hertzian contacts, an appropriate definition of κ, such that typical contact deflections satisfy h/d ∝ κ -1 with a coefficient of order 1, is κ = (E/P ) 2/3 , with E the Young modulus [START_REF] Johnson | Contact Mechanics[END_REF]. Considering glass beads (E = 70 GPa) under P = 10kP a, this yields κ 37000. This example shows that usual situations are very close to the rigid grain limit studied in this paper.

C. Inertial number

As the ratio of inertial to shear times or equivalently the ratio of inertial forces to confining forces, I measures the inertial effects, and will be called inertial number in the following. A small value of I (small γ and/or large P ) corresponds to a regime where the grain inertia is not relevant : this is the quasi-static critical state regime (Fig. 1 (a)). Inversely, a large value of I (small P and/or large γ) corresponds to the collisional regime, which may be described by kinetic theory (Fig. 1 (b)). Varying I allows to study the progressive transition between those two regimes. We notice that it already appeared in the collisional regime (Sec. I), and that it is a variant (square root) of the previously defined Savage number [54] and Coulomb number [55]. Using the mass density ρ g of the grains, it may also be written I = γd ρ g /P .

I describes the shear state, through a combination of the shear rate and pressure. When varying independently the shear rate (factor F ) and the pressure (factor F 2 ) while keeping the same value of I, the two flow configurations will be the same. We have studied various systems with different shear rate and pressure but the same inertial number (for instance for H/d = 20, V = 1 -P = 25, and V = 0.1 -P = 0.25, factor F = 10), and we have not measured any difference in the macroscopic quantities. The data shown on the forthcoming figures of the paper correspond to such cases. If we vary k n (factor F 2 ) in such a way that κ is unchanged, there are no difference at all, since this is the same simulation : τ c and hence the time step is modified (factor 1/F ), so that the deformation of the system in one time step remains exactly the same. If we let κ vary according to the variation of P (factor 1/F 2 ), small variations may be observed on the coordination number, or when the system leaves the rigid grain limit.

D. Comments

Some authors [20,31] chose to control the solid fraction ν rather than the pressure, and therefore, rather than I and κ, used the pair of dimensionless numbers ν and α = γ/ k n /m = I/ √ κ, as variables characterizing the state of the granular material in steady uniform shear flow. α may be viewed as the ratio of the collision time to the shearing time, or as the shearing velocity divided by the sound velocity (Mach number [31]). Both choices are perfectly legitimate, as dimensional analysis predicts either µ * = f 1 (I, κ) and ν = f 2 (I, κ), or µ * = f 3 (ν, α) and κ = f 4 (ν, α), both results being equally valid. The choice of I and κ can however be deemed more convenient for several reasons. First, the variation of the results with ν, regarded as a control parameter, is extremely fast. Each material possesses a critical packing fraction ν c , in the sense of Sec. I, above which it does not flow, unless stresses are so large that the elastic compression of contacts compensates for the difference ν -ν c . Below ν c , on the other hand, a continuously sheared granular system is free to flow with a negligible shear stress, unless the velocity is high enough to build a significant pressure.

One should therefore monitor ν with great accuracy to observe ordinary stress levels. This renders the comparisons between different granular systems difficult, as one would need to know in advance the value of the critical density for each of them. Furthermore, the limit of rigid grains becomes singular, as all values of ν above ν c are strictly forbidden for γ = 0, while all the properties of shear flows with ν ≤ ν c scale as a power of γ in that limit [35]. Hence, no change of flow regime is expected on changing γ, which appears to contradict intuition unless one recalls that the rigid grain limit, on increasing flow rates, will eventually require unreasonably large contact stiffnesses, due to very high pressure levels. Conversely, if one uses I and κ as control parameters, no singularity enters any of the relevant results in the I → 0 or κ → ∞ limits, and different materials should exhibit similar (if not quantitatively identical) behaviors for the same values of these parameters (which thus define roughly "corresponding states").

V. CONSTITUTIVE LAW

We are going to show that the inertial number is a fundamental quantity to describe the rheology of granular materials, as previously anticipated in [54,55]. In the steady uniform shear states, the solid fraction and the shear stress adjust in response to the prescribed inertial number. In this section, we now show the strong influence of I on two dimensionless quantities, the solid fraction and the effective friction coefficient. We defer the detailed discussion of the influence of the various mechanical parameters of the grains (κ, e and µ) to the next section. If not specified otherwise, we have chosen the following values of the parameters : κ = 10 4 , e = 0.1 and µ = 0.4.

A. Dilatancy law

We call "dilatancy law" the variations of the average solid fraction ν as a function of the inertial number I (Fig. 2). We observe that ν decreases approximately linearly with I, starting from a maximum value ν max : ν(I) ν max -aI, [START_REF] Vermeer | Physics of dry granular media[END_REF] with ν max 0.81 and a 0.3 (for µ = 0.4). The error bar (independent of I) corresponds to the statistical dispersion inside the layer. This averaged measurement can be complemented by the measurement of the spatial heterogeneity (distribution of local solid fraction) within the sheared layer, which increases with I [START_REF] Mills | Powders and Grains 2005[END_REF]. 

B. Friction law

The effective friction coefficient has been defined as the ratio of the shear stress to the pressure inside the material µ * = S/P . It could also be defined as the ratio of the (total) tangential and normal forces on the wall µ * w = T /N . We have observed [36] that µ * w is slightly larger than µ * . Some simulations have been carried out to test the influence of the roughness, by taking glued grain on the wall twice as small (R = 0.5) or twice as large (R = 2) as the flowing grains, for the same I g . This size ratio has an influence on the sliding velocity at the wall : it becomes noticeable for R = 0.5 and decreases when R increases, since the grains close to the walls are trapped by the roughness. However, at distance from the walls, the flow remains uniform, but the shear rate, and hence I, decreases when R decreases. Furthermore, the effective friction at the wall decreases when R decreases. All in all, µ * w (I) seems independent of R. For a more detailed discussion of the influence of the roughness on the flow (inclined plane and vertical chute), we refer to [18,45,[START_REF] Goujon | [END_REF]. In the following we shall only discuss the effective friction coefficient in the volume of the flowing layer.

We call "friction law" the variations of the effective friction coefficient µ * (averaged over the width in the central part of the flowing layer) as a function of I (Fig. 3). We observe that µ * increases approximately linearly with I, starting from a minimum value µ * min :

µ * µ * min + bI, ( 8 
)
with µ * min 0.25 and b 1.1 (for µ = 0.4), and saturates for I ≥ 0.2. The error bars (independent of I) correspond to the statistical dispersion inside the layer. We also observe that µ * tends to saturate for I ≥ 0.2. Within the error bars, it is difficult to be more precise about those dependencies. A more careful measurement is deferred for future work. We now compare this friction law with other works. We first notice that the increase of µ * with I is contrary to the well documented decrease of the friction coefficient with the velocity in the quasi-static regime [58]. However, in those studies, this softening is interpreted as a consequence of the renewal of the population of asperities at a microscopic scale, or as an effect of humidity [59]. Those effects do not come into play in our study. As a matter of fact, this friction law was already observed in previous discrete simulations [23], and partial observations (experimental or numerical) of the variation of µ * with the shear rate, the pressure or the solid fraction, consistent with our observations, may be found in [21,27,[59][60][61][62][63][64]. Interestingly, the inclined plane geometry allows to prescribe both the effective friction and the pressure, through the inclination θ of the plane and the height H of the flowing layer. Consequently, the measure of the superficial velocity V as a function of these two parameters provides a measure of the friction coefficient at the base as a function of I g (which is proportional to V /H 3/2 ) [65,66]. Those observations are in good agreement with the previous friction law [36,[START_REF] Da Cruz | Powders and Grains 2005[END_REF].

C. Comments

The classification of the flow regimes strongly depends on the single dimensionless number I. In the quasi-static regime (I ≤ 10 -2 ), the granular material is very dense, close to the maximum solid fraction ν max , and the effective friction coefficient is close to its minimum value µ * min . In the collisional regime (I ≥ 0.2), the dilatancy becomes strong and the effective friction coefficient seems to saturate. The transition between those two regimes is progressive. In the dense flow regime (10 -2 ≤ I ≤ 0.2), we observe approximately linear variations of the solid fraction and of the effective friction coefficient as a function of I (Eqs. ( 7) and ( 8)). The dilatancy and friction laws, measured in the whole range of regimes, from the quasi-static to the collisional, make the link between the known results in the two extreme regimes recalled in Sec. I. In the quasi-static regime, µ * min and ν max may be identified with the internal friction tan φ and the critical solid fraction ν c in the critical state.

When taking into account the elasticity of the grains, it is natural to draw a diagram of the flow regimes as a function of the two dimensionless numbers α = I/ √ κ and ν [20,31]. This leads to identify three regimes : elastic quasi-static, purely inertial and elastic-inertial. This last regime corresponds to very soft grains (κ ≤ 100) and is not accessible in our study, where we stay in the limit of rigid grains. Furthermore, various studies where the volume rather than the pressure was prescribed [20,26,31,[START_REF] Howell | [END_REF] have evidenced a transition between the quasi-static and the inertial regimes around a critical solid fraction. In our study where the pressure is prescribed, the solid fraction adjusts to the inertial number I, so that the transition is not accessible.

D. Constitutive law

These dilatancy and friction laws allow to deduce the dependencies of the pressure and shear stress on the shear rate and solid fraction : P (ν, γ) and S(ν, γ).

From the definition of I (Eqn. ( 6)) and the dilatancy law (Eqn. ( 7)), the pressure may be expressed as a function of the shear rate and the solid fraction :

P (ν, γ) = a 2 (ν max -ν) 2 m γ2 . ( 9 
)
The divergency with the solid fraction is shown in Fig. 4. From the definition of I (Eqn. ( 6)) and the friction law (Eqn. ( 8)), the shear stress may be expressed as a function of the shear rate and the pressure :

S(P, γ) = µ * min P + b √ mP γ. ( 10 
)
Using the previous expression of P (Eqn. ( 9)), it is also possible to express the shear stress as a function of the shear rate and the solid fraction :

S(P, ν, γ) = µ * min P + ab (ν max -ν) m γ2 , (11) 
or, eliminating P :

S(ν, γ) = ab(ν * -ν) (ν max -ν) 2 m γ2 , ( 12 
)
with the solid fraction ν * = ν max + aµ * min /b (ν * ≈ 0.86 for µ = 0.4).

For I ≤ 0.2, the expression of the stress components is analogous to the expression for a steady uniform system in the fully collisional regime (Eqs. ( 3)). The dependence on the square of the shear rate, similar to the original conclusions of Bagnold for concentrated suspensions [69], is a consequence of dimensional analysis [35]. The dependencies on solid fraction are described by the following dimensionless functions :

     G P (ν) = a 2 (ν max -ν) 2 , G S (ν) = ab(ν * -ν) (νmax-ν) 2 . ( 13 
)
We recall that kinetic theory predicts a divergency in 1/(1 -ν) 2 from the asymptotic behavior of the pair correlation function (see Sec. I). However, when ν ≥ 0.67 (so-called gel transition), then starts a regime of multiple collisions, strongly correlated, and the divergency rather seems in 1/(ν max -ν) [15,32]. When the material is sheared, under the effect of cooperative rearrangements of caged grains, an even stronger divergency of the viscosity has been conjectured [70]. The precise form of these divergencies are decisive to describe the shape of the velocity profiles and for the jamming process [70][71][72]. Our quantitative determination is then a precious information for the modelling of the dense granular flows.

We also notice that the expression [START_REF] Haff | [END_REF] of S corresponds to a visco-plastic constitutive law, similar to the "frictional-collisional" decomposition of the stress tensor, with a contribution associated to maintained contacts, and a contribution associated to collisions [32,[72][73][74][75][76][77][78]. In the viscous term, we notice that the apparent viscosity b √ mP is proportional to the square root of the pressure.

The interpretation it that the typical momentum m γd is exchanged with the inertial time scale m/P over a surface of the order d 2 .

We think that the formulation of the constitutive law through the dilatancy and friction laws is simpler to use, since it avoids the treatment of divergency near jamming, which might be a problem in fluid mechanical numerical simulations.

VI. INFLUENCE OF THE MECHANICAL PARAMETERS

We now describe the influence of the mechanical properties of the grains on the constitutive law. e has been varied between 0.1 and 0.9, µ between 0 and 0.8, and κ between 40 and 2.5 • 10 5 . We show that the constitutive law is not sensitive to κ once the grains are rigid enough (κ ≥ 10 3 ), nor to e once the grains are frictional, which is the usual situation in practice. However, it is sensitive to µ, and to e for µ = 0, and I ≥ 0.1.

A. Influence of the elasticity of the grains

We have observed that there is no influence of κ on the constitutive law once it is larger than 10 4 (or even 10 3 ), except on the coordination number (see Sec. VIII A). However, for small values (40), we have observed a localization of the shear near the moving wall in a large system (H/d = 100) [36], which we interpret as an effect of the decrease of the correlation length of the strain field when the grains become softer. We notice that κ = 10 4 corresponds to τ i /τ c = 10 2 . Since I = τ i /τ s is smaller than around 0.1 in the dense flow regime, τ s is at least 1000 times larger than τ c in the rigid grain limit [78]. Consequently, we may speak of a rigid grain limit in the dense flow regime, and our results should be comparable to the ones obtained with rigid grains simulation methods [35].

B. Influence of the microscopic friction coefficient

The microscopic friction coefficient µ has a significant influence on the dilatancy law. The solid fraction remains a linearly decreasing function of I, but both parameters ν max and a depend on µ. The variation of a is not simple: we measure a = 0.38 for µ = 0, 0.31 for µ = 0.4 and 0.37 for µ 0.8 [36]. Fig. 5 (a) indicates that ν max is a decreasing function of µ (it is not purely geometrical in the quasi-static regime). This shows that the solid fraction, from the critical state to the collisional regime, depends on the frictional properties of the material, in agreement with other observations [26,31].

The influence of µ on the friction law is less significant, except for frictionless grains (µ = 0), as shown in Fig. 6, where µ varies between 0 and 0.8. This variation is more significant for small I. The Fig. 5 (b) shows more precisely the variation of the effective friction as a function of µ in the quasi-static regime. There is strong variation between µ = 0 and µ = 0.4, but above µ = 0.4 the effective friction remains constant. As a conclusion, in the case of frictionless grains, the friction law keeps the same tendency but is shifted toward smaller values of friction (Fig. 6). However, we observe a saturation for I ≥ 0.1 if e = 0.9, which will be discussed in Sec. VI D. For I ≤ 0.1, the linear approximation (Eqn. ( 8)) is in trouble : it is rather a sub-linear dependency, and µ * min 0.11. Starting from both variations of solid fraction and effective friction as a function of the local friction coefficient µ, it is tempting to draw the variations of the effective friction as a function of solid fraction instead of inertial number. This is done on Fig. 7. As a matter of fact, Eqs. ( 9) and ( 12) predict :

µ * (ν) = b a (ν * -ν), ( 14 
)
where ν * was previously defined. This new representation of the results evidences a collapse of the data (even if a, b, µ * min and ν max vary separately with µ, ν * = ν max + aµ * min /b seems approximately constant). It appears that µ * becomes nearly independent of µ. This master curve is made of complementary zones of high solid fraction for frictionless grains, and smaller solid fraction for frictional grains, and is of help in rheological models [72]. It is noteworthy that a variation of solid fraction of the order of 10% is enough to induce a variation of effective friction by a factor 4. This decrease of the effective friction when the solid fraction increases was previously observed under shear [62].

C. Influence of the restitution coefficient

The Fig. 3 shows that there is no influence of the restitution coefficient e for µ = 0.4. For frictionless grains, the comparison between slightly (e = 0.1) and strongly (e = 0.9) dissipative grains reveals (Fig. 8) that there is an influence, limited to the collisional regime, for I ≥ 0.1. Then, as the dissipation decreases, the dilatancy is less pronounced and the effective friction saturates (see also [31]).

D. Collisional limit

The situation (I ≥ 0.1, µ = 0 and e = 0.9) corresponds to the dense limit of kinetic theory, with binary slightly dissipative collisions (then the average contact time tends to the collision time [START_REF] Da Cruz | Transient Processes in Tribology[END_REF]). In this dense limit, the Eqs. (3) predict a value of the effective friction independent of I but dependent on e, from the values of the pre-factors A i [12] : For e = 0.9, this predicts µ * = 0.29 which is in fairly good agreement with the value measured for I = 0.2 (0.26). The small difference between those two values may be due to the influence of the walls which induce a sliding velocity and gradients of the fluctuations [79].

µ * (e) = √ A S A Γ A P = 1 2 π + 8 2π 1 2 1 -e 2 . ( 15 
)

VII. FLUCTUATIONS

Up to now, all the quantities (solid fraction, velocities, forces) have been averaged in space and time. In fact, they are heterogeneous in space and fluctuate in time. We now discuss the fluctuations of the motion of the grains.

A. Intermittencies in the quasi-static regime

Various studies have shown that granular flows become unstable in the quasi-static regime. When the velocity is prescribed, one goes from a continuous flow regime to stick-slip [59,80,81]. When the shear stress is prescribed, one observes an hysteretic and abrupt fluid-solid transition [82]. The observation of shear localization in discrete simulations of plane shear corresponds to the quasi-static regime [27,30]. Our study shows that the flow is continuous in the dense flow regime, but becomes intermittent in the quasi-static regime (for I ≤ I 0 0.003). Then the time averaged quantities are uniform, but the layer oscillates between two localized states near the moving or the fixed wall. Those two extreme states have a very short duration, and the system is most of the time in an intermediate state, where the shear is approximately uniform in the whole layer. Consequently, the total kinetic energy fluctuates in time, with sudden peaks associated to the two extremal states, and slow variations associated to the intermediate situations. The Fig. 9 indicate that the relative fluctuations of the kinetic energy increase when I decreases and saturate in the quasi-static regime, according to :

∆E c E c c I0 for I ≤ I 0 , c I for I ≥ I 0 , ( 16 
)
with I 0 0.003. 

B. Velocity fluctuations

We now discuss the fluctuations of the translation velocity δv and of the rotation velocity δω of the grains (measured in the central part of the sheared layer, excluding the 5 first layers near the walls). They are defined by :

   δv = v 2 -v 2 , δω = ω 2 -ω 2 . ( 17 
)
Their influence is difficult to analyze in dense flows, where the motions of the grains are strongly correlated [35]. Their definition is a problem, since it has been shown that they depend on the averaging time scale [16].

Our analysis (long time scale) takes into account both the small fluctuations around the mean motion (in the "cage" formed by the nearest neighbors [83,84]), and the large fluctuations associated to collective motions in the quasi-static regime.

We observe that the average rotation rate ω is simply related to the shear rate through the relation ω = - 1 2 γ [36]. This relation has been observed in other shear geometries (inclined plane flows, annular shear flows), in quasi-static deformations and with other discrete simulation methods [24,[START_REF] Lätzel | [END_REF]45,[START_REF] Howell | [END_REF]85]. Deviations are observed in the very first layers near the walls where the granular materials is structured.

Consequently, γ is the natural scale of rotation velocity, and from dimensional analysis, we analyze the variations of the dimensionless quantity δω/ γ as a function of I. Since γd is the natural scale of translation velocity, dimensional analysis suggests to analyze the variations of the dimensionless quantity δv/ γd as a function of I. Those variations, drawn on Fig. 10, evidence two scaling laws, independent of the parameters of the system :

   δv γd 1 3 I -α , δω γ I -β , (18) 
with α , to which we shall refer as translation and rotation scaling laws.

The velocity fluctuations are significant (larger than 1) in the dense flow regime and very significant (larger than 10) in the quasi-static regime. In comparison, kinetic theory (see Eqs. ( 1) and ( 2)) predicts that δv/ γd = A s /A Γ so that

π+8 32(1-e 2 )
1.3, for e = 0.9, which corresponds to the order of magnitude which is measured in the collisional regime.

Large values of δω/ γ have been observed experimentally in the quasi-static regime [85] and in dense flows down inclined planes [45], and might be due to the frustration of the rotation [86].

We give two interpretations of the value of the exponent α. The first explanation [18] consists in analyzing the motion of one grain as a succession of shear phases of duration 1/ γ with a velocity γd and of sudden rearrangements with a velocity d P/m of duration m/P . This leads to δv γd I -1/2 1-I 1+I . The second explanation relies on an energetic argument. In a steady uniform shear state, the work of the shear stress is balanced by the dissipation rate S γ = Γ. If Γ describes the dissipation of the fluctuating kinetic energy mδv 2 /2 during the inertial time m/P , we obtain : δv/ γd 2µ * (I)I -1/2 . For both interpretations, the order of magnitude of the pre-factor is consistent with the observation.

FIG. 10: Relative velocity fluctuations as a function of I : (a) Translation velocity, (b) Rotation velocity (various parameters).

We now show that the translation scaling law is consistent with the variations of the relative fluctuations of the kinetic energy (Eqn. ( 16)). Let us call ρ = ρ g ν the average solid fraction of the granular materials and E c the average kinetic energy by unit length, which is dominated by the translational part :

E c = ρ 2 H 0 ( γy) 2 dy ∼ (ρV 2 H).
In the quasi-static regime, where the system oscillates between two localized flows, ∆E c ∼ (ρV 2 H)/2, so that ∆E c / E c ∼ 1. In the collisional regime, ∆E c ρ 2 H 0 δv 2 dy. Using the translation scaling law for this last quantity, we get : ∆E c ∼ ρV 2 /(HI), so that ∆E c / E c ∼ 1/(H 2 I). This is in agreement with the dependencies on I and H observed in Fig. 9.

Furthermore, the translation scaling law provides an estimation of the Reynolds contribution to the stress tensor (see Eqn. ( 5)): Σ f /Σ (2ν/9π)I. This shows that for I ≤ 0.1, this contribution remains smaller than 1%, so that the contribution of the contact forces Σ c remains dominant.

C. Consequences for the constitutive law

The translation scaling law may also be written :

δv d 1 3 γ1/2 (P/m) 1/4 . ( 19 
)
Consequently, when the pressure is prescribed, the velocity fluctuations vary like γ1/2 , instead of γ. We notice that, in the annular shear geometry, the pressure is constant along the radial direction, and an exponent close to 1/2 has been measured experimentally [70,87].

If we introduce the velocity fluctuations in the constitutive law, like in the collisional regime (see Eqn. ( 1)), we obtain :

     P 9a ν max -ν m(δv/d) 2 , S 3b √ a(ν * -ν) (νmax-ν) 3/2 m(δv/d) γ. ( 20 
)
Within this formulation, we notice a stronger divergency of the viscosity near the maximum solid fraction, like in the model inspired by the glassy dynamics [71].

VIII. CONTACT NETWORK

We now measure informations on the contact network. Its strongly heterogeneous character both in space and time has already been discussed in detail [20,25,26,29,30,36,39,[START_REF] Lätzel | [END_REF][START_REF] Howell | [END_REF][88][START_REF] Radjai | Powders and Grains[END_REF][START_REF] O'hern | [END_REF]: the contact time varies from the short collision time in the fully collisional regime to the much longer shear time in the quasi-static regime [34,91], while the distribution of the force intensity is very wide [START_REF] Radjai | Powders and Grains[END_REF]. We shall focus on the following three quantities : coordination number, mobilization of friction and anisotropy of the contact forces.

A. Coordination number

As was shown on Fig. 1, the contact network is very sensitive to the inertial number. A small dilation of the material (around 10%) is enough to observe a transition from a dense contact network to multiple, or even binary, collisions between grains. A quantitative indicator is the coordination number Z, which is the average number of contacts per grain. The variations of Z as a function of I are shown in Fig. 11. Z increases as I decreases, and tends toward a maximum value Z max when I → 0. A possible fit is:

Z = Z max -cI γ , ( 21 
)
which is drawn on Fig. 11, which gathers the results for a given contact stiffness number κ and various e and µ. Fig. 11 shows that the coordination number does not depend only on the geometry, through the solid fraction, but also on the mechanical properties of the grains e and µ. The exponent γ is nearly constant (γ 1 2 ), but Z max and c depend on e and µ. When µ decreases, Z increases and Z max tends to 4 for frictionless grains [92] (see Fig. 5 (c)). We also notice that Z increases when e decreases, due to the increasing collision time. The Fig. 12 indicates that Z max decreases significantly with κ, as expected.

B. Mobilization of friction

Inside the population of contacts, and for frictional grains, we introduce a distinction between the "sliding" contacts where the local friction is completely mobilized (|T | = µN ) and the other "rolling" contacts (|T | ≤ µN ). This distinction is different from the one proposed in [93] ("weak" and "strong" contacts), and a variant of the one proposed in [32], which distinguishes "fluid" contacts (collisions and sliding enduring contacts ) and "solid" contacts (rolling enduring contacts). We define Z s as the average number of sliding contacts per grain [94]. The Fig. 13 (a) shows the variations of Z s as a function of the inertial number I. We observe that Z s increases with I in the quasi-static regime, up to a maximum in the dense flow regime. Moreover, the Fig. 13 (a) indicates that the Z s (I) curve depends on the restitution coefficient e.

We have shown on Fig. 13 (b) the variations with I of the ratio M = Z s /Z, which, as the proportion of sliding contacts, is an indicator of the mobilization of friction. We observe that, contrarily to Z s , M increases, approximately logarithmically, as a function of I. We also notice a slight increase of M when κ increases.

C. Anisotropy of the contact network

We now discuss the angular distribution of contact network, which importance in the quasi-static regime has been shown [START_REF] Radjai | The physics of granular media[END_REF]. We call φ the direction of a contact counted counterclockwise from the x direction, between 0 and π. ( n φ , t φ ) is the local frame in the direction φ. Let us call N the average normal force in the homogeneous layer, then N (φ) and T (φ) the average normal and tangential forces in the homogeneous layer in the direction φ. The anisotropies are described by the three angular distributions of contact orientations ρ(φ), of intensities of normal forces ξ N (φ) = N (φ) / N and of intensities of tangential forces ξ T (φ) = T (φ) / N . Then we define ζ N (φ) = ρ(φ)ξ N (φ) and ζ T (φ) = ρ(φ)ξ T (φ). Those angular distributions satisfy the normalization relations : 

           π 0 ρ(φ)dφ = 1, π 0 ζ N (φ)dφ = 1, π 0 ζ T (φ)dφ = 0. ( 22 
)
We show in Fig. 14 the two quantities ζ N (φ) and ζ T (φ) which will be useful in the discussion of the friction law. We distinguish first quasi-static and collisional regimes, second frictional and frictionless grains. A positive value of ζ T (φ) indicates that the tangential forces induce on average a counterclockwise rotation of the grains, and is represented with white symbols in Fig. 14 (c). A negative value of ζ T (φ) indicates that the tangential forces induce on average a clockwise rotation of the grains, and is represented with black symbols in Fig. 14 (c).

We notice a strong anisotropy of the contact network with privileged orientations for ζ N (φ) along the direc- tions of shear (φ 0 and π) and of maximum compression (φ 2π/3), and for ζ T (φ) along the directions of shear (φ 0 and π) and of the shear gradient (φ π/2). Those anisotropies slightly change between the quasistatic and collisional regimes and between frictional and frictionless grains cases.

Those anisotropies may be explained within a very simplified picture of a granular material organized in layers along the shear direction. Then, there are two kinds of contacts between grains, inside a layer (φ 0 and π) and between layers (π/3 ≤ φ ≤ 2π/3). The contacts between layers are created along the direction of maximum compression (φ 2π/3). In the quasi-static regime, those contacts are maintained up to the point where the grains separate (φ π/3). This is in contrast with the collisional regime where the grains bounce, so that ζ N is stronger around π/3 and smaller between π/3 and 2π/3.

We observe (see Fig. 15 (a)) that the tangential anisotropy is well described by the following expression :

ζ T (φ) = f T (I)ζ N (φ) cos(2φ), (23) 
with an increasing positive function f T (I). This means that the contacts between layers favor a clockwise rotation of the grains, while the contacts inside layers favor a counterclockwise rotation of the grains. Furthermore, this shows that the average tangential force is smaller in the quasi-static regime than in the collisional regime. 

IX. MICROSCOPIC ORIGIN OF THE FRICTION LAW

We now try to understand quantitatively the effective friction law on the basis of microscopic information (fluctuations and anisotropy of the contact network). We refer to [55,77] for a similar attempt based on the analysis of the energy dissipation mechanisms, especially associated to the rotations of the grains.

A. Friction and rotation

We first discuss the tangential anisotropy and show how it is related to the rotation of the grains [86].

In a first step, we take into account the average rotation velocity ω. We consider the steady uniform shear of an assembly of grains of diameter d with an average shear rate γ. Then, the tangential relative velocity between two grains is given by :

V T (φ) = d(ω + γ sin 2 (φ)). (24) 
In steady state (no average torque exerted on the grain), the average tangential force exerted on a grain should be equal to zero :

π 0 ρ(φ)T (φ)dφ = 0. (25) 
We start with two very crude assumptions : all the contacts are sliding (T = -µN sign(V T )) and the normal force distribution is isotropic (ζ N (φ) = 1/π). Consequently :

π 0 sign(ω + γ sin 2 (φ))dφ = 0. (26) 
This provides an explanation for the relation ω = -1 2 γ, which was described in Sec. VII. Consequently V T (φ) = -d γ cos(2φ)/2, ζ T = µ/π when 0 ≤ φ ≤ π/4 and 3π/4 ≤ φ ≤ π and ζ T = -µ/π when π/4 ≤ φ ≤ 3π/4. In comparison with Fig. 14 (c), we notice that the sign of ζ T (φ) is correct, but that the order of magnitude is too large, by a factor of around 10.

As a way to understand the order of magnitude of ζ T (φ), we now take into account the fluctuations of the rotation velocity, which have been evidenced in Sec. VII. Denoting as δω i,j the fluctuations of rotation of two grains i and j in contact, their relative tangential velocity at the contact point becomes :

V T ij (φ) = -d γ cos(2φ)/2 + d/2(δω i + δω j ). (27) 
Keeping the assumption of sliding contacts, we predict :

ζ T (φ) = -µζ N (φ) sign(V T ) , (28) 
where sign(V T ) is the statistical average over the fluctuating rotations of the two grains. Discrete numerical simulations have shown that the distribution of the rotation velocity is approximately lorentzian [45]. We make the assumption that the fluctuations of rotation of two grains in contact are not correlated. Then the random variable (δω i + δω j )/2 follows a lorentzian distribution, with a zero mean value and a variance δω/ √ 2. Then we obtain :

sign(V T ) = - 2 π arctan γ √ 2δω cos(2φ) . ( 29 
)
Using the rotation scaling law (18) :

sign(V T ) = - 2 π arctan I 1/3 √ 2 cos(2φ) , (30) 
and for small I (≤ 0.2) :

sign(V T ) - √ 2 π I 1/3 cos(2φ), (31) 
so that at the end :

ζ T (φ) √ 2 π µI 1/3 ζ N (φ) cos(2φ). ( 32 
)
This expression reproduces the observed angular dependence in ζ N (φ) cos(2φ), shown in Fig. 15 (a). The prediction for the dependence of the amplitude on I and µ is in agreement with the observed pre-factor f T (I) defined in Eqn. (23), as shown in Fig. 15 (b). The order of magnitude is now consistent with the observations. As a conclusion, the fluctuations of the rotation velocity are a possible quantitative explanation of the angular distribution of tangential forces ζ T (φ). When I decreases, the relative fluctuations of rotation increase, so that the average relative tangential velocity of two grains in contact tends to zero, which kills the frictional effect. This model is very crude. In the collisional regime, we have seen that most of the contacts are sliding (see Fig. 13) and the assumption of uncorrelated fluctuations may seem reasonable. On the contrary, in the quasistatic regime, we have observed that most of the contacts are rolling. Furthermore, our simulations reveal correlations of the rotations of grains in contact: it seems that the flowing granular material is organized in clusters of grains rotating in the same way [86]. Such correlations of the grain motion deserves further study [START_REF] Mills | Powders and Grains 2005[END_REF]95]. 

B. Friction and anisotropy

We now discuss the friction law µ * (I) on the basis of the information on the contact network. We would like to understand the increase of µ * with I, and its dependence with the microscopic friction µ.

A first possible interpretation lies in the increase of the mobilization of friction M (I) (Fig. 13 (b)): most of the contacts are rolling in the quasi-static regime, while most of them are dissipative sliding collisions in the collisional regime. Consequently, the energy dissipation, and hence the effective friction, should be stronger in the collisional regime. However, since the effective friction coefficient of an assembly of frictionless grains is not equal to zero, this interpretation is certainly not sufficient. We are now going to show the crucial role of the anisotropies of the contact network.

We consider the steady uniform shear of an assembly of grains of diameter d with average solid fraction ν, co-ordination number Z, and normal force N . The stress tensor is dominated by the contribution of the contacts (see Eqn. 5). It is possible to express it as a function of the angular distributions of contact forces, which we have previously defined [45,85,96,97]:

Σ = 2νZ N πd π 0 [ζ N (φ) n φ -ζ T (φ) t φ ] ⊗ n φ dφ. ( 33 
)
Using the properties of the stress tensor (Σ xy = Σ yx , and Σ xx = Σ yy ) and the normalization of angular distributions (Eqs. 22), the effective friction coefficient takes the simple expression :

µ * = - π 0 [ζ N (φ) sin(2φ) -ζ T (φ) cos(2φ)]dφ. ( 34 
)
In the first term associated to the normal forces (µ * N ), the factor sin(2φ) is positive for φ between 0 and π/2, so that it decreases the effective friction, and negative for φ between π/2 and π, so that it increases the effective friction. Consequently, the evolution of the angular distribution between the quasi-static regime and the collisional regime (see Fig. The complete calculation (Fig. 16 (b)) confirms that the contribution of tangential forces to the effective friction (|µ * T |/µ * ) remains of the order of 12% for µ = 0.4 and 18% for µ = 0.8. A similar conclusion was drawn by [55] from an assumption of isotropic contact force distribution.

Fig. 16 (a) compares the prediction based on the angular distribution (34) with the complete calculation based on (5), both for frictional and frictionless grains (the results of Fig. 6). The agreement is excellent.

The friction law depends mostly on the angular distribution of normal forces. When going from the quasistatic to the collisional regime, the small increase of the anisotropy increases the effective friction coefficient by a factor of two. In the same way, the decrease of the friction law when going from frictional to frictionless grains is due to a more isotropic angular distribution of normal forces. The microscopic friction coefficient has an indirect effect on the friction law, through the modification of the angular distribution of normal forces. This would mean that the very origin of the visco-plastic constitutive law relies in the anisotropy of the contact network in response to the shear. This point which has already been studied in the quasi-static regime [START_REF] Radjai | The physics of granular media[END_REF] would deserve further study.

X. CONCLUSION

We now summarize our conclusions. We have considered the simplest flow geometry (plane shear without gravity), where the stress distribution is uniform. Using molecular dynamics simulation, we have submitted a dense assembly of dissipative disks to a given pressure and shear rate. We have observed steady uniform shear flows, which become intermittent in the quasi-static regime. We have shown that, in the limit of rigid grains, the shear state is determined by a single dimensionless number, called inertial number I, which describes the ratio of inertial to pressure forces. Small values of I correspond to the quasi-static critical state regime of soil mechanics, while large values of I correspond to the fully collisional regime of kinetic theory. When I increases in the dense flow regime, we have measured an approximately linear decrease of the solid fraction from the maximum packing value, and an approximately linear increase of the effective friction coefficient from the static internal friction value. From those dilatancy and friction laws, we have deduced a visco-plastic constitutive law, with a plastic Coulomb term and a viscous Bagnold term. We have shown that this constitutive law is not very sensitive to the mechanical properties of the grains, once they are frictional, dissipative and rigid. We have measured the evolution of the relative velocity fluctuations and of the contact forces anisotropy as a function of I. Based on those microstructural information, we have proposed a simple explanation of the friction law. Fig. 17 shows a qualitative diagram of the flow regimes and of the friction law. The quasi-static critical state regime corresponds to very small values of I, with nearly no variation of the effective friction coefficient. The transition between the quasi-static regime and the dense flow regime is not very well defined. It may correspond to the transition between intermittent and continuous flow regime, for I 10 -3 , which may depend on the system size [18,36]. The transition between the dense flow regime and the fully collisional flow regime occurs for I 10 -1 . The effective friction coefficient increases in the dense flow regime and should saturate in the fully collisional regime (the values of the effective friction coefficient in the figure are indicative).

Other simulations of steady uniform shear states without walls have confirmed those observations [START_REF] Rognon | Powders and Grains 2005[END_REF]. A generalization of our results to other flow geometries (annular shear, vertical chute, inclined plane, heap flows) is discussed in [18,36]. Then, even if the same qualitative tendencies are observed, it seems that other dimensionless quantities (associated to gravity, proximity of the wall, stress gradients...) should be introduced. We notice that a generalization of those ideas to steady uniform shear flows of cohesive granular materials has been successful [START_REF] Rognon | Powders and Grains 2005[END_REF]. In this paper, we have restricted our attention to velocity controlled shear flows, so that it was not possible to study the flow threshold (evidenced indirectly through the appearance of intermittencies for small enough I [START_REF] Mills | Powders and Grains 2005[END_REF]). A specific study of the jamming mechanisms should be performed by controlling the shear stress, either in plane shear flows [32] or down inclined planes [36,[START_REF] Da Cruz | Powders and Grains 2005[END_REF].
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 1 FIG. 1: (Color online) Plane shear : (a) Quasi-static regime (I = 10 -2 ) (b) Collisional regime (I = 0.2). (Black grains constitute the rough walls. The line widths are proportional to the intensity of the normal force between grains).

FIG. 2 :

 2 FIG. 2: Dilatancy law (µ = 0.4, various e and κ).

FIG. 3 :

 3 FIG.3: Friction law (µ = 0.4, e = 0.1 (•), e = 0.9 ( ), various κ).

FIG. 4 :

 4 FIG.4: P/ γ2 as a function of (νmax -ν). The straight line indicates a slope of -2 (µ = 0.4, various e).

FIG. 5 :

 5 FIG. 5: Influence of µ on the critical state (I = 4 • 10 -3 and e = 0.1): (a) Maximum packing fraction ν max , (b) Effective friction coefficient µ * min , (c) Coordination number Z max .

FIG. 6 :

 6 FIG.6: of µ on the friction law (µ = 0 ( ), µ = 0.4 (+), µ = 0.8 ( ), various e).

FIG. 7 :

 7 FIG. 7: Variation of the effective friction coefficient as a function of solid fraction.

FIG.

  FIG.Influence of e for µ = 0 (e = 0.9 ( ), e = 0.1 (•)) : (a) Dilatancy law, (b) Friction law.

FIG. 9 :

 9 FIG. 9: Relative fluctuations of the kinetic energy as a function of I. Influence of H.

FIG. 11 :

 11 FIG.11: Variation of the coordination number Z as a function of I (κ = 10 4 , e = 0.1 ( ), e = 0.9 (•)) (a) µ = 0 -Fits Z = 3.75 -7.11I 0.51 (--), Z = 3.00 -6.04I 0.41 (-) (b) µ = 0.4 -Fits Z = 2.84-3.80I 0.48 (--), Z = 2.60-5.48I 0.50 (-).

FIG. 12 :

 12 FIG.12: Variation of the maximum coordination number as a function of κ (e = 0.1, µ = 0.4).

FIG. 13 :

 13 FIG. 13: (Color online) (a) Variation of Zs as a function of I (µ = 0.4 -κ = 4000 -e = 0.1 ( ), e = 0.9 (•)) (b) Variation of M as a function of I, for various κ.

FIG. 14 :

 14 FIG. 14: (Color online) Angular distribution of the contact forces (quasi-static regime (I= 0.005 -), collisional regime (I = 0.13 -•): (a) ζ N (φ) (µ = 0.4), (b) ζ N (φ) (µ = 0), (c) ζ T (φ) (µ = 0.4) -≥ 0 white symbols, ≤ 0 black symbols.

FIG. 15 : 2 π

 152 FIG. 15: Angular distribution of tangential contact forces: (a) ζ T (φ)/ζ N (φ) (•) fitted by f T cos(2φ) (-) for I = 0.13 and µ = 0.4, (b) fT (I)/µ for µ = 0.4 ( ) and µ = 0.8 (•) compared with √ 2 π I 1/3 .

FIG. 16 :

 16 FIG. 16: (Color online) Friction and anisotropy : (a) Comparison of Eqn. 34 (cross) with direct measurement of Fig. 6 (open symbols) (µ = 0 ( ), µ = 0.4 (•)), (b) Tangential contribution for µ = 0.4 ( ) and µ = 0.8 (•).

14

 14 

  (a) and (b)) might explain part of the increase of the effective friction.It is possible to give an estimation of the second term associated to the tangential forces (µ * T ), using the approximation (32) for ζ T (φ), with ζ N (φ) = 1/π. We obtain µ * T (µ/ √ 2π)I 1/3 . This contribution is small.

FIG. 17 :

 17 FIG. 17: Diagram of the granular flow regimes.

TABLE I :

 I List of system parameters.

	polydispersity µ	e	kt/kn	κ
	±20%	0-0.8 0.1-0.9 0.5 40-2.510 5

TABLE II :

 II List of material parameters.
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