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Fitting surfaces with the Miura tessellation

H. Nassar, A. Lebée, L. Monasse

Abstract: The paper characterizes Miura surfaces defined as smooth surfaces
that the regular periodic Miura ori can fit in the limit where the size of the creases
is infinitely small compared to the typical radius of curvature. Based on a model
due to Schenk and Guest, the Miura crease pattern is enriched so as to allow access
to non-planar configurations. In contrast with previous work where the pattern
is modified in order to fit different target surfaces, here we are interested in the
converse problem of determining all the surfaces that can be fitted by one and the
same pattern. The central result is a constrained nonlinear partial differential
equation satisfied by the parametrization of any Miura surface. As an application,
examples of bounded and unbounded Miura surfaces are presented along with a
complete classification of axisymmetric and ruled ones.

1 Introduction
Finding the surfaces that the plane can deform into and fit under various kinematical
constraints is a problem with a long history. Euler proved that an inextensible plane
can only fit those surfaces qualified as developable such as cylinders and cones.
Later, Gauss established a connection between curvature and in-plane deforma-
tions in the context of his “Theorema Egregium”. Developable surfaces are thus
characterized as surfaces with vanishing Gaussian curvature. Armed with Gauss’
theorem, Chebyshev tackled the problem of clothing curved surfaces [Ghys 11]. He
mathematically modeled a cloth as a plane grid of inextensible threads now known as
a Chebyshev grid. As the cloth deforms, the grid can be bent and sheared but cannot
be stretched or compressed. Recently, it was proven that Chebyshev grids can cover
any surface with a sufficiently small total absolute Gaussian curvature [Samelson
and Dayawansa 12, Masson and Monasse 16]. The relevance of these and other
fitting problems to the mechanics of plates and shells hardly needs emphasis. We
mention the application of Chebyshev grids to the design of gridshells useful in
architecture [Douthe et al. 09, Baverel et al. 12].

Rigid folding constitutes another class of kinematical constraints. It is well-
known among origamists that fold tessellations allow for inextensible paper to
fit curved surfaces in a way that challenges Euler’s result [Lebée 15]. Euler had
precluded folding by requiring smoothness whereas in the case of origami, paper is
allowed to fold along predefined crease lines. Motivated by similar considerations,
Resch and Christiansen famously attempted to fold a periodic crease pattern into
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an egg, namely the Vegreville Easter egg. The pattern was designed by Resch and
is now referred to as the Ron Resch pattern [Resch and Christiansen 70]. After
six months of computer-assisted trials, they failed [Blinn 88]. Their final design
introduced cuts that transformed Resch’s pattern into the so-called Kagome lattice
capable of fitting surfaces admitting a conformal metric, i.e., surfaces that can
be flattened by applying some isotropic, although inhomogeneous, in-plane strain
field [Konaković et al. 16].

Lately, significant efforts, with remarkable outcomes, have been made to design
crease patterns that can be folded to fit target surfaces [Tachi 09, Tachi 13, Zhou
et al. 15, Dudte et al. 16]. Here, we are interested in the converse question, that
is in determining the surfaces that can be fitted with one and the same periodic
origami tessellation, namely the regular periodic Miura ori. More specifically, we
will characterize Miura surfaces defined as smooth surfaces that the Miura ori can
fit in the limit where the size of the creases is infinitely small compared to the
typical radius of curvature. Building on previous work [Schenk and Guest 13, Wei
et al. 13, Nassar et al. 17a, Nassar et al. 17b], our central result is a constrained
nonlinear partial differential equation satisfied by the parametrization of any Miura
surface. As an application, various Miura surfaces are constructed and fitted. In
particular, a complete classification of axisymmetric and ruled Miura surfaces is
derived. But first, a useful algorithm allowing to construct a Miura ori based on the
giving of some of its vertices is presented.

2 Discrete modeling of the Miura ori

(a)

(b) (c)

Figure 1: The Miura crease pattern: (a) original pattern; (b) its unique deformation
mode; (c) modified pattern.
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The Miura ori crease pattern is depicted on Figure 1a. The pattern can be folded
along edges: solid and dashed lines represent valley and mountain folds respectively.
If faces remain rigid then the only deformation mode of the Miura ori is the one
represented on Figure 1b. Physical models, say made out of paper, of the Miura ori
exhibit however other in-plane and out-of-plane modes that require the faces to bend.
To explain these modes within the framework of rigid origami, a modified, enriched,
crease pattern can be introduced [Schenk and Guest 13]. It includes additional
creases, namely the dotted lines in Figure 1c, that can be folded either in mountains
or in valleys. It is this modified pattern that is of interest here. We further restrict
our attention to the regular Miura ori, the one whose all edges are equal in length,
for simplicity.

(a)

(b)

Step 0 Step 1 Step 2 Step 7

Figure 2: (a) Algorithm: construction by zigzag propagation. (b) Convergence study:
surfaces spanned by a uniform circular zigzag as the edge size decreases.

All possible configurations of a Miura ori can be spanned by a fairly simple
algorithm. First, assume given the three vertices A0, B0 and A1 shown on Figure 2a
and that the oriented angle (B0A1,B0A0) is in the interval ]0,2π/3]. Then, vertex
C0 belongs to the intersection of three spheres of equal radii and centered on A0, B0
and A1. Although in general two intersection points exist, the position of C0 must
accommodate a mountain fold along B0C0. Thus, C0 is the unique intersection of
the described spheres that is located above the plane (A0B0A1). By iterating this
procedure, if the red zigzag of Figure 2a is given at step 0, the next dotted zigzag
can be uniquely determined in step 1. Then the construction is pursued until one
zigzag exhibits an incompatible angle smaller than 0 or larger than 2π/3, or until
the current zigzag contains a single point. In this manner, the Miura ori can be
uniquely constructed by propagating one zigzag up and down. The construction can
be formalized as the autonomous discrete Cauchy problem

zigzagn+1− zigzagn = function(zigzagn) (1)
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where zigzag0 is the initial red zigzag and is given. The above algorithm will
terminate in 2N−1 steps at most when zigzag0 contains 2N +1 points. However, it
is expected that the algorithm will terminate sooner due to the appearance of angles
incompatible with the inextensibility constraints.

The Miura ori spanned by in-plane uniform zigzags correspond to the states
encountered in the flat-folding motion of Figure 1b. For circular zigzags embedded
in a short cylinder of radius R with a uniform inner angle of π/3, the spanned Miura
ori are illustrated on Figure 2b for a decreasing edge size r. It is seen then that as r/R
approaches zero while other parameters remain the same, the Miura ori approaches
a smooth saddle surface. The purpose of the next section is to characterize such
smooth surfaces referred to as Miura surfaces.

3 Differential geometry of Miura surfaces
Hereafter, we present a set of algebraic identities satisfied by the metric and curvature
of a general Miura surface. Each identity can be seen as the giving of either the
in-plane or the out-of-plane Poisson’s ratio of the Miura tessellation in specific
directions [Schenk and Guest 13, Wei et al. 13]. Combined with relevant tools of
differential geometry, the identities yield a nonlinear partial differential equation
governing the parametrization of a general Miura surface. This equation constitutes
the continuous equivalent to algorithm (1) and is the main result of the present paper.
Last, given the parametrization of a Miura surface, we describe how the underlying
fitting tessellation can be generated.

3.1 Parametrization and metric
Let S be a smooth surface and R be its minimum radius of curvature. We call S
a Miura surface if the Miura ori with edge size r can fit it in the limit r/R→ 0.
Let φ : (x,y) ∈ R2 7→S ⊂ R3 be a parametrization of S where x and y are the
curvilinear coordinates along vectors w and w∗ respectively as shown on Figure 3.
In other words, we set

φx = w/r, φy = w∗/r, (2)

with �x ≡ ∂x� and �y ≡ ∂y�. The first fundamental form of S , also known as the
metric, in the parametrization φ then reads

I =
[
〈φx,φx〉

〈
φx,φy

〉〈
φx,φy

〉 〈
φy,φy

〉]= [4sin2(θ/2) 0
0 4cos2(θ ∗/2)

]
≡
[

4s2 0
0 4c∗2

]
. (3)

Therein, we introduced the angles θ and θ ∗ of Figure 3 and used the fact that w
is orthogonal to w∗ due to mirror symmetry. For later purposes, similarly define
c≡ cos(θ/2) and s∗≡ sin(θ ∗/2). It is then elementary, although not straightforward
[Schenk and Guest 13, Wei et al. 13, Nassar et al. 17a], to check that

2cc∗ = 1. (4)

Angles θ ≡ θ(x,y) and θ ∗ ≡ θ ∗(x,y) determine the folding state of the Miura
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Figure 3: A Miura surface: a blow-up of a neighborhood
centered on a point P reveals the microstructure of the Miura
ori. The underlying vectors w and w∗ are tangent to the
surface and define the coordinate system (x,y).

ori in the vicinity of a point P(x,y) of the fitted surface S : for (θ = 0,θ ∗ = 2π/3),
the Miura ori is fully folded whereas for (θ = 2π/3,θ ∗ = 0), it is fully unfolded.
In any case, (θ ,θ ∗) remains in the rectangle [0,2π/3]2. However, we shall assume
(θ ,θ ∗) ∈]0,2π/3]× [0,2π/3[ so as to keep I from being singular.

3.2 Second fundamental form
Let n̂ = φx×φy/(4sc∗) be the unit vector directly normal to S . The second funda-
mental form is defined as

II =
[
〈φxx, n̂〉

〈
φxy, n̂

〉〈
φxy, n̂

〉 〈
φyy, n̂

〉]≡ [e f
f g

]
. (5)

Together, forms I and II allow to determine the various curvatures of S . For
instance, the normal curvatures in the directions x and y are respectively given by

κ
x =

e

‖φx‖2 =
e

4s2 , κ
y =

g∥∥φy
∥∥2 =

g
4c∗2

, (6)

whereas the Gaussian and mean curvatures are

K =
eg− f 2

16s2c∗2
, H =

ec∗2 +gs2

8s2c∗2
. (7)

Remarkably, it was proven that the normal curvatures of the Miura ori satisfied
the identity

κy

κx =− tan2(θ/2) =− s2

c2 or ec∗2 +gc2 = 0, (8)

in the context of infinitesimal strains, i.e., θ(x,y) = θ0 +δθ(x,y),δθ � θ0 [Schenk
and Guest 13, Wei et al. 13]. Fortunately, using two-scale asymptotic expansions, it
is possible to demonstrate that the above identity holds for finite strains as well but
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only in the homogenization limit r/R� 1 [Nassar et al. 17a]. The interested reader
is referred to the cited papers for proofs.

As an important corollary, note that e and g have opposite signs so that K is
necessarily negative: all Miura surfaces are saddle-shaped.

3.3 The fitting problem
Based on the above results, we now derive a continualized version of algorithm (1),
i.e., its asymptotic equivalent written in differential form. For that purpose, we ex-
press the vectors φxx, φxy and φyy in the basis (φx,φy, n̂). This amounts to calculating
the Christoffel symbols [Ciarlet 06]. We find

φxx =
(s2)x

2s2 φx−
(s2)y

2c∗2
φy + en̂,

φxy =
(s2)y

2s2 φx +
(c∗2)x

2c∗2
φy + f n̂,

φyy =−
(c∗2)x

2s2 φx +
(c∗2)y

2c∗2
φy +gn̂.

(9)

Then, thanks to equations (4) and (8), it is straightforward to check that the
parametrization of a Miura surface satisfies the constrained nonlinear partial differ-
ential equation

φxx

1−〈φx,φx〉/4
+

φyy〈
φy,φy

〉
/4

= 0, (10a)

(1−〈φx,φx〉/4)
〈
φy,φy

〉
= 1, (10b)〈

φx,φy
〉
= 0, (10c)

(〈φx,φx〉 ,
〈
φy,φy

〉
) ∈]0,3]×]1,4]. (10d)

Equation (10) constitutes the fitting problem and summarizes our central result: if
S is a Miura surface then it admits a parametrization solution to (10). Equation (10)
is the asymptotic equivalent to equation (1) in the sense that, provided with an initial
condition (φ(x,y = 0),φy(x,y = 0)), it generates a unique solution φ .

Having found a solution φ to (10), or equivalently to (3), (4) and (8), a fitting
Miura ori with an arbitrarily small error can be constructed using algorithm (1). To
do so,

• choose a small but finite discretization step r;
• construct the zigzag whose nodes are the An and Bm, n = 0 . . .N, m = 0 . . .N−1,

where N is a large integer of the order of 1/r; see Figure 2. Set1 An = φ(x =
nr,y = 0) and determine Bn such that AnBn = BnAn+1 = r and that the vector sum
BnAn +BnAn+1 is parallel to, say, φy(x = nr+ r/2,y = 0);

• finally, feed the zigzag (A0B0 . . .BN−1AN) into algorithm (1).
1Then, An+1−An = rφx +o(r) in accordance with equation (2).
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3.4 Discussion

Various open questions revolving around the fitting problem are worthy of investiga-
tion. These exceed the scope of the present paper and we content ourselves with a
number of comments concluding this section.

First, it is remarkable that the quantities figuring in (10b) and (10c) are conserved
in some sense. As a matter of fact, assuming only (10a) holds a priori, projecting
onto φx and φy respectively yields

∂x
〈
φx,φy

〉
1−〈φx,φx〉/4

=−1
2

∂y ln[(1−〈φx,φx〉/4)
〈
φy,φy

〉
],

∂y
〈
φx,φy

〉
1−〈φx,φx〉/4

=
1
2

∂x ln[(1−〈φx,φx〉/4)
〈
φy,φy

〉
].

(11)

Now add the assumption that φ satisfies the constraints (10b) and (10c) at y = 0
and for all x. Then, the above equations can be understood as an autonomous
Cauchy problem in the variable y and the unknown functions

〈
φx,φy

〉
and ln[(1−

〈φx,φx〉/4)
〈
φy,φy

〉
] with a vanishing initial condition. Therefore, by Cauchy-

Lipschitz theorem,
〈
φx,φy

〉
and ln[(1− 〈φx,φx〉/4)

〈
φy,φy

〉
] are identically null.

That is: φ satisfies (10b) and (10c) for all x and y.
Therefore, due to this conservation result, it seems that formulating (10) as

a Cauchy problem is advantageous. Indeed, by appending an initial condition
compatible with (10b) and (10c), one would no longer need to worry about these
constraints. Alternatively, problem (10) can be formulated as a Dirichlet problem. In
that case however, it is not clear what boundary data will be compatible with (10b)
and (10c).

Unfortunately, equation (10a) is elliptic and thus will generally lead to an ill-
posed Cauchy problem [Alessandrini et al. 09]. That is, a general solution φ will
be very sensitive to uncertainties and errors in the initial condition. In practice,
when loop (1) is iterated long enough, a numerical instability appears. Then, the
construction algorithm terminates prematurely before generating the full Miura
tessellation. See Figures 9 and 10 below for examples.

In any case, finding what combinations of boundary/initial conditions guaran-
tee existence, uniqueness and stability remains an open question of fundamental
importance both practical and theoretical.

4 Case studies
In the following, we prove the existence of certain fittings based on the equations
derived in the previous section. Specifically, we classify all axisymmetric Miura
surfaces and we prove that all ruled surfaces can be realized as nearly flat-folded
Miura surfaces with an arbitrarily small fitting error. The presented examples do not
exhaust all possible Miura surfaces but illustrate the advantages that the continuum
approach (10) brings over the discrete formulation (1).
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4.1 Developable surfaces
Let S be a developable Miura surface, i.e., a surface with constantly vanishing
Gaussian curvature K = 0. But since eg is already negative, equation (7) implies
e = g = f = 0 so that S is a plane: the plane is the unique developable Miura
surface.

Figure 4: Two views of the Miura rose.

The plane can be fitted in a uniform manner, i.e., with constant θ , as shown on
Figure 1b. Other non-uniform fittings of the plane, or at least parts thereof, can be
generated at will by initiating algorithm (1) with an arbitrary in-plane zigzag. The
Miura rose of Figure 4 is one such example where the initial zigzag is plane circular
with a uniform inner angle θo = π/3 and an arbitrary radius ρo. Here in particular,
ρo was chosen so as to fit an integer number of unit cells in the circumference, e.g.,
ρo = r sin(θo/2)/sin(π/N) with N a large integer. It is then easy to see, as if by
conservation of the number of unit cells, that ρ/s is uniform. Since

√
3/2 is the

maximum value of s, the radius of the rose is given by ρM =
√

3
2sin(θo/2)ρo and can be

made arbitrarily large by making either ρo larger or θo smaller, both consistent with
the fact that origami kinematics are scale-invariant.

The Miura rose is an example of an asymptotically axisymmetric plane fit-
ting. Axisymmetry is hardly surprising the initial zigzag being axisymmetric it-
self. There exists however one other axisymmetric plane fitting generated by a
non-axisymmetric initial zigzag. We call it the Miura ring and it is depicted on
Figure 5a. The initial zigzag is visible on Figure 5b: it is fully collapsed on the
inner circumference and fully extended on the outer one. Thus the radii ratio is
ρM/ρm = maxc∗/minc∗ = 2.

Two remarks are in order here. First, the Miura ring cannot be fully constructed
with a single initial zigzag. Indeed, by referring to Figure 2a, one sees that the initial
zigzag only permits to construct a single “petal” shown on Figure 5a. The ring can
then be spanned by successive rotations. Note that these rotations are compatible
with the fitting of a single petal as is visible on the magnified view of Figure 5b.
Second, the profile of the inner angle of the initial zigzag θ(x) = 2arctan(2x/ρm)
would have been tedious to extract from a discrete description of the Miura ori.
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Here, it is obtained by solving equations (3) and (4) for a parametrization of the
form φ(x,y) = (ρ(x)cos(αy),ρ(x)sin(αy),0). It is in such circumstances that the
usefulness of a continuous description of the Miura ori is undisputed.

(a) (b)

Figure 5: The Miura ring: (a) rows of unit cells (x = cste) are concentric circles; (b)
a magnified view. Note that ρM/ρm→ 2 as r/ρm→ 0.

4.2 Axisymmetric surfaces of the first kind
A Miura surface is called axisymmetric about a z-axis if its fitting is asymptotically
invariant by reflection along any plane containing the z-axis. Now, the Miura pattern
has no more than two reflection2 symmetries about the x and y axes. Therefore,
axisymmetric Miura surfaces have their contours {x = xo} and {y = yo} contained
in planes either parallel or orthogonal to the z-axis. Hence, axisymmetric Miura
surfaces come in two flavors: surfaces with {y = yo} ⊂ {z = zo} are said to be of
the first kind; surfaces with {x = xo} ⊂ {z = zo} are of the second kind.

Axisymmetric Miura surfaces are in particular invariant by rotation about the
z-axis. Thus, surfaces of the first kind admit a parametrization of the form

φ(x,y) = (ρ(y)cos(αx),ρ(y)sin(αx),z(y)). (12)

By substitution into equations (3), (4) and (8), it is deduced that

ρ

s
=

ρo

so
, ρ

′′ =
4α2ρ

(α2ρ2−4)2 . (13)

The second equation can be integrated once into

z′ =
cosβ

c
=

cosβo

co
; sinβ =

ρ ′

2c∗
, (14)

where β is the angle that the tangent plane makes with the z-axis. Therein, pa-
rameters (ρo,ρ

′
o,θo) are determined by an initial condition, i.e., the initial zigzag.

2More precisely, one reflection and one glide reflection with a vanishingly small translation.
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Class A Class B Class C

Figure 6: Classification of axisymmetric Miura surfaces of the first kind.

It can be argued that a Miura surface of the first kind belongs to one of the
classes A, B and C schematically depicted on Figure 6. As a matter of fact,

• since K < 0, ρ is a convex function of z;
• ρ is bounded since s is;
• ρ cannot admit a horizontal asymptote other than 0 since ρ → ρ∞ as z→±∞

implies κy→ 0 and, by identity (8), s→ 0 and ρ → 0;
• and, if the range of existence of φ cannot be extended beyond a finite value of y

denoted y f , then θ(y = y f ) is equal to either 0 or 2π/3.

Figure 7: Axisymmetric Miura surfaces of the first kind, class A: instances for
varying θo and a vanishing βo.

Therefore,

• ρ can decrease from a maximum value ρM to reach a non-zero minimum ρm and
then increase back to ρM; these profiles correspond to class A. In this case, at
ρ = ρm, β = 0 and θ = θm 6= 0 so that

cosβ

c
=

1
cm

> 1. (15)

• ρ can increase from a null minimum value ρm = 0 to reach a maximum value ρM;
these profiles correspond to class B. Note that ρ ′m 6= 0 since otherwise ρ would be
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uniformly null by Cauchy-Lipschitz theorem. Thus, θm = 0 and βm 6= 0 so that

cosβ

c
= cosβm < 1. (16)

• ρ can increase from a null infimum non-minimum value ρm = 0 to reach a maxi-
mum value ρM; such profiles correspond to class C. Here, as ρ → 0, θ → 0 and
β → 0 so that

cosβ

c
= 1. (17)

Figure 8: Axisymmetric Miura surfaces of the first kind, class B: instances for
varying βo and a constant θo = π/2.

In summary, homotheties and rigid body motions aside, axisymmetric Miura surfaces
of the first kind form a two-parameter family of surfaces parametrized by two angles,
namely βo and θo, and classified into three classes A, B and C depending on whether
cosβo/co is smaller, larger or equal to unity, respectively. Instances of class A are
depicted on Figure 7 for a varying θo > 0 and a vanishing βo. Instances of class
B are depicted on Figure 8 for a varying βo < π/4 and a constant θo = π/2. The
unique surface of class C admits the implicit equation

z =

√
4
3

ρ2
M−ρ2− 2√

3
ρM ln


√

4ρ2
M−3ρ2 +2ρM

ρ

 . (18)

We call it the Miura horn and it is depicted on Figure 9.
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Figure 9: The Miura horn or the
unique axisymmetric Miura surface of
the first kind, class C: (a) global view;
(b) magnified view. Both the surface
(semi-transparent, blue) and its dis-
crete fitting (black edges) are depicted.
The fitting reaches deeper into the tail
with smaller errors as r decreases fur-
ther but in any case fails to account
for the infinite extension of the surface
due to a visible numerical instability.

(a)

(b)

Note that while constructing the fitting of the Miura horn, we have encountered
a numerical instability that forbids the Miura tessellation from reaching deep into
the tail of the horn; see Figure 9b. This constitutes a first example of the stability
issues discussed in subsection 3.4 in connection with elliptic Cauchy problems. We
will comment on another example hereafter.

4.3 Axisymmetric surfaces of the second kind
Axisymmetric Miura surfaces of the second kind admit a parametrization of the
form

φ(x,y) = (ρ(x)cos(αy),ρ(x)sin(αy),z(x)). (19)

By substitution into equations (3), (4) and (8), two conserved quantities emerge:

ρ

c∗
=

ρo

c∗o
, z′/2 = scosβ = so cosβo. (20)

Using similar techniques as before, these surfaces can be classified into two classes
A and B. Surfaces of class A have a minimum non-vanishing angle θ = θm attained
at β = 0 and therefore constitute a one-parameter family of surfaces parametrized
with θm ∈]0,2π/3[. The unique surface of class B has a vanishing infimum θm = 0
and is identical to the Miura ring. Here too, algorithm (1) cannot generate the
full surface out of a single initial zigzag. Instead a portion can be constructed and
then the surface spanned by successive rotations as described for the Miura ring of
Figure 5. Surfaces and partial fittings are visible on Figure 10.

To construct the underlying tessellations, equation (20) needs to be integrated so
as to determine the initial zigzag. Here, closed-form expressions are available and
read

ρ =
√

4c2
ox2 +1, z = 2sox, x ∈ [−s∗o,s

∗
o] (21)
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(a)

(b)

Figure 10: Axisymmetric Miura surfaces of the second kind, class A: (a) instances
for varying θm; (b) magnified view of the tessellation for θm = π/3. The Miura ring,
the unique surface of class B, is realized in the limit θm→ 0+.

once the normalized initial conditions (θo = θm,ρo = 1,ρ ′o = 0,zo = 0) have been
adopted. Last, as θm approaches 0, the numerical instability encountered with the
Miura horn manifests here as well. By comparing the plots of Figure 10a, it is seen
that for θm ≤ π/6, the construction of the tessellation terminates abruptly before
reaching the rhomboidal shape characteristic of algorithm (1) (see Figure 2a).

4.4 Ruled surfaces

Call N and M the number of unit cells in the directions x and y respectively. So
far, numbers N and M increased proportionally to R/r in such a manner that the
constructed Miura surfaces maintained finite extents in the directions x and y of the
order of Nr and Mr respectively. In this subsection, we explore Miura surfaces in
the limit where θ uniformly approaches 0, that is in the regime 0 < Θ≡max(θ)�
2π/3. Accordingly, we let N grow at a faster rate inversely proportional to rΘ/R so
that, as θ approaches 0 and the Miura ori flat-folds, a finite extent in the x direction
is maintained.

It is then appropriate to rescale variable x by carrying the change of variables
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(X ,Y ) = (Θx,y). The fitting problem (10) becomes

Θ2φXX

1−Θ2 〈φx,φx〉/4
+

φYY

〈φY ,φY 〉/4
= 0,

(1−Θ
2 〈φX ,φx〉/4)〈φY ,φY 〉= 1,

〈φX ,φY 〉= 0,

(Θ2 〈φX ,φX 〉 ,〈φY ,φY 〉) ∈]0,3]×]1,4].

(22)

Passing to the limit then yields

φYY = 0, 〈φY ,φY 〉= 1, 〈φX ,φY 〉= 0. (23)

Finally, integrating twice, the parametrization of a Miura surface in the flat-folding
limit turns out to admit the expression

φ(X ,Y ) = Yu(X)+ v(X), (24)

with u unitary and orthogonal to v. These parametrizations cover all ruled surfaces.
We therefore conclude that the set of nearly flat-folded Miura surfaces is exactly the
set of all ruled surfaces.

Figure 11: Fitting a helicoid: The edges of the Miura ori are rendered in black
whereas the helicoid is rendered as a solid opaque surface. The fact that the edges
are visible from both sides of the helicoid reflects the fact that the absolute fitting
error is of the order of r.

As a first example, recall that developable surfaces are ruled surfaces: they all
can be fitted by a nearly-flat folded Miura ori. It is worth mentioning that our earlier
result stating that the plane is the unique developable Miura surface holds as long as
flat-folding is precluded as a singularity. In the present flat-folding limit however,
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all developable surfaces become Miura surfaces. We have already encountered
two nearly developable Miura surfaces while classifying the axisymmetric surfaces
of the first kind. Indeed, looking at Figures 7 and 8, it is easy to see that, as θo
approaches 0, both cylindrical and conical Miura surfaces can be obtained.

The helicoid is a second example of a ruled but non-developable Miura surface.
A helicoid with thread L is spanned in the limit (θo→ 0,r/L→ 0) by a rectilinear
zigzag with a uniform inner angle θo and with teeth rotating around its axis with a
uniform step of 2π/N such that 2sin(θo/2)Nr = L. The result is shown on Figure 11.
The parameters used are such that r/L∼ 1/100 and θo as large3 as π/3.

5 Conclusion
A continuous characterization of the deformation modes of an enriched Miura ori,
or equivalently, of the smooth surfaces that it can fit, has proven advantageous on
many levels. It permitted to predict the existence of various Miura surfaces and in
particular to establish a complete classification of axisymmetric and ruled ones. It
also allowed to gain deeper insight into the discrete kinematics of the tessellation
and to raise a number of issues regarding its stability in connection to the type of
enforced boundary/initial conditions for instance. Not to mention that the present
purely kinematical study is a first step in establishing a continuum mechanical model
of the tessellation that takes into account elasticity effects.

References
[Alessandrini et al. 09] G. Alessandrini, L. Rondi, E. Rosset, and S. Vessella. “The stability

for the Cauchy problem for elliptic equations.” Inverse Probl. 25 (2009), 123004.

[Baverel et al. 12] O. Baverel, J. F. Caron, F. Tayeb, and L. Du Peloux. “Gridshells in
composite materials: Construction of a 300 m2 forum for the solidays’ festival in Paris.”
Struct. Eng. Int. 22 (2012), 408–414.

[Blinn 88] J.F. Blinn. “The world’s largest easter egg and what came out of it.” IEEE Comput.
Graph. Appl. 8 (1988), 16–23.

[Ciarlet 06] P. G. Ciarlet. An introduction to differential geometry with applications to
elasticity. Dordrecht: Springer, 2006.

[Douthe et al. 09] C. Douthe, J. F. Caron, and O. Baverel. “Gridshell in composite materials:
Towards large span shelters.” Eur. J. Environ. Civ. Eng. 13 (2009), 1083–1093.

[Dudte et al. 16] L. H. Dudte, E. Vouga, T. Tachi, and L. Mahadevan. “Programming
curvature using origami tessellations.” Nat. Mater. 15 (2016), 583–588.

[Ghys 11] E. Ghys. “Sur la coupe des vêtements: Variation autour d’un thème de Tcheby-
chev.” L’Enseignement Mathématique 57 (2011), 165–208.
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