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Rheophysics of dense granular materials :
Discrete simulation of plane shear flows

Frédéric da Cruz, Sacha Emam, Michaël Prochnow, Jean-Noël Roux and François Chevoir∗
LMSGC, Institut Navier, 2 allée Kepler, 77 420 Champs sur Marne, France

(Dated: September 26, 2005)

We study the plane shear flow of a dense assembly of dissipative disks using discrete simulation
and prescribing the pressure and the shear rate. Those shear states are steady uniform, and become
intermittent in the quasi-static regime. In the limit of rigid grains, the shear state is determined
by a single dimensionless number, called inertial number I, which describes the ratio of inertial to
pressure forces. Small values of I correspond to the quasi-static critical state of soil mechanics, while
large values of I correspond to the fully collisional regime of kinetic theory. When I increases in the
intermediate dense flow regime, we measure an approximately linear decrease of the solid fraction
from the maximum packing value, and an approximately linear increase of the effective friction
coefficient from the static internal friction value. From those dilatancy and friction laws, we deduce
the constitutive law for dense granular flows, with a plastic Coulomb term and a viscous Bagnold
term. The mechanical characteristics of the grains (restitution, friction and elasticity) have a small
influence in the dense flow regime. At the end, we show that the evolution of the relative velocity
fluctuations and of the contact force anisotropy as a function of I provides a simple explanation of
the friction law.

PACS numbers: 45.70.Mg, 81.05.Rm, 83.10-y, 83.80.Fg

I. INTRODUCTION

Due to their importance in geophysics and in various
industrial processes, flows of granular materials are the
focus of a large number of research, at the frontier be-
tween physics and mechanics [1–3]. In order to predict
propagation, flow-rate or jamming, one of the main ob-
jectives of these rheophysical studies is to determine the
rheological laws, based on their physical origin at the
scale of the grains and of their interactions. One thus
tries to express the stress tensor (and especially the pres-
sure P and the shear stress S, positively counted) as
a function of the shear rate γ̇ and other variables such
as solid fraction ν. However, granular materials are ex-
tremely various, depending on the geometry of the grains
and the nature of their interactions, and we restrict our
attention to assemblies of cohesionless grains, slightly
polydisperse, without interstitial fluid. This corresponds
to macroscopic grains (diameter larger than hundred mi-
crons) in a fluid of low viscosity like air. The rheology is
then only dictated by transfer of momentum and dissi-
pation of energy taking place in direct contacts between
grains and with the walls. Depending on the conditions,
these materials reveal various mechanical behavior, sim-
ilar to elastoplastic solids in the quasi-static regime, to
dense gazes in the case of strong agitation, or to vis-
coplastic fluids when a flow is provoked. This paper is
devoted to this intermediate dense flow regime, which is
still not well understood. We first briefly recall the es-
sential results for the two extreme regimes, quasi-static
and collisional.
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Dense, confined granular assemblies in extremely slow
shear flow are usually described as solids abiding by
elastoplastic, rate independent, constitutive laws [4–7].
After a large enough shear strain, the material reaches
the critical state [8], which does not depend on its ini-
tial arrangement (loose or dense), and is characterized
by an internal friction angle φ, defined as tan φ = S/P
in a simple shear test, by a critical solid fraction νc, and
specific values for coordination number and distribution
of contact orientations [9]. φ and νc depend only negli-
gibly on the confining pressure P . In other words, the
continuously sheared material can be modelled with the
Coulomb criterion, S = P tan φ, and in the following we
shall discuss the effective friction coefficient µ∗ = S/P .

In the dilute limit and/or for strong agitation, the
grains interact through binary, instantaneous, uncorre-
lated collisions. Then, the generalization of kinetic the-
ory of dense gazes to slightly dissipative grains [10–14]
allows a hydrodynamical description. The stress compo-
nents depend on the solid fraction and on the velocity
fluctuations δv. In the two-dimensional geometry which
we study in the following, the stress components are ho-
mogeneous to a force divided by a length. For an assem-
bly of disks of diameter d and mass m :





P = FP (ν)m(δv/d)2,

S = FS(ν)m(δv/d)γ̇.
(1)

Solving a flow problem requires an additional equation
of energy in which a dissipation rate Γ associated to dis-
sipative collisions must be added to the usual terms :

Γ = FΓ(ν)m(δv/d)3. (2)
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The dimensionless functions Fi(ν) are completely ex-
pressed as functions of the pair correlation function at
contact g0(ν). In the dense limit (0.2 ≤ ν ≤ 0.67),
Fi(ν) ' AiF (ν), with F (ν) = ν2g0(ν). In two dimen-
sion, g0(ν) = (16 − 7ν)/16(1 − ν)2 [15]. The pre-factors
Ai are well-known functions of the restitution coefficient
e [12]. In the case of an homogeneous shear flow, where
the shear rate and the velocity fluctuations are uniform,
the equation of energy reduces to a balance between the
work of the shear stress and the dissipation : Sγ̇ = Γ.
This leads to δv = γ̇d

√
AS/AΓ. Consequently, the stress

components are equal to :





P = GP (ν)mγ̇2,

S = GS(ν)mγ̇2,
(3)

where GP,S(ν) = BP,SF (ν) with BP = AP AS/AΓ and
BS =

√
A3

S/AΓ. We notice that the effective friction
coefficient is a constant (µ∗ =

√
ASAΓ/A2

P ), and that the
solid fraction is a function of the dimensionless quantity
I = γ̇

√
m/P (ν = G−1

P (1/I2)). This fully collisional
description is relevant in the dilute limit when the inertial
effects dominate.

In this paper, we focus our attention on the intermedi-
ate dense flow regime, where the solid fraction is close to a
maximum solid fraction, so that the grains interact both
through enduring contacts and through collisions. There
is a contact network more or less percolating through
the material and very fluctuating in space and time [16].
Such flows are beyond the quasi-static regime, since the
inertia of the grains (and so the shear rate) certainly
comes into play. On the other hand, the assumption of
binary, instantaneous, uncorrelated collisions of kinetic
theory is clearly in trouble. Due to the very strong cor-
relations of motion and force, the theoretical description
of those dense flows is very difficult and is still a matter
of debate (see [17] for a recent review). Advances have
come in the last decade from the combination of discrete
numerical simulations and experiments on model mate-
rials in simple geometry, confined or free surface flows,
and in various mechanical configurations. A detailed re-
view of these works can be found in [18]. Depending on
the mechanical configurations, the flows are steady, in-
termittent, or even jam. A localization of the shear, with
a width of a few grains, is also frequently observed near
the walls or near the free surface, with exponential ve-
locity profiles around. However, the heterogeneity of the
stress distribution as well as the presence of walls makes
the analysis of the constitutive law difficult.

This is the reason why we have chosen to study this
dense flow regime in steady homogeneous shear state
(uniform stress components, shear rate and solid frac-
tion). We have studied the simplest geometry, plane
shear without gravity, in which the stress distribution
is uniform inside the shear layer. Furthermore, we have
prescribed both the shear rate and the pressure. Using

discrete numerical simulations, we have access to micro-
scopic information, at the level of the grains and of the
contact network, hardly measurable experimentally, and
we are able to vary the parameters describing the grains
and the shear state.

Due to its interest in rheology and more specifically in
tribology (third body) and in geophysics (sliding of faults
at the origin of earthquakes), this plane shear geometry
has already been the subject of numerous discrete simu-
lation studies [16, 19–35].

Sec. II is devoted to the description of the simulated
system. We show in Sec. III that we obtain steady
uniform shear states in term of structure (solid frac-
tion), kinematics (shear rate) and stress distribution. In
Sec. IV, we discuss the dimensionless numbers which en-
ter in the rheological laws, especially the inertial number
I which describes the shear state and the contact stiff-
ness number κ which describes the typical deformation
of the grains. In Sec. V, we measure the evolution of
two macroscopic quantities (solid fraction and effective
friction coefficient) as a function of I in the dense flow
regime, from which we deduce the constitutive law. In
Sec. VI, from a parametric study, we show that this con-
stitutive law is not very sensitive to the mechanical prop-
erties of the grains, once they are frictional, dissipative
and rigid.Then, we describe microscopic information on
the fluctuations of the grain motion (Sec. VII) and on
the contact network (Sec. VIII), from which we propose
an explanation for the friction law (Sec. IX). For a more
detailed account of the results, we refer to [36].

II. SIMULATED SYSTEM

The simulated system is two dimensional (Fig. 1). The
granular material is a dense assembly of n dissipative
disks of average diameter d and average mass m. A small
polydispersity of ±20% is considered to prevent crystal-
lization [15]. The mechanical properties of the grains
are described by four independent parameters : a mi-
croscopic friction coefficient µ, a restitution coefficient in
binary collisions e and elastic stiffness coefficients kn and
kt.

The granular material is submitted to a plane shear,
without gravity, so that the stress distribution is uniform.
The material is sheared between two parallel rough walls,
distant of H. One of the wall is fixed, while the other
moves at the prescribed velocity V . We call x the flow
direction and y the transverse direction. Periodic bound-
ary conditions are applied along the flow direction, and
we call L the length of the simulation box (always larger
than 40 grains). The wall roughness is made of contigu-
ous grains sharing the characteristics of the flowing grains
(same polydispersity and mechanical properties - no ro-
tation). y = 0 corresponds to the center of the glued
grains on the fixed wall.

An important feature of our simulation is that we chose
to control the lateral pressure Σyy rather than keeping
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FIG. 1: (Color online) Plane shear : (a) Quasi-static regime
(I = 10−2) (b) Collisional regime (I = 0.2). (Black grains
constitute the rough walls. The line widths are proportional
to the intensity of the normal force between grains).

the solid fraction fixed, which is appropriate to discuss
real flows since experimental conditions usually deter-
mine stress levels, rather than solid fraction. We shall
see in the following that the normal stress components
Σxx and Σyy are equal, so that Σyy is equal to the pres-
sure P = (Σxx + Σyy)/2. The control of the pressure
P is achieved by allowing the dilatancy of the shear cell
along y (H is not fixed), through the vertical motion of
the moving wall given by Ḣ = (P − Pw)L/gp, where gp

is a viscous damping parameter, and Pw is the normal
stress exerted by the grains on the moving wall. Steady
state corresponds to 〈Pw〉 = P .

The parameters of the simulated system are summa-
rized in Tab. I (anticipating on Sec. IV, we indicate the
value of the dimensionless parameters gp/

√
mkn and I).

n L/d H/d gp/
√

mkn I

900 - 5000 40 - 100 20 - 100 1 6.10−4 − 0.3

TABLE I: List of system parameters.

polydispersity µ e kt/kn κ
±20% 0–0.8 0.1–0.9 0.5 40–2.5105

TABLE II: List of material parameters.

Let us consider two grains i and j in contact, of di-
ameter di,j , mass mi,j , centered at position ~ri,j , with
velocity ~vi,j and rotation rate ωi,j . Let ~nij denote the
normal unit vector, pointing from i to j (~nij = ~rij/||~rij ||
with the notation ~rij = ~rj −~ri), and ~tij a unit tangential
vector such that (~nij ,~tij) is positively oriented. We call
~Fij = Nij~nij + Tij~tij the contact force exerted on the
grain j by the grain i. The contact law relates the nor-
mal, Nij , and tangential, Tij , components of the contact
force to the corresponding components of relative dis-
placements and/or velocities. The relative velocity at the
contact point is equal to ~Vij = ~vi−~vj+1/2(diωi+djωj)~tij .
Its normal component V N

ij = ~nij ·~Vij is the time derivative
of the normal deflection of the contact (or apparent “in-
terpenetration” of undeformed disks), hij = (di+dj)/2−
||~rij ||. Its tangential component V T

ij = ~tij · ~Vij is the time
derivative of the tangential relative displacement δij .

The normal contact force is the sum of two contribu-
tions, an elastic one Ne and a viscous one Nv : Nij =
Ne

ij +Nv
ij . Keeping in mind that contacts have to close to

transmit forces (~Fij = ~0 if hij ≤ 0) the linear (unilateral)
elastic law reads Ne

ij = knhij , which involves a constant
normal stiffness coefficient kn, the value of which is in-
dependent of disk radii. Physically, this can be regarded
as a simplified version of the Hertz law [37], Ne ∝ h3/2.
The normal viscous force opposes the relative approach-
ing or receding velocity Nv

ij = ζij ḣij , where ζij is related
to the normal restitution coefficient e in a binary colli-
sion, and chosen such that e is constant for all contact-
ing pairs, whence ζij =

√
mijkn(−2 ln e)/

√
π2 + ln2 e,

where mij = mimj/(mi + mj). The viscous dissipation
might stem from the visco-elasticity of the grain mate-
rial [38]. The total normal force might be either repul-
sive or attractive, due to the viscous contribution. We
could check that setting Nij to zero whenever it becomes
attractive (Nij ≤ 0) has but a negligible effect on the
simulation results [39].

The Coulomb condition in the contacts involves the
microscopic coefficient of friction between grains µ, and
is enforced with the sole elastic part of the normal force
|Tij | ≤ µNe

ij . To this end, the tangential component
of the contact force is related to the elastic part δe

ij

of the relative tangential displacement δij , Tij = ktδ
e
ij ,

with a tangential stiffness coefficient kt. δe
ij is defined by

dδe
ij

dt = 0 if |Tij | = µNe
ij and TijV

T
ij ≥ 0 and dδe

ij

dt = V T
ij

otherwise. The contact is termed “sliding” in the first
case and “rolling” in the second case.

Table II gives the list of material parameters (antici-
pating on Sec. IV, we indicate the value of the dimen-
sionless parameter κ).
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The interaction law being chosen, numerical simu-
lations are carried out with the molecular dynamics
method, as in refs. [40–42]. The equations of motion
are discretized using a standard procedure (Gear’s or-
der three predictor-corrector algorithm [43]). The time
step is a small fraction (1/100) of the duration τc of
a binary collision between two grains of mass m (τc =√

m(π2 + ln2 e)/(4kn)).

III. STEADY UNIFORM SHEAR STATE

Two kinds of preparation have been compared. The
first kind (which has been used most of the time) con-
sists in starting from an initial configuration where the
disks are randomly deposited without contact and at rest
between the two distant walls, which provides an average
solid fraction of 0.5, and then in applying the pressure
to the wall while slowly shearing the granular material.
When the pressure on the walls reaches the prescribed
value, the prescribed velocity is applied. The second kind
consists in starting from a very high solid fraction (of the
order of 0.8), obtained by a random deposit followed by
a cyclic compaction with frictionless grains, and then to
introduce friction between grains and to start the shear
with the prescribed velocity and pressure. The two kinds
of preparation allow to start either from a loose state
(the first case), or from a dense state (the second case).
Occasionally, we have used a third kind of preparation
consisting in starting from localized shear states near one
of the walls (obtained by applying gravity [36]).

We then look for a steady flow, characterized by con-
stant time-averaged quantities of the flowing layer, like
kinetic energy and solid fraction. We have observed that,
after a sufficient amount of time, the three kinds of prepa-
ration lead to the same shear state. We deduce that
there is no influence of the preparation on the steady
flow characteristics. All the simulations converge to an
average steady state. We consider that the shear state
is continuous if the relative fluctuations of the measured
quantities are small enough (for instance the H fluctua-
tions remain smaller than 1% [36]), otherwise the flow is
called intermittent (see Sec. VIIA). When a steady state
is reached, the simulation is carried on during a sufficient
amount of time ∆t, so that the typical relative displace-
ment of two neighboring layers is larger than ten grains
(γ̇∆t ≥ 10). In this steady state, we consider that the
statistical distribution of the quantities of interest (struc-
ture, velocities, forces. . . ) are independent of t and x, so
that we average both in space (along x) an in time (con-
sidering 200 time steps distributed over the period ∆t).

Using averaging methods described in [44, 45], we mea-
sure the profiles of solid fraction, shear rate and of the
components of the stress tensor [36]. The stress tensor Σ
is the sum of two contributions [46, 47]:

Σ = Σc + Σf . (4)

The first term (“contact”), usual in static of granu-
lar materials, is associated to contact forces between
grains [48, 49]. The second term (“fluctuations”), usual
in fluid mechanics (Reynolds tensor), is associated to the
velocity fluctuations of the grains δ~vi :





Σc = 1
LH

∑
i≤j

~F ij ⊗ ~rij

Σf = 1
LH

∑n
i=1 miδ~vi ⊗ δ~vi

(5)

A third contribution, associated to the rotation of the
grains [50], is very small. In the dense flow regime, the
stress tensor is dominated by the contact term [36].

We observe that, apart from the five first layers
near the walls, the granular material is homogeneously
sheared : the solid fraction, shear rate and stress compo-
nents are approximately constant in the central part of
the sheared layer. Consequently, all the averaged quanti-
ties are measured in the central part of the sheared layer,
excluding the 5 first layers near the walls, and H is cho-
sen large enough so as to limit those wall effects (we have
also tested the homogeneity of the shear in the case of a
thin layer (H/d ≈ 5) [36]).

This absence of localization is in contrast with other
studies [19, 27, 29, 30]. However, we have observed signs
of localization in the quasi-static regime where the flow
becomes intermittent (Sec. VII), and in the case of a very
small polydispersity (≤ 1%), where the granular material
crystallizes near the walls and the shear zone reduces to
a ten diameters thick central layer [36].

We observe that Σxx ' Σyy (within less than 5%).
This has also been observed in other shear geometries
(inclined planes, annular shear) and with other discrete
simulation methods [35, 36, 41, 45]. This observation
is in contrast with the usual Mohr-Coulomb behavior in
soil mechanics, where the ratio of Σxx and Σyy is equal
to an active or passive Rankine coefficient, different from
unity [5]. In discrete simulation of biaxial tests, it has
been recently observed that this ratio tends to unity when
reaching the critical state [51]. Consequently the pressure
P = (Σxx + Σyy)/2 ' Σyy. In the following we call
S = −Σxy.

IV. DIMENSIONLESS NUMBERS

A. Dimensional analysis

In our discrete numerical simulations, the physical sys-
tem is completely described by a list of independent pa-
rameters associated to the grains and to the shear state.
The grains are described by their size d, mass m, coeffi-
cient of restitution e and coefficient of friction µ, elastic
stiffness parameters kn and kt. kt is of the same order of
magnitude as kn [37], and as it has a very small influence
on the results [31, 41], it was fixed to kn/2 in all our cal-
culations. The shear state is described by the prescribed
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pressure P , the velocity V , the height H, and by the
viscous damping parameter gp. As we study the dense
granular flow in the uniform sheared layer at distance
from the walls, we consider the shear rate γ̇, rather than
V and H separately. We have not studied the influence
of the normal motion of the wall controlling the pressure,
described by the dimensionless number gp/

√
mkn. With

the value of 1 chosen in all our simulations, we consider
that the time scale of the fluctuations of H is imposed
by the material rather than the wall, and that the wall
“glues” to the material. Close to the quasi-static regime,
its influence may be important, but we notice that in
the dense flow regime, the profiles obtained for controlled
pressure are in agreement with the one measured at fixed
volume [52]. Consequently, the shear state is described
by the pressure P and the shear rate γ̇.

As a way to reduce the number of parameters, it is
convenient to use dimensional analysis, which guaran-
tees that all the results can be expressed as relations
between dimensionless quantities. There are already two
dimensionless quantities e and µ. Apart from the length
and mass scales d and m, there remains three dimen-
sional quantities P , γ̇ and kn, from which we can build
two dimensionless numbers. Among the various possible
choices, we propose to use the following pair :





κ = kn

P ,

I = γ̇
√

m
P .

(6)

All measured dimensionless quantities (solid fraction
ν, effective friction coefficient µ∗, relative velocity fluctu-
ations, coordination number, mobilization of friction...)
will hereafter be given as functions of I and κ.

We now provide a physical interpretation of those two
dimensionless numbers, by considering them as dimen-
sionless ratios of typical quantities in the system, such as
time scales : the collision time τc (which is comparable to
the propagation time of the impulse through a grain), the
shear time τs = 1/γ̇ and the inertial time τi =

√
m/P

(the characteristic displacement time of a grain of mass
m submitted to a pressure P ).

B. Contact stiffness number

κ is proportional to the ratio of time scales (τi/τc)2.
More simply, it is the ratio of the stress scales kn and P ,
and is inversely proportional to the normal deflection h/d
of the contacts for a confining pressure P . Consequently,
it may be called contact stiffness number. A large value
corresponds to rigid grains, while a small value corre-
sponds to soft grains.

From previous numerical studies on quasi-static defor-
mation [53], it is known that contact stiffness parameters
have a negligible influence on macroscopic mechanical
properties at moderate or large strains when κ exceeds

104, which we call the rigid grain limit. Then the elas-
tic deformations stay negligible in comparison with the
gaps between neighboring grain surfaces that determine
the amplitude of rearrangement events (a more stringent
condition than h ¿ d). As a way to give an estimate for κ
in a realistic problem, we consider a layer of glass beads
submitted to its own weight. This cannot be directly
compared with the simulated system where there is no
gravity. However, the weight of the layer (50 cm thick)
provides a typical scale of pressure (P = 10kPa). For
Hertzian contacts, an appropriate definition of κ, such
that typical contact deflections satisfy h/d ∝ κ−1 with a
coefficient of order 1, is κ = (E/P )2/3, with E the Young
modulus [37]. Considering glass beads (E = 70 GPa)
under P = 10kPa, this yields κ ' 37000. This example
shows that usual situations are very close to the rigid
grain limit studied in this paper.

C. Inertial number

As the ratio of inertial to shear times or equivalently
the ratio of inertial forces to confining forces, I measures
the inertial effects, and will be called inertial number in
the following. A small value of I (small γ̇ and/or large
P ) corresponds to a regime where the grain inertia is
not relevant : this is the quasi-static critical state regime
(Fig. 1 (a)). Inversely, a large value of I (small P and/or
large γ̇) corresponds to the collisional regime, which may
be described by kinetic theory (Fig. 1 (b)). Varying I
allows to study the progressive transition between those
two regimes. We notice that it already appeared in the
collisional regime (Sec. I), and that it is a variant (square
root) of the previously defined Savage number [54] and
Coulomb number [55]. Using the mass density ρg of the
grains, it may also be written I = γ̇d

√
ρg/P .

I describes the shear state, through a combination of
the shear rate and pressure. When varying independently
the shear rate (factor F ) and the pressure (factor F 2)
while keeping the same value of I, the two flow configura-
tions will be the same. We have studied various systems
with different shear rate and pressure but the same iner-
tial number (for instance for H/d = 20, V = 1 - P = 25,
and V = 0.1 - P = 0.25, factor F = 10), and we have not
measured any difference in the macroscopic quantities.
The data shown on the forthcoming figures of the paper
correspond to such cases. If we vary kn (factor F 2) in
such a way that κ is unchanged, there are no difference
at all, since this is the same simulation : τc and hence
the time step is modified (factor 1/F ), so that the de-
formation of the system in one time step remains exactly
the same. If we let κ vary according to the variation of P
(factor 1/F 2), small variations may be observed on the
coordination number, or when the system leaves the rigid
grain limit.
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D. Comments

Some authors [20, 31] chose to control the solid frac-
tion ν rather than the pressure, and therefore, rather
than I and κ, used the pair of dimensionless numbers ν
and α = γ̇/

√
kn/m = I/

√
κ, as variables characterizing

the state of the granular material in steady uniform shear
flow. α may be viewed as the ratio of the collision time to
the shearing time, or as the shearing velocity divided by
the sound velocity (Mach number [31]). Both choices are
perfectly legitimate, as dimensional analysis predicts ei-
ther µ∗ = f1(I, κ) and ν = f2(I, κ), or µ∗ = f3(ν, α) and
κ = f4(ν, α), both results being equally valid. The choice
of I and κ can however be deemed more convenient for
several reasons. First, the variation of the results with
ν, regarded as a control parameter, is extremely fast.
Each material possesses a critical packing fraction νc, in
the sense of Sec. I, above which it does not flow, unless
stresses are so large that the elastic compression of con-
tacts compensates for the difference ν− νc. Below νc, on
the other hand, a continuously sheared granular system
is free to flow with a negligible shear stress, unless the
velocity is high enough to build a significant pressure.
One should therefore monitor ν with great accuracy to
observe ordinary stress levels. This renders the compar-
isons between different granular systems difficult, as one
would need to know in advance the value of the criti-
cal density for each of them. Furthermore, the limit of
rigid grains becomes singular, as all values of ν above νc

are strictly forbidden for γ̇ 6= 0, while all the properties
of shear flows with ν ≤ νc scale as a power of γ̇ in that
limit [35]. Hence, no change of flow regime is expected on
changing γ̇, which appears to contradict intuition unless
one recalls that the rigid grain limit, on increasing flow
rates, will eventually require unreasonably large contact
stiffnesses, due to very high pressure levels. Conversely,
if one uses I and κ as control parameters, no singularity
enters any of the relevant results in the I → 0 or κ →∞
limits, and different materials should exhibit similar (if
not quantitatively identical) behaviors for the same val-
ues of these parameters (which thus define roughly “cor-
responding states”).

V. CONSTITUTIVE LAW

We are going to show that the inertial number is a
fundamental quantity to describe the rheology of gran-
ular materials, as previously anticipated in [54, 55]. In
the steady uniform shear states, the solid fraction and
the shear stress adjust in response to the prescribed in-
ertial number. In this section, we now show the strong
influence of I on two dimensionless quantities, the solid
fraction and the effective friction coefficient. We defer
the detailed discussion of the influence of the various me-
chanical parameters of the grains (κ, e and µ) to the next
section. If not specified otherwise, we have chosen the fol-
lowing values of the parameters : κ = 104, e = 0.1 and

µ = 0.4.

A. Dilatancy law

We call “dilatancy law” the variations of the average
solid fraction ν as a function of the inertial number I
(Fig. 2). We observe that ν decreases approximately lin-
early with I, starting from a maximum value νmax :

ν(I) ' νmax − aI, (7)

with νmax ' 0.81 and a ' 0.3 (for µ = 0.4). The er-
ror bar (independent of I) corresponds to the statistical
dispersion inside the layer. This averaged measurement
can be complemented by the measurement of the spatial
heterogeneity (distribution of local solid fraction) within
the sheared layer, which increases with I [56].

FIG. 2: Dilatancy law (µ = 0.4, various e and κ).

B. Friction law

The effective friction coefficient has been defined as
the ratio of the shear stress to the pressure inside the
material µ∗ = S/P . It could also be defined as the ratio
of the (total) tangential and normal forces on the wall
µ∗w = T/N . We have observed [36] that µ∗w is slightly
larger than µ∗. Some simulations have been carried out
to test the influence of the roughness, by taking glued
grain on the wall twice as small (R = 0.5) or twice as large
(R = 2) as the flowing grains, for the same Ig. This size
ratio has an influence on the sliding velocity at the wall :
it becomes noticeable for R = 0.5 and decreases when R
increases, since the grains close to the walls are trapped
by the roughness. However, at distance from the walls,
the flow remains uniform, but the shear rate, and hence I,
decreases when R decreases. Furthermore, the effective
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friction at the wall decreases when R decreases. All in
all, µ∗w(I) seems independent of R. For a more detailed
discussion of the influence of the roughness on the flow
(inclined plane and vertical chute), we refer to [18, 45,
57]. In the following we shall only discuss the effective
friction coefficient in the volume of the flowing layer.

We call “friction law” the variations of the effective
friction coefficient µ∗ (averaged over the width in the cen-
tral part of the flowing layer) as a function of I (Fig. 3).
We observe that µ∗ increases approximately linearly with
I, starting from a minimum value µ∗min :

µ∗ ' µ∗min + bI, (8)

with µ∗min ' 0.25 and b ' 1.1 (for µ = 0.4), and saturates
for I ≥ 0.2. The error bars (independent of I) correspond
to the statistical dispersion inside the layer. We also
observe that µ∗ tends to saturate for I ≥ 0.2. Within the
error bars, it is difficult to be more precise about those
dependencies. A more careful measurement is deferred
for future work.

FIG. 3: Friction law (µ = 0.4, e = 0.1 (◦), e = 0.9 (�),
various κ).

We now compare this friction law with other works.
We first notice that the increase of µ∗ with I is contrary
to the well documented decrease of the friction coefficient
with the velocity in the quasi-static regime [58]. However,
in those studies, this softening is interpreted as a conse-
quence of the renewal of the population of asperities at a
microscopic scale, or as an effect of humidity [59]. Those
effects do not come into play in our study. As a matter
of fact, this friction law was already observed in previ-
ous discrete simulations [23], and partial observations
(experimental or numerical) of the variation of µ∗ with
the shear rate, the pressure or the solid fraction, consis-
tent with our observations, may be found in [21, 27, 59–
64]. Interestingly, the inclined plane geometry allows
to prescribe both the effective friction and the pressure,
through the inclination θ of the plane and the height H

of the flowing layer. Consequently, the measure of the
superficial velocity V as a function of these two parame-
ters provides a measure of the friction coefficient at the
base as a function of Ig (which is proportional to V/H3/2)
[65, 66]. Those observations are in good agreement with
the previous friction law [36, 67].

C. Comments

The classification of the flow regimes strongly depends
on the single dimensionless number I. In the quasi-static
regime (I ≤ 10−2), the granular material is very dense,
close to the maximum solid fraction νmax, and the ef-
fective friction coefficient is close to its minimum value
µ∗min. In the collisional regime (I ≥ 0.2), the dilatancy
becomes strong and the effective friction coefficient seems
to saturate. The transition between those two regimes is
progressive. In the dense flow regime (10−2 ≤ I ≤ 0.2),
we observe approximately linear variations of the solid
fraction and of the effective friction coefficient as a func-
tion of I (Eqs. (7) and (8)). The dilatancy and fric-
tion laws, measured in the whole range of regimes, from
the quasi-static to the collisional, make the link between
the known results in the two extreme regimes recalled in
Sec. I. In the quasi-static regime, µ∗min and νmax may be
identified with the internal friction tanφ and the critical
solid fraction νc in the critical state.

When taking into account the elasticity of the grains,
it is natural to draw a diagram of the flow regimes as
a function of the two dimensionless numbers α = I/

√
κ

and ν [20, 31]. This leads to identify three regimes : elas-
tic quasi-static, purely inertial and elastic-inertial. This
last regime corresponds to very soft grains (κ ≤ 100)
and is not accessible in our study, where we stay in
the limit of rigid grains. Furthermore, various stud-
ies where the volume rather than the pressure was pre-
scribed [20, 26, 31, 68] have evidenced a transition be-
tween the quasi-static and the inertial regimes around a
critical solid fraction. In our study where the pressure is
prescribed, the solid fraction adjusts to the inertial num-
ber I, so that the transition is not accessible.

D. Constitutive law

These dilatancy and friction laws allow to deduce the
dependencies of the pressure and shear stress on the shear
rate and solid fraction : P (ν, γ̇) and S(ν, γ̇).

From the definition of I (Eqn. (6)) and the dilatancy
law (Eqn. (7)), the pressure may be expressed as a func-
tion of the shear rate and the solid fraction :

P (ν, γ̇) =
a2

(νmax − ν)2
mγ̇2. (9)

The divergency with the solid fraction is shown in Fig. 4.
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FIG. 4: P/γ̇2 as a function of (νmax − ν). The straight line
indicates a slope of −2 (µ = 0.4, various e).

From the definition of I (Eqn. (6)) and the friction
law (Eqn. (8)), the shear stress may be expressed as a
function of the shear rate and the pressure :

S(P, γ̇) = µ∗minP + b
√

mPγ̇. (10)

Using the previous expression of P (Eqn. (9)), it is also
possible to express the shear stress as a function of the
shear rate and the solid fraction :

S(P, ν, γ̇) = µ∗minP +
ab

(νmax − ν)
mγ̇2, (11)

or, eliminating P :

S(ν, γ̇) = ab(ν∗−ν)
(νmax−ν)2 mγ̇2, (12)

with the solid fraction ν∗ = νmax + aµ∗min/b (ν∗ ≈ 0.86
for µ = 0.4).

For I ≤ 0.2, the expression of the stress components is
analogous to the expression for a steady uniform system
in the fully collisional regime (Eqs. (3)). The dependence
on the square of the shear rate, similar to the original con-
clusions of Bagnold for concentrated suspensions [69], is
a consequence of dimensional analysis [35]. The depen-
dencies on solid fraction are described by the following
dimensionless functions :





GP (ν) = a2

(νmax−ν)2 ,

GS(ν) = ab(ν∗−ν)
(νmax−ν)2 .

(13)

We recall that kinetic theory predicts a divergency in
1/(1− ν)2 from the asymptotic behavior of the pair cor-
relation function (see Sec. I). However, when ν ≥ 0.67

(so-called gel transition), then starts a regime of multiple
collisions, strongly correlated, and the divergency rather
seems in 1/(νmax − ν) [15, 32]. When the material is
sheared, under the effect of cooperative rearrangements
of caged grains, an even stronger divergency of the viscos-
ity has been conjectured [70]. The precise form of these
divergencies are decisive to describe the shape of the ve-
locity profiles and for the jamming process [70–72]. Our
quantitative determination is then a precious information
for the modelling of the dense granular flows.

We also notice that the expression (10) of S corre-
sponds to a visco-plastic constitutive law, similar to the
“frictional-collisional” decomposition of the stress tensor,
with a contribution associated to maintained contacts,
and a contribution associated to collisions [32, 72–78]. In
the viscous term, we notice that the apparent viscosity
b
√

mP is proportional to the square root of the pressure.
The interpretation it that the typical momentum mγ̇d
is exchanged with the inertial time scale

√
m/P over a

surface of the order d2.
We think that the formulation of the constitutive law

through the dilatancy and friction laws is simpler to use,
since it avoids the treatment of divergency near jamming,
which might be a problem in fluid mechanical numerical
simulations.

VI. INFLUENCE OF THE MECHANICAL
PARAMETERS

We now describe the influence of the mechanical prop-
erties of the grains on the constitutive law. e has been
varied between 0.1 and 0.9, µ between 0 and 0.8, and κ
between 40 and 2.5 · 105. We show that the constitutive
law is not sensitive to κ once the grains are rigid enough
(κ ≥ 103), nor to e once the grains are frictional, which
is the usual situation in practice. However, it is sensitive
to µ, and to e for µ = 0, and I ≥ 0.1.

A. Influence of the elasticity of the grains

We have observed that there is no influence of κ on the
constitutive law once it is larger than 104 (or even 103),
except on the coordination number (see Sec. VIIIA).
However, for small values (40), we have observed a lo-
calization of the shear near the moving wall in a large
system (H/d = 100) [36], which we interpret as an effect
of the decrease of the correlation length of the strain field
when the grains become softer. We notice that κ = 104

corresponds to τi/τc = 102. Since I = τi/τs is smaller
than around 0.1 in the dense flow regime, τs is at least
1000 times larger than τc in the rigid grain limit [78].
Consequently, we may speak of a rigid grain limit in the
dense flow regime, and our results should be comparable
to the ones obtained with rigid grains simulation meth-
ods [35].
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B. Influence of the microscopic friction coefficient

The microscopic friction coefficient µ has a significant
influence on the dilatancy law. The solid fraction remains
a linearly decreasing function of I, but both parameters
νmax and a depend on µ.

FIG. 5: Influence of µ on the critical state (I = 4 · 10−3 and
e = 0.1): (a) Maximum packing fraction νmax, (b) Effective
friction coefficient µ∗min, (c) Coordination number Zmax.

The variation of a is not simple: we measure a = 0.38
for µ = 0, 0.31 for µ = 0.4 and 0.37 for µ = 0.8 [36]. Fig. 5
(a) indicates that νmax is a decreasing function of µ (it is
not purely geometrical in the quasi-static regime). This
shows that the solid fraction, from the critical state to the
collisional regime, depends on the frictional properties of
the material, in agreement with other observations [26,
31].

The influence of µ on the friction law is less significant,
except for frictionless grains (µ = 0), as shown in Fig. 6,
where µ varies between 0 and 0.8. This variation is more
significant for small I. The Fig. 5 (b) shows more pre-
cisely the variation of the effective friction as a function
of µ in the quasi-static regime. There is strong varia-
tion between µ = 0 and µ = 0.4, but above µ = 0.4 the
effective friction remains constant.

FIG. 6: Influence of µ on the friction law (µ = 0 (�), µ = 0.4
(+), µ = 0.8 (4), various e).

As a conclusion, in the case of frictionless grains, the
friction law keeps the same tendency but is shifted to-
ward smaller values of friction (Fig. 6). However, we
observe a saturation for I ≥ 0.1 if e = 0.9, which will be
discussed in Sec. VI D. For I ≤ 0.1, the linear approxi-
mation (Eqn. (8)) is in trouble : it is rather a sub-linear
dependency, and µ∗min ' 0.11.

Starting from both variations of solid fraction and ef-
fective friction as a function of the local friction coef-
ficient µ, it is tempting to draw the variations of the
effective friction as a function of solid fraction instead of
inertial number. This is done on Fig. 7. As a matter of
fact, Eqs. (9) and (12) predict :

µ∗(ν) =
b

a
(ν∗ − ν), (14)

where ν∗ was previously defined. This new represen-
tation of the results evidences a collapse of the data
(even if a, b, µ∗min and νmax vary separately with µ,
ν∗ = νmax + aµ∗min/b seems approximately constant). It
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FIG. 7: Variation of the effective friction coefficient as a func-
tion of solid fraction.

appears that µ∗ becomes nearly independent of µ. This
master curve is made of complementary zones of high
solid fraction for frictionless grains, and smaller solid
fraction for frictional grains, and is of help in rheolog-
ical models [72]. It is noteworthy that a variation of
solid fraction of the order of 10% is enough to induce a
variation of effective friction by a factor 4. This decrease
of the effective friction when the solid fraction increases
was previously observed under shear [62].

C. Influence of the restitution coefficient

The Fig. 3 shows that there is no influence of the
restitution coefficient e for µ = 0.4. For frictionless
grains, the comparison between slightly (e = 0.1) and
strongly (e = 0.9) dissipative grains reveals (Fig. 8) that
there is an influence, limited to the collisional regime, for
I ≥ 0.1. Then, as the dissipation decreases, the dilatancy
is less pronounced and the effective friction saturates (see
also [31]).

D. Collisional limit

The situation (I ≥ 0.1, µ = 0 and e = 0.9) corresponds
to the dense limit of kinetic theory, with binary slightly
dissipative collisions (then the average contact time tends
to the collision time [52]). In this dense limit, the Eqs. (3)
predict a value of the effective friction independent of I
but dependent on e, from the values of the pre-factors
Ai [12] :

µ∗(e) =
√

ASAΓ

AP
=

1
2

(
π + 8
2π

) 1
2 √

1− e2. (15)

FIG. 8: Influence of e for µ = 0 (e = 0.9 (�), e = 0.1 (◦)) :
(a) Dilatancy law, (b) Friction law.

For e = 0.9, this predicts µ∗ = 0.29 which is in fairly
good agreement with the value measured for I = 0.2
(0.26). The small difference between those two values
may be due to the influence of the walls which induce a
sliding velocity and gradients of the fluctuations [79].

VII. FLUCTUATIONS

Up to now, all the quantities (solid fraction, velocities,
forces) have been averaged in space and time. In fact,
they are heterogeneous in space and fluctuate in time.
We now discuss the fluctuations of the motion of the
grains.

A. Intermittencies in the quasi-static regime

Various studies have shown that granular flows become
unstable in the quasi-static regime. When the velocity
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is prescribed, one goes from a continuous flow regime to
stick-slip [59, 80, 81]. When the shear stress is prescribed,
one observes an hysteretic and abrupt fluid-solid transi-
tion [82]. The observation of shear localization in discrete
simulations of plane shear corresponds to the quasi-static
regime [27, 30]. Our study shows that the flow is contin-
uous in the dense flow regime, but becomes intermittent
in the quasi-static regime (for I ≤ I0 ' 0.003). Then
the time averaged quantities are uniform, but the layer
oscillates between two localized states near the moving
or the fixed wall. Those two extreme states have a very
short duration, and the system is most of the time in an
intermediate state, where the shear is approximately uni-
form in the whole layer. Consequently, the total kinetic
energy fluctuates in time, with sudden peaks associated
to the two extremal states, and slow variations associated
to the intermediate situations. The Fig. 9 indicate that
the relative fluctuations of the kinetic energy increase
when I decreases and saturate in the quasi-static regime,
according to :

∆Ec

〈Ec〉 '
{

c
I0

for I ≤ I0,
c
I for I ≥ I0,

(16)

with I0 ' 0.003.

FIG. 9: Relative fluctuations of the kinetic energy as a func-
tion of I. Influence of H.

B. Velocity fluctuations

We now discuss the fluctuations of the translation ve-
locity δv and of the rotation velocity δω of the grains
(measured in the central part of the sheared layer, ex-
cluding the 5 first layers near the walls). They are defined
by :





δv =
√
〈~v2〉 − 〈~v〉2,

δω =
√
〈ω2〉 − 〈ω〉2.

(17)

Their influence is difficult to analyze in dense flows,
where the motions of the grains are strongly corre-
lated [35]. Their definition is a problem, since it has been
shown that they depend on the averaging time scale [16].
Our analysis (long time scale) takes into account both
the small fluctuations around the mean motion (in the
“cage” formed by the nearest neighbors [83, 84]), and
the large fluctuations associated to collective motions in
the quasi-static regime.

We observe that the average rotation rate 〈ω〉 is sim-
ply related to the shear rate through the relation 〈ω〉 =
− 1

2 γ̇ [36]. This relation has been observed in other shear
geometries (inclined plane flows, annular shear flows), in
quasi-static deformations and with other discrete simula-
tion methods [24, 44, 45, 68, 85]. Deviations are observed
in the very first layers near the walls where the granular
materials is structured.

Consequently, γ̇ is the natural scale of rotation veloc-
ity, and from dimensional analysis, we analyze the vari-
ations of the dimensionless quantity δω/γ̇ as a function
of I. Since γ̇d is the natural scale of translation velocity,
dimensional analysis suggests to analyze the variations
of the dimensionless quantity δv/γ̇d as a function of I.
Those variations, drawn on Fig. 10, evidence two scaling
laws, independent of the parameters of the system :





δv
γ̇d ' 1

3I−α,

δω
γ̇ ' I−β ,

(18)

with α ' 1
2 and β ' 1

3 , to which we shall refer as trans-
lation and rotation scaling laws.

The velocity fluctuations are significant (larger than
1) in the dense flow regime and very significant (larger
than 10) in the quasi-static regime. In comparison, ki-
netic theory (see Eqs. (1) and (2)) predicts that δv/γ̇d =√

As/AΓ so that
√

π+8
32(1−e2) ' 1.3, for e = 0.9, which cor-

responds to the order of magnitude which is measured in
the collisional regime.

Large values of δω/γ̇ have been observed experimen-
tally in the quasi-static regime [85] and in dense flows
down inclined planes [45], and might be due to the frus-
tration of the rotation [86].

We give two interpretations of the value of the expo-
nent α. The first explanation [18] consists in analyzing
the motion of one grain as a succession of shear phases
of duration 1/γ̇ with a velocity γ̇d and of sudden rear-
rangements with a velocity d

√
P/m of duration

√
m/P .

This leads to δv
γ̇d ' I−1/2 1−I

1+I . The second explanation re-
lies on an energetic argument. In a steady uniform shear
state, the work of the shear stress is balanced by the dis-
sipation rate Sγ̇ = Γ. If Γ describes the dissipation of
the fluctuating kinetic energy mδv2/2 during the iner-
tial time

√
m/P , we obtain : δv/γ̇d '

√
2µ∗(I)I−1/2.

For both interpretations, the order of magnitude of the
pre-factor is consistent with the observation.
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FIG. 10: Relative velocity fluctuations as a function of I : (a)
Translation velocity, (b) Rotation velocity (various parame-
ters).

We now show that the translation scaling law is con-
sistent with the variations of the relative fluctuations of
the kinetic energy (Eqn. (16)). Let us call ρ = ρgν the
average solid fraction of the granular materials and 〈Ec〉
the average kinetic energy by unit length, which is domi-
nated by the translational part : 〈Ec〉 = ρ

2

∫ H

0
(γ̇y)2dy ∼

(ρV 2H). In the quasi-static regime, where the system os-
cillates between two localized flows, ∆Ec ∼ (ρV 2H)/2,
so that ∆Ec/〈Ec〉 ∼ 1. In the collisional regime,
∆Ec ' ρ

2

∫ H

0
δv2dy. Using the translation scaling law

for this last quantity, we get : ∆Ec ∼ ρV 2/(HI), so that
∆Ec/〈Ec〉 ∼ 1/(H2I). This is in agreement with the
dependencies on I and H observed in Fig. 9.

Furthermore, the translation scaling law provides an
estimation of the Reynolds contribution to the stress ten-
sor (see Eqn. (5)): Σf/Σ ' (2ν/9π)I. This shows that
for I ≤ 0.1, this contribution remains smaller than 1%,
so that the contribution of the contact forces Σc remains
dominant.

C. Consequences for the constitutive law

The translation scaling law may also be written :

δv

d
' 1

3
γ̇1/2(P/m)1/4. (19)

Consequently, when the pressure is prescribed, the ve-
locity fluctuations vary like γ̇1/2, instead of γ̇. We notice
that, in the annular shear geometry, the pressure is con-
stant along the radial direction, and an exponent close
to 1/2 has been measured experimentally [70, 87].

If we introduce the velocity fluctuations in the consti-
tutive law, like in the collisional regime (see Eqn. (1)),
we obtain :





P ' 9a
νmax−ν m(δv/d)2,

S ' 3b
√

a(ν∗−ν)
(νmax−ν)3/2 m(δv/d)γ̇.

(20)

Within this formulation, we notice a stronger diver-
gency of the viscosity near the maximum solid fraction,
like in the model inspired by the glassy dynamics [71].

VIII. CONTACT NETWORK

We now measure informations on the contact net-
work. Its strongly heterogeneous character both in space
and time has already been discussed in detail [20, 25,
26, 29, 30, 36, 39, 44, 68, 88–90]: the contact time
varies from the short collision time in the fully collisional
regime to the much longer shear time in the quasi-static
regime [34, 91], while the distribution of the force inten-
sity is very wide [89]. We shall focus on the following
three quantities : coordination number, mobilization of
friction and anisotropy of the contact forces.

A. Coordination number

As was shown on Fig. 1, the contact network is very
sensitive to the inertial number. A small dilation of the
material (around 10%) is enough to observe a transition
from a dense contact network to multiple, or even binary,
collisions between grains. A quantitative indicator is the
coordination number Z, which is the average number of
contacts per grain. The variations of Z as a function of
I are shown in Fig. 11. Z increases as I decreases, and
tends toward a maximum value Zmax when I → 0. A
possible fit is:

Z = Zmax − cIγ , (21)

which is drawn on Fig. 11, which gathers the results for
a given contact stiffness number κ and various e and µ.
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FIG. 11: Variation of the coordination number Z as a function
of I (κ = 104, e = 0.1 (�), e = 0.9 (◦)) (a) µ = 0 - Fits
Z = 3.75 − 7.11I0.51 (−−), Z = 3.00 − 6.04I0.41 (−) (b)
µ = 0.4 - Fits Z = 2.84−3.80I0.48 (−−), Z = 2.60−5.48I0.50

(−).

Fig. 11 shows that the coordination number does not
depend only on the geometry, through the solid fraction,
but also on the mechanical properties of the grains e and
µ. The exponent γ is nearly constant (γ ' 1

2 ), but Zmax

and c depend on e and µ. When µ decreases, Z increases
and Zmax tends to 4 for frictionless grains [92] (see Fig. 5
(c)). We also notice that Z increases when e decreases,
due to the increasing collision time. The Fig. 12 indicates
that Zmax decreases significantly with κ, as expected.

B. Mobilization of friction

Inside the population of contacts, and for frictional
grains, we introduce a distinction between the “sliding”
contacts where the local friction is completely mobilized

FIG. 12: Variation of the maximum coordination number as
a function of κ (e = 0.1, µ = 0.4).

(|T | = µN) and the other “rolling” contacts (|T | ≤ µN).
This distinction is different from the one proposed in [93]
(“weak” and “strong” contacts), and a variant of the
one proposed in [32], which distinguishes “fluid” contacts
(collisions and sliding enduring contacts ) and “solid”
contacts (rolling enduring contacts). We define Zs as the
average number of sliding contacts per grain [94]. The
Fig. 13 (a) shows the variations of Zs as a function of the
inertial number I. We observe that Zs increases with I
in the quasi-static regime, up to a maximum in the dense
flow regime. Moreover, the Fig. 13 (a) indicates that the
Zs(I) curve depends on the restitution coefficient e.

We have shown on Fig. 13 (b) the variations with I of
the ratio M = Zs/Z, which, as the proportion of sliding
contacts, is an indicator of the mobilization of friction.
We observe that, contrarily to Zs, M increases, approxi-
mately logarithmically, as a function of I. We also notice
a slight increase of M when κ increases.

C. Anisotropy of the contact network

We now discuss the angular distribution of contact net-
work, which importance in the quasi-static regime has
been shown [9]. We call φ the direction of a contact
counted counterclockwise from the x direction, between
0 and π. (~nφ,~tφ) is the local frame in the direction φ.
Let us call 〈N〉 the average normal force in the homoge-
neous layer, then 〈N(φ)〉 and 〈T (φ)〉 the average normal
and tangential forces in the homogeneous layer in the di-
rection φ. The anisotropies are described by the three
angular distributions of contact orientations ρ(φ), of in-
tensities of normal forces ξN (φ) = 〈N(φ)〉/〈N〉 and of in-
tensities of tangential forces ξT (φ) = 〈T (φ)〉/〈N〉. Then
we define ζN (φ) = ρ(φ)ξN (φ) and ζT (φ) = ρ(φ)ξT (φ).
Those angular distributions satisfy the normalization re-
lations :
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FIG. 13: (Color online) (a) Variation of Zs as a function of I
(µ = 0.4 - κ = 4000 - e = 0.1 (�), e = 0.9 (◦)) (b) Variation
of M as a function of I, for various κ.





∫ π

0
ρ(φ)dφ = 1,

∫ π

0
ζN (φ)dφ = 1,

∫ π

0
ζT (φ)dφ = 0.

(22)

We show in Fig. 14 the two quantities ζN (φ) and ζT (φ)
which will be useful in the discussion of the friction law.
We distinguish first quasi-static and collisional regimes,
second frictional and frictionless grains. A positive value
of ζT (φ) indicates that the tangential forces induce on
average a counterclockwise rotation of the grains, and is
represented with white symbols in Fig. 14 (c). A neg-
ative value of ζT (φ) indicates that the tangential forces
induce on average a clockwise rotation of the grains, and
is represented with black symbols in Fig. 14 (c).

We notice a strong anisotropy of the contact network
with privileged orientations for ζN (φ) along the direc-

FIG. 14: (Color online) Angular distribution of the contact
forces (quasi-static regime (I = 0.005 - �), collisional regime
(I = 0.13 - ◦): (a) ζN (φ) (µ = 0.4), (b) ζN (φ) (µ = 0), (c)
ζT (φ) (µ = 0.4) - ≥ 0 white symbols, ≤ 0 black symbols.

tions of shear (φ ' 0 and π) and of maximum compres-
sion (φ ' 2π/3), and for ζT (φ) along the directions of
shear (φ ' 0 and π) and of the shear gradient (φ ' π/2).
Those anisotropies slightly change between the quasi-
static and collisional regimes and between frictional and
frictionless grains cases.

Those anisotropies may be explained within a very sim-
plified picture of a granular material organized in layers
along the shear direction. Then, there are two kinds of
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contacts between grains, inside a layer (φ ' 0 and π) and
between layers (π/3 ≤ φ ≤ 2π/3). The contacts between
layers are created along the direction of maximum com-
pression (φ ' 2π/3). In the quasi-static regime, those
contacts are maintained up to the point where the grains
separate (φ ' π/3). This is in contrast with the col-
lisional regime where the grains bounce, so that ζN is
stronger around π/3 and smaller between π/3 and 2π/3.

We observe (see Fig. 15 (a)) that the tangential
anisotropy is well described by the following expression :

ζT (φ) = fT (I)ζN (φ) cos(2φ), (23)

with an increasing positive function fT (I). This means
that the contacts between layers favor a clockwise rota-
tion of the grains, while the contacts inside layers favor
a counterclockwise rotation of the grains. Furthermore,
this shows that the average tangential force is smaller in
the quasi-static regime than in the collisional regime.

FIG. 15: Angular distribution of tangential contact forces:
(a) ζT (φ)/ζN (φ) (◦) fitted by fT cos(2φ) (−) for I = 0.13
and µ = 0.4, (b) fT (I)/µ for µ = 0.4 (�) and µ = 0.8 (◦)
compared with

√
2

π
I1/3.

IX. MICROSCOPIC ORIGIN OF THE
FRICTION LAW

We now try to understand quantitatively the effective
friction law on the basis of microscopic information (fluc-
tuations and anisotropy of the contact network). We refer
to [55, 77] for a similar attempt based on the analysis of
the energy dissipation mechanisms, especially associated
to the rotations of the grains.

A. Friction and rotation

We first discuss the tangential anisotropy and show
how it is related to the rotation of the grains [86].

In a first step, we take into account the average rota-
tion velocity ω. We consider the steady uniform shear
of an assembly of grains of diameter d with an average
shear rate γ̇. Then, the tangential relative velocity be-
tween two grains is given by :

V T (φ) = d(ω + γ̇ sin2(φ)). (24)

In steady state (no average torque exerted on the grain),
the average tangential force exerted on a grain should be
equal to zero :

∫ π

0

ρ(φ)T (φ)dφ = 0. (25)

We start with two very crude assumptions : all the con-
tacts are sliding (T = −µNsign(V T )) and the normal
force distribution is isotropic (ζN (φ) = 1/π). Conse-
quently :

∫ π

0

sign(ω + γ̇ sin2(φ))dφ = 0. (26)

This provides an explanation for the relation ω = − 1
2 γ̇,

which was described in Sec. VII. Consequently V T (φ) =
−dγ̇ cos(2φ)/2, ζT = µ/π when 0 ≤ φ ≤ π/4 and 3π/4 ≤
φ ≤ π and ζT = −µ/π when π/4 ≤ φ ≤ 3π/4. In
comparison with Fig. 14 (c), we notice that the sign of
ζT (φ) is correct, but that the order of magnitude is too
large, by a factor of around 10.

As a way to understand the order of magnitude of
ζT (φ), we now take into account the fluctuations of the
rotation velocity, which have been evidenced in Sec. VII.
Denoting as δωi,j the fluctuations of rotation of two
grains i and j in contact, their relative tangential ve-
locity at the contact point becomes :

V T
ij (φ) = −dγ̇ cos(2φ)/2 + d/2(δωi + δωj). (27)

Keeping the assumption of sliding contacts, we predict :
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ζT (φ) = −µζN (φ)〈sign(V T )〉, (28)

where 〈sign(V T )〉 is the statistical average over the fluc-
tuating rotations of the two grains. Discrete numerical
simulations have shown that the distribution of the rota-
tion velocity is approximately lorentzian [45]. We make
the assumption that the fluctuations of rotation of two
grains in contact are not correlated. Then the random
variable (δωi + δωj)/2 follows a lorentzian distribution,
with a zero mean value and a variance δω/

√
2. Then we

obtain :

〈sign(V T )〉 = − 2
π

arctan
(

γ̇√
2δω

cos(2φ)
)

. (29)

Using the rotation scaling law (18) :

〈sign(V T )〉 = − 2
π

arctan
(

I1/3

√
2

cos(2φ)
)

, (30)

and for small I (≤ 0.2) :

〈sign(V T )〉 ' −
√

2
π

I1/3 cos(2φ), (31)

so that at the end :

ζT (φ) '
√

2
π

µI1/3ζN (φ) cos(2φ). (32)

This expression reproduces the observed angular de-
pendence in ζN (φ) cos(2φ), shown in Fig. 15 (a). The
prediction for the dependence of the amplitude on I and
µ is in agreement with the observed pre-factor fT (I) de-
fined in Eqn. (23), as shown in Fig. 15 (b). The order of
magnitude is now consistent with the observations.

As a conclusion, the fluctuations of the rotation ve-
locity are a possible quantitative explanation of the an-
gular distribution of tangential forces ζT (φ). When I
decreases, the relative fluctuations of rotation increase,
so that the average relative tangential velocity of two
grains in contact tends to zero, which kills the frictional
effect. This model is very crude. In the collisional regime,
we have seen that most of the contacts are sliding (see
Fig. 13) and the assumption of uncorrelated fluctuations
may seem reasonable. On the contrary, in the quasi-
static regime, we have observed that most of the contacts
are rolling. Furthermore, our simulations reveal correla-
tions of the rotations of grains in contact: it seems that
the flowing granular material is organized in clusters of
grains rotating in the same way [86]. Such correlations
of the grain motion deserves further study [56, 95].

FIG. 16: (Color online) Friction and anisotropy : (a) Com-
parison of Eqn. 34 (cross) with direct measurement of Fig. 6
(open symbols) (µ = 0 (�), µ = 0.4 (◦)), (b) Tangential con-
tribution for µ = 0.4 (�) and µ = 0.8 (◦).

B. Friction and anisotropy

We now discuss the friction law µ∗(I) on the basis of
the information on the contact network. We would like to
understand the increase of µ∗ with I, and its dependence
with the microscopic friction µ.

A first possible interpretation lies in the increase of the
mobilization of friction M(I) (Fig. 13 (b)): most of the
contacts are rolling in the quasi-static regime, while most
of them are dissipative sliding collisions in the collisional
regime. Consequently, the energy dissipation, and hence
the effective friction, should be stronger in the collisional
regime. However, since the effective friction coefficient
of an assembly of frictionless grains is not equal to zero,
this interpretation is certainly not sufficient. We are now
going to show the crucial role of the anisotropies of the
contact network.

We consider the steady uniform shear of an assembly
of grains of diameter d with average solid fraction ν, co-
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ordination number Z, and normal force 〈N〉. The stress
tensor is dominated by the contribution of the contacts
(see Eqn. 5). It is possible to express it as a function
of the angular distributions of contact forces, which we
have previously defined [45, 85, 96, 97]:

Σ =
2νZ〈N〉

πd

∫ π

0

[ζN (φ)~nφ − ζT (φ)~tφ]⊗ ~nφdφ. (33)

Using the properties of the stress tensor (Σxy = Σyx, and
Σxx = Σyy) and the normalization of angular distribu-
tions (Eqs. 22), the effective friction coefficient takes the
simple expression :

µ∗ = −
∫ π

0

[ζN (φ) sin(2φ)− ζT (φ) cos(2φ)]dφ. (34)

In the first term associated to the normal forces (µ∗N ),
the factor sin(2φ) is positive for φ between 0 and π/2,
so that it decreases the effective friction, and negative
for φ between π/2 and π, so that it increases the effec-
tive friction. Consequently, the evolution of the angular
distribution between the quasi-static regime and the col-
lisional regime (see Fig. 14 (a) and (b)) might explain
part of the increase of the effective friction.

It is possible to give an estimation of the second term
associated to the tangential forces (µ∗T ), using the ap-
proximation (32) for ζT (φ), with ζN (φ) = 1/π. We
obtain µ∗T ' (µ/

√
2π)I1/3. This contribution is small.

The complete calculation (Fig. 16 (b)) confirms that the
contribution of tangential forces to the effective friction
(|µ∗T |/µ∗) remains of the order of 12% for µ = 0.4 and
18% for µ = 0.8. A similar conclusion was drawn by [55]
from an assumption of isotropic contact force distribu-
tion.

Fig. 16 (a) compares the prediction based on the angu-
lar distribution (34) with the complete calculation based
on (5), both for frictional and frictionless grains (the re-
sults of Fig. 6). The agreement is excellent.

The friction law depends mostly on the angular dis-
tribution of normal forces. When going from the quasi-
static to the collisional regime, the small increase of the
anisotropy increases the effective friction coefficient by a
factor of two. In the same way, the decrease of the fric-
tion law when going from frictional to frictionless grains
is due to a more isotropic angular distribution of normal
forces. The microscopic friction coefficient has an indi-
rect effect on the friction law, through the modification
of the angular distribution of normal forces. This would
mean that the very origin of the visco-plastic constitu-
tive law relies in the anisotropy of the contact network
in response to the shear. This point which has already
been studied in the quasi-static regime [9] would deserve
further study.

X. CONCLUSION

We now summarize our conclusions. We have consid-
ered the simplest flow geometry (plane shear without
gravity), where the stress distribution is uniform. Us-
ing molecular dynamics simulation, we have submitted
a dense assembly of dissipative disks to a given pres-
sure and shear rate. We have observed steady uniform
shear flows, which become intermittent in the quasi-static
regime. We have shown that, in the limit of rigid grains,
the shear state is determined by a single dimensionless
number, called inertial number I, which describes the
ratio of inertial to pressure forces. Small values of I cor-
respond to the quasi-static critical state regime of soil
mechanics, while large values of I correspond to the fully
collisional regime of kinetic theory. When I increases
in the dense flow regime, we have measured an approxi-
mately linear decrease of the solid fraction from the maxi-
mum packing value, and an approximately linear increase
of the effective friction coefficient from the static internal
friction value. From those dilatancy and friction laws,
we have deduced a visco-plastic constitutive law, with a
plastic Coulomb term and a viscous Bagnold term. We
have shown that this constitutive law is not very sensi-
tive to the mechanical properties of the grains, once they
are frictional, dissipative and rigid. We have measured
the evolution of the relative velocity fluctuations and of
the contact forces anisotropy as a function of I. Based
on those microstructural information, we have proposed
a simple explanation of the friction law.

FIG. 17: Diagram of the granular flow regimes.

Fig. 17 shows a qualitative diagram of the flow regimes
and of the friction law. The quasi-static critical state
regime corresponds to very small values of I, with nearly
no variation of the effective friction coefficient. The tran-
sition between the quasi-static regime and the dense flow
regime is not very well defined. It may correspond to
the transition between intermittent and continuous flow
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regime, for I ' 10−3, which may depend on the sys-
tem size [18, 36]. The transition between the dense flow
regime and the fully collisional flow regime occurs for
I ' 10−1. The effective friction coefficient increases in
the dense flow regime and should saturate in the fully
collisional regime (the values of the effective friction co-
efficient in the figure are indicative).

Other simulations of steady uniform shear states with-
out walls have confirmed those observations [98]. A gen-
eralization of our results to other flow geometries (an-
nular shear, vertical chute, inclined plane, heap flows)
is discussed in [18, 36]. Then, even if the same qual-
itative tendencies are observed, it seems that other di-
mensionless quantities (associated to gravity, proximity
of the wall, stress gradients...) should be introduced.
We notice that a generalization of those ideas to steady
uniform shear flows of cohesive granular materials has
been successful [98]. In this paper, we have restricted
our attention to velocity controlled shear flows, so that it
was not possible to study the flow threshold (evidenced

indirectly through the appearance of intermittencies for
small enough I [56]). A specific study of the jamming
mechanisms should be performed by controlling the shear
stress, either in plane shear flows [32] or down inclined
planes [36, 67].
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Physica D 162, 188 (2002).
[30] E. Aharonov and D. Sparks, Phys. Rev. E 65, 051302

(2002).
[31] C. S. Campbell, J. Fluid Mech. 465, 261 (2002).
[32] D. Volfson, L. S. Tsimring, and I. Aranson, Phys. Rev.

E 68, 021301 (2003).
[33] I. Iordanoff and M. M. Khonsari, J. Tribology 126, 137

(2004).
[34] H. H. Shen and B. Sankaran, Phys. Rev. E 70, 051308

(2004).
[35] G. Lois, A. Lemaitre, and J. M. Carlson (2005), condmat

0501535.
[36] F. da Cruz, Ph.D. thesis, Ecole Na-

tionale des Ponts et Chaussées (2004),
http://pastel.paristech.org/archive/00000946.

[37] K. L. Johnson, Contact Mechanics (Cambridge Univer-
sity Press, Cambridge, 1985).

[38] N. Brilliantov, F. Spahn, J. M. Hertzsch, and T. Pöschel,
Phys. Rev. E 53, 5382 (1996).

[39] S. Schollmann, Phys. Rev. E 59, 889 (1999).
[40] P. A. Cundall and O. D. L. Strack, Géotech. 29, 47
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