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Abstract

In a former paper by the authors [1], the elastic behavior of Cross Laminated Timber (CLT) and timber panels having periodic gaps
between lateral lamellae has been analyzed. A thick plate homogenization scheme based on Finite Elements computations has been
applied. The predicted behavior was in agreement with experimental results. In this paper, simplified closed-form solutions are
derived in order to avoid FE modeling. Both cases of narrow gaps of CLT panels and wide gaps of innovative lightweight panels
are investigated. CLT and timber panels with gaps are modeled as a space frame of beams connected with wooden blocks. The
contribution of both beams and blocks to the panel’s mechanical response is taken into account, leading to closed-form expressions
for predicting the panel’s stiffnesses and maximum longitudinal and rolling shear stresses. The derived closed-form solutions are in
agreement with the reference FE results and they can be used for practical design purposes.
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1. Introduction

Cross Laminated Timber (CLT) has gained importance in
modern timber construction. These engineered timber prod-
ucts are composed of cross-wisely glued wooden layers. The
thick and orthogonal lay-up ensures dimensional stability and
enhanced in-plane and out-of-plane mechanical properties al-
lowing CLT usage as full-size prefabricated floors, walls or
roofs. The prefabrication and the easy-assembling between
panels yield a new modular and fast construction method with
a bio-sourced material. A recent state-of-the-art report [2]
highlighted the sharp increase of CLT production during last
decades, as well as the possibility for this product to compete
against the mineral-based construction materials.

EachCLT layer ismade of lamellae placed side by sidewhich
can be glued or not on the narrow edge side. In the non-gluing
case, lateral gaps are allowed up to 6 mm by the recent Euro-
pean standard requirements for CLT [3] (Figure 1a). Several
studies pointed out the non-negligible influence of these gaps
on the mechanical behavior [4, 5, 6], especially when dealing
with in-plane shear stress [7, 8]. Enlarging the lateral gaps up
to hundreds of millimeters leads to innovative lightweight and
less expensive panels having a regular alternation of lamellae
and voids (Figure 1b). When the voids are filled with insulat-
ing material, the thermal, fire and acoustical efficiency can be
improved. The development of such innovative products is still
limited, especially because of the lack of simplified methods for
predicting their mechanical behavior.

(a)

(b)

Figure 1: (a) CLT panel with lateral narrow gaps up to 6 mm as described in
EN-16351 [3] and (b)innovative lightweight timber panels with wide gaps [1]
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To predict their mechanical behavior, CLT panels and light-
weight timber products have been modeled as thick and periodic
plates in a previous study by the authors [1]. The presence of
the gaps has been taken into account by means of a plate ho-
mogenization scheme. The homogenization procedure links the
strain energy of a unit-cell which is periodic within the panel
with the strain energy of the whole panel, in order to estimate
the homogenized plate stiffnesses. The plate membrane and
bending stiffnesses were obtained imposing unit membrane and
curvature strains to the unit-cell. To derive the plate shear force
stiffness, the Bending-Gradient plate theory for thick plates has
been applied [9, 10, 11, 12] by means of FE computations,
which allow the estimation of the strain energy stored in the
unit-cell and of the corresponding stress. The predicted bend-
ing and shear force stiffnesses, as well as maximum stresses at
failure point, were in agreement with the experimental results
of 4-points bending tests conducted by the authors [13, 1]. The
relative difference between experiments and values predicted
by FE homogenization were lower than 10% and most of the
variability came from the experimental data. Moreover, the pre-
dicted variation of in-plane shear stiffness of CLT as a function
of gaps was globally in agreement with test results of Brandner
et al. [7] with a relative difference between experimental data
lower than 15%. In [1] existing closed-form approaches were
also compared to FE homogenization and test results, show-
ing that only the bending behavior can be predicted with such
simplified approaches, while the homogenization procedure is
needed to estimate the shear force stiffness, the in-plane shear
and torsion stiffness. However, the need of the FE computation
prevents the extension of the thick-plate modelling to practical
cases.

In this paper, the thick-plate homogenization procedure is
applied to timber panels having periodic gaps, in order to obtain
closed-form expressions of stiffnesses and maximum stresses.
The unit-cell is modeled as a space frame of beams connected
each other by means of wooden blocks (Figure 2). Such space
frame can be viewed as a periodic plate [14] and the simplified
geometry of connected beams allows a closed-form estimation
of the unit-cell strain energy. Indeed, the beam equations can
be integrated since they depend only on one coordinate.

The paper is organized as follows: first, the timber panelwith
gaps is modeled as a space frame and the related notations are
introduced in Section 2. In Section 3, the out-of-plane bending
and in-plane shear stiffnesses are derived, while the shear force
stiffness is derived within the subsequent Section 4. Then, Sec-
tion 5 presents the derivation of closed-form solutions for pre-
dicting the maximum longitudinal and out-of-plane shear stress
of CLT floors having gaps. Finally, the comparison between the
obtained closed-form expressions, existing approaches and the
reference FE results are showed in Section 6.

2. CLT and timber panels with gaps as beam space frame

CLT panels and lightweight timber products can be viewed
as a 3D space frame of Timoshenko beams connected each other
with wooden blocks (Figure 2). The blocks represent the glued
parts of upper and lower lamellae, while the beams are the

unglued/free parts of lamellae. The length of the beams being
possibly zero, the use of Timoshenko model instead of Euler
model is required.

z3

z2

z1

z−3 z−2

z−1

x2

x3

Figure 2: Cross section of timber panel with gaps modeled as beam space frame

The space frame of Figure 2 is a reproduction along the two
in-plane directions of elementary unit-cells like Figure 3. Each
unit-cell ismade of N beams connected each otherswithwooden
blocks, where N is the odd number of CLT layers. There are

e2
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s

Figure 3: Periodic unit-cell of timber panel with gaps modeled as a space frame
of beams connected with wooden blocks

Nl longitudinal beams and Nc cross beams, with N = Nl + Nc

and Nl =
N+1

2 , Nc =
N−1

2 . In this paper, L and C stand for
the sets of indices of the longitudinal and cross layers. The
top and bottom beams are always oriented in the longitudinal
direction x1 (Figure 3). The unit-cell has all lamellae with the
same thickness h and width w, while the length of the unit-cell
is b. The position of each beam with respect to the reference
frame of Figure 2 is denoted zi = ih, with i ∈ [− N−1

2 ; N−1
2 ]. The

mirror symmetry of the unit-cell with respect to the mid-plane
x3 = 0 ensures that zi = −z−i . Main notations are summarized
in Table 1.

Each lamella is made of wood whose longitudinal direction
coincides with the beam main axis. Since the annual rings ori-
entation may not be known, wood is assumed to be transversely
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isotropic and the subscripts (L,N ,Z) of wood’s moduli of elas-
ticity stands for the material reference frame [13, 15, 16, 17].
The longitudinal direction is noted L, whereas the normal N and
out of plane Z directions feature the same constitutive behavior
(EN = EZ and GLN = GLZ etc.).

The ith beam local reference frame is (t i, ni, e3) associated
to the local coordinates (yt ,yn,x3), and the elastic energy of a
single beam can be evaluated as:

Ubeam,i =

∫ s

0

1
2

(
r i ·

(
Fi

)−1
· r i + mi ·

(
H i

)−1
· mi

)
dyt (1)

where s is the length of the beamwhile r i andmi are respectively
the resultant forces and moments that describe the beam stress
state. The beam stiffness tensors Fi and H i are:

Fi =
©«

ELS 0 0
0 GLZSn 0
0 0 GLZS3

ª®¬(t i,ni,e3)

(2)

and

H i =
©«

GLZ J 0 0
0 EL In 0
0 0 EL I3

ª®¬(t i,ni,e3)

, (3)

where EL is the Young’s modulus along longitudinal direction,
GLZ the longitudinal shear modulus, S = wh is the section area
of the lamella, Sn = S3 =

5
6wh are the shear areas, In = h3w

12 and
I3 =

w3h
12 are the second moments of inertia and J is the torsion

constant defined as:

J =
wh3

16

(
16
3
− 3.36

h
w

(
1 −

1
12

(
h
w

)4
))
. (4)

Following the approach of [14], the space frame of beams
can be modeled as a periodic plate, and plate stiffnesses can be
estimated by means of a closed-form homogenization procedure
based on the prediction of beams’ strain energy. In addition
to the elastic energy of the beams, the elastic energy related
to the deformation of wooden blocks must also be taken into
account. As the following sections show, the wooden blocks
have beenmodeled as rotational springs to predict themembrane
and bending stiffnesses of the panel and as 3D blocks with a
discrete kinematics to estimate the shear force stiffnesses.

3. Membrane and bending stiffnesses of timber panel

In this section, closed-form solutions for predicting the
membrane and bending stiffnesses of CLT and innovative panels
are derived. The wooden blocks are modeled as springs con-
necting upper and lower beams, deformable only under in-plane
rotations and with a rotational stiffness Kθ (Figure 4). This is to
take into account the torsion-like mechanism between upper and
lower blocks that occurs when the panel is submitted to in-plane
shear [1, 18]. This simplified modeling follows the approach
of several existing experimental and theoretical studies [19, 8].
It allows computing only the stress state of beams having full
length b, while the strain energy of blocks is concentrated in the
springs energy.

αb
n In-plane shearing compliance

of lamellae
Eq. (14)

α∗n Corrected shearing compliance
of lamellae

Eq. (20)

αs
3 Out-of–plane shearing compliance

of lamellae
Eq. (40)

b In-plane size of the unit cell Fig. 3
C Set of indices of cross lamellae Sec. 2
χαβ Plate curvatures Sec. 3
Di j Plate bending stiffness Eq. (9,10)
eαβ Plate membrane strains Sec. 3
EL Wood parallel to the grain Young

modulus
GLZ Wood parallel to the grain shear

modulus
GZN Wood rolling shear modulus
G∗LZ Torsional reduced shear stiffness Eq. (5)
h Lamella’s thickness Fig. 3
In Out-of-plane 2nd moment of

inertia of the lamella
Eq. (3)

I3 In-plane 2nd moment of
inertia of the lamella

Eq. (3)

J Torsion constant of the lamella Eq. (4)
Kθ Rotational stiffness Eq. (6)
L Set of indices of longitudinal lamellae Sec. 2
mi Moment of lamella i Eq. (1)
Mαβ Plate bending moment Sec. 4
N Number of plies Sec. 2
Nl Number of longitudinal plies Sec. 2
Nc Number of cross plies Sec. 2
ϕiα Horizontal slip of block i Fig. 8
ψα Vertical slip of all blocks Fig. 8
Qα Plate shear force Sec. 4
r i Resultant of lamella i Eq. (1)
s Gap’s width between lamellae Fig. 3
S Lamella’s section Eq. (2)
Sn In-plane shear area of the lamella Eq. (2)
S3 Out-of-plane shear area of the lamella Eq. (2)
θi Rotation of lamella i
θext,i Applied relative rotation of lamella i Fig. 6
ui Displacement of lamella i
uext,i Applied relative displacement of

lamella i
Fig. 6

U i Displacement of block i Fig. 8
w Lamella’s width Fig. 3
xi3 Relative out-of-plane coordinate Fig. 8
zi Out-of-plane distance of lamella i Fig. 2

Table 1: Notations

Rotational stiffness. The expression of the rotational stiffness
Kθ has been found in the available literature. Indeed, the me-
chanical behavior of two orthogonally glued wooden lamellae
under relative in-plane rotation has been object of several ex-
perimental and theoretical studies [20, 19]. In particular, Moos-
brugger et al. [8] considered a reduction of the CLT in-plane
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Kθ

(a) (b)
b

Figure 4: Wooden blocks connecting beams modeled as rotational spring de-
formable under in-plane rotation

shear stiffness G∗LZ by the presence of gaps independently from
the number of layers and by a torsion-likemechanism of in-plane
rotation of lamellae (Figure 5) with:

G∗LZ =
GLZ

3Geff

(w
h

)2
, (5)

where Geff =
GLZ+GZN

2 . Therefore, the reduction of in-plane

(i) global shear (ii) torsion-like

Figure 5: Torsion-like mechanism of glued lamellae in CLT from [8]

shear stiffness by the torsion-like mechanism is considered to be
dependent on the aspect-ratio of lamellae w/h but also on rolling
shear modulus of wood, confirming the results of Jeitler [21].
In order to adapt this approach to our case, the rotational spring
stiffness of the connection between two lamellae having volume
hw2 is:

Kθ = hw2G∗LZ =
2GLZw

4

3h(GLZ + GZN )
(6)

Unit-cell problem. The macroscopic membrane and bending
strains of the equivalent plate are imposed to the unit-cell by
means of enforced relative beam displacements uext,i and ro-
tations θext,i , taking into account periodicity conditions. The
applied displacements on beam extremities are equivalent to
those applied in the 3D case on lateral faces of the unit-cell
by Franzoni et al. [1]. When dealing with beams, the energy
is also carried by beams’ rotations [14]. Figure 6 shows the

applied displacements and rotations as function of membrane e
and curvature χ strains. e11 and e22 are axial membrane strains,

Axial membrane and out-of-plane bending loads

x2

x3

x1

x2

x3

x1

In-plane shear and torsion loads


uext, i

2 = b(e22 + z
iχ22)

θext, i1 = −bχ22

uext, i
3 = − b2

2 χ22


uext, i

1 = b(e11 + z
iχ11)

θext, i2 = −χ11

uext, i
3 = − b2

2 χ11

{
uext, i

2 = b(e12 + z
iχ12)

θext, i1 = −bχ12

{
uext, i

1 = b(e12 + z
iχ12)

θext, i2 = bχ12

Figure 6: Membrane and curvature relative displacement of the equivalent
plate applied to a 5-ply unit-cell of a panel (only non-vanishing prescribed
displacements are detailed, cf Appendix A)

χ11 and χ22 are out-of-plane curvatures. These macroscopic
strains are symmetric with respect to a plane of normal e1. The
skew symmetric strains are the in-plane shear strain e12 and the
torsional curvature χ12. The detailed derivation of each beam
stress state and the corresponding elastic energy is presented in
Appendix A.

3.1. Membrane, bending stresses and stiffnesses related to sym-
metric generalized strains
When the unit-cell is submitted to membrane strains e11 and

e22 as well as curvatures strains χ11 and χ22, the resultants and
moments of the beams are directly determined and the rotational
springs are not loaded. The normal resultant forces r it and out-
of-plane moments mi

n of beams are derived from Equations A.9
and A.10 vanishing e12 and χ12. They write in the local beam
reference frame as:

i ∈ L :

{
r it = ELS

(
e11 + zi χ11

)
mi

n = EL In χ11
(7)

and

i ∈ C :

{
r it = ELS

(
e22 + zi χ22

)
mi

n = EL In χ22
(8)
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which are very similar to those found in [14]. The remaining
components of forces and moments vanish.

Averaging the corresponding elastic energy over the unit-
cell surface leads to the following closed-form solution of out-
of-plane bending stiffness along x1-direction D11:

D11 =
NlEL In

b
+

ELS
b

∑
i∈L

z2
i =

ELh3w

24b
(N + 1)(N2 + 2N − 2)

(9)
The result is classical: the bending stiffness D11 is a contribution
of the Nl longitudinal beams bending stiffness EL In and the
transport term related to the position of each longitudinal beam
with respect to the mid-plane of the plate.

Similarly, the bending stiffness along x2-direction D22 as
well as the membrane stiffnesses A11 and A22 are:

D22 =
NcEL In

b
+

ELS
b

∑
i∈C

z2
i =

ELh3w

24b
(N − 1)(N2 − 2N − 2)

(10)
A11 =

NlELS
b

and A22 =
NcELS

b
(11)

Finally, the in-plane and out-of-plane Poisson coupling stiff-
nesses A12 and D12 vanish. This is a consequence of the model-
ing of the unit-cell with beams. Furthermore, in the FE study [1],
it was already observed numerically that these couplings were
extremely small and not reported in details.

3.2. In-plane shear and torsional stiffness
When the unit-cell is submitted to in-plane shear strain e12

and torsion curvature χ12, the resultants and moments of the
beams depend on the unknown in-plane rotations θ0,i

3 of beams
at their connection with rotational springs (yt = 0). They are
derived fromEquationsA.9 andA.10 vanishing e11, e22, χ11 and
χ22. The non-zero components of the resultants and moments
write in the local beam reference frame as:

i ∈ L :


r in =

b
αb
n

[ (
e12 + zi χ12

)
− θ0,i

3

]
mi
t = −GLZ J χ12

mi
3 = r in

(
yt −

b
2

) (12)

and

i ∈ C :


r in =

b
αb
n

[
−

(
e12 + zi χ12

)
− θ0,i

3

]
mi
t = −GLZ J χ12

mi
3 = r in

(
yt −

b
2

) (13)

where:
αb
n =

b
GLZSn

+
b3

12EL I3
, (14)

is the sum of beam bending and shear compliances. It is the
apparent compliance of in-plane bending of beams under uni-
form shear force. Therefore the derivation of in-plane shear A33
and torsional D33 stiffnesses requires the determination of all
rotations θ0,i

3 which load the rotational springs.
There are no external beam loadings but only imposed dis-

placements and rotations, hence the unit-cell elastic energy is

also the unit-cell potential energy. Taking into account the con-
tribution of rotational springs, the total potential energy of the
unit-cell for the membrane and curvature loadings write as:

W thin =

N−1
2∑

i=− N−1
2

Ubeam,i
(
θ0,i

3

)
+

N−3
2∑

j=− N−1
2

1
2

Kθ
(
θ

0, j+1
3 − θ

0, j
3

)2
, (15)

where Ubeam,i
(
θ0,i

3

)
is defined in Equation (A.16).

Minimizing the potential energywith respect to the unknown
kinematic variables allows their explicit determination through
a linear system of N equations whose solution may not write in
a compact form. Nevertheless, for a 3-ply there are only three
variables and closed-form expressions of the in-plane shear A33
and torsional D33 stiffnesses can be simply found:

A3-ply
33 =

4Kθ
3α∗nKθ + b2 (16)

and
D3-ply

33 =
3GLZ J

2b
+

h2Kθ
α∗nKθ + b2 . (17)

where α∗n is a corrected apparent stiffness which will be dis-
cussed below. Furthermore, simplified general expressions of
in-plane shear and torsional stiffnesses can be derived as the
sum of compliances of the two limit cases when the domi-
nant regime is either the rotational spring regime or the slender
beam regime. In other words, assuming either Kθ � 1/αn
or Kθ � 1/αn in the potential energy (Equation (15)) means
finding the limit cases when the interfaces between beams are
clamped connections (wide gaps, Figure 7a) or when the beams
are rigid and only the blocks contribute to the energy (narrow
gaps, Figure 7b). Taking the sum of the compliances of the limit

(a) (b)

Figure 7: FE unit-cell under in-plane shear loading [1] for two limit cases:
(a) slender beam regime at wide gaps (Kθ � 1/αn) and (b) rotational spring
regime at narrow gaps (Kθ � 1/αn)

cases leads to the following closed-form solutions for predicting
the in-plane shear and torsional stiffnesses of timber panels with
gaps:

AN -ply
33 = (N − 1)

(
b2

2Kθ
+

2Nα∗n
N + 1

)−1

(18)

DN -ply
33 =

NGLZ J
2b

+
Nh2(N − 1)

6

(
b2

Kθ (N − 2)
+

4α∗n
N + 1

)−1

(19)
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Further analyses not reported in this paper pointed out that
the relative error of the simplified closed-form solutions (18)
and (19) compared to the exact closed-form solutions has a
maximum value of 8% and in most cases below 3%.

The modeled rotational spring takes into account the in-
plane rotation mechanism between upper and lower blocks but
not the gross in-plane shear of blocks. This contribution can be
taken into account introducing a correction factor on the beam
length b. Indeed, when Kθ = ∞ and b = w, Equations (18)
and (19) should return the in-plane shear and torsional stiffness
of a massive CLT panel having glued lateral lamellae. This is
possible when introducing the corrected apparent beam compli-
ance:

α∗n =
24b − 19w
20GLZwh

+
(b − w)3

ELw3h
. (20)

The derivation of the correction of the beam compliance α∗n is
detailed in Appendix B.

4. Shear force stiffnesses of timber panel

It was demonstrated that for periodic plates in general,
the relevant equivalent thick plate model is not the classical
Reissner-Mindlin model but its generalization, the Bending-
Gradient plate model [9, 14, 12]. This more comprehensive
model was applied to timber panels with gaps in [1] by means
of finite elements computations. In this specific case, it ap-
peared that it is possible to derive a Reissner-Mindlin model
with a reasonable approximation, except for 3-ply innovative
panels with wide gaps. This is done, assuming that the plate
is under uni-axial bending in each of its main directions. In
such case, the shear forces Q1 and Q2 derive as follows from the
bending moment: Q1 = M11,1, Q2 = M22,2. Since the plate is
orthotropic, the Reissner-Mindlin shear force compliance f RM11
is associated to Q1 shear force occurring in the plane of nor-
mal e1, while the shear force compliance f RM22 is related to Q2
occurring in the plane of normal e2 and the coupling modulus
f RM12 vanish.

In order to derive a closed-form solution, the complete unit-
cell of Figure 3 is considered. This requires imposing a shear
kinematics to the whole blocks and deriving their contribution
to the elastic energy. More precisely, the kinematics of each
block will be described by a finite number of discrete degrees
of freedom and be made compatible with the one of adjacent
blocks as well as the kinematics of the connected beams. Once
the kinematics of the unit-cell is defined, the loading corre-
sponding to shear forces is introduced. Then, the stress state of
the unit-cell under shear forces as well as the Reissner-Mindlin
compliance moduli are presented.

4.1. Kinematics of the unit-cell
4.1.1. Out-of-plane shear kinematics of wooden blocks and re-

lated energy
An out-of-plane shear kinematics is imposed to blocks con-

stituting the thick interface between a longitudinal lamella and a
cross lamella. An example is presented in Figure 8 for the “1-3”

shear direction (plane x2 = 0), where the upper-block is a half
cross lamella and the lower-block is a half longitudinal lamella.

The shear kinematics is a superposition of horizontal and
vertical slips of wooden blocks. The displacement field as-
sociated to such kinematics showed in Figure 8 writes for the
longitudinal block as:

u =


u1 = Ui

1 + xi3ϕ
i
2,

u2 = 0,
u3 = Ui

3 − ψ2x1,

(21)

and for the cross block:

u =


u1 = Ui+1

1 + xi+1
3 φi,i+1,

u2 = 0,
u3 = Ui+1

3 − ψ2x1,

(22)

whereU i are the displacements of the blocks at x1 = x2 = 0 and
x3 = zi and xi3 = x3 − zi is the local out-of-plane coordinate.
The slip coefficient φi,i+1

2 in Figure 8 is to be determined and ψ2
is a slip coefficient representing the inclination of all blocks.

Imposing the continuity of vertical displacements u3 at the
interface enforces Ui

3 = Ui+1
3 , meaning that a relative out-of-

plane displacement between blocks is not permitted. Imposing
the continuity of horizontal displacement field u1 at blocks in-
terface, sets the unknown slip coefficient φi,i+1

2 :
h
2 ϕ

i
2 +Ui

1 =
h
2 φ

i,i+1
2 +Ui+1

1 . (23)

Now the out-of-plane shear strain εl13 of the longitudinal block
can be evaluated as:

2εl13 = ϕ
i
2 − ψ2 (24)

and for the cross block:

2εc13 = φ
i,i+1
2 − ψ2 =

2
h (U

i+1
1 −Ui

1) − ψ2 − ϕ
i
2 (25)

These formulas remain unchanged for an interface where
the lower block is a cross lamella and the upper block is a
longitudinal lamella provided the following definition for the
rotation of cross blocks is introduced:

ϕi2 ≡ ψ2 for i ∈ C, (26)

where it becomes implicit that all rotations ϕi2 of cross blocks
are identical.

Once the out-of-plane shear strains along shear direction “1-
3” are estimated, the interface elastic energy can be evaluated as
the sum of half volume strain energy of longitudinal and cross
blocks:

W (i,i+1),ε13 =
1
2

hw2

2

[
GLZ

(
2εl13

)2
+ GZN

(
2εc13

)2
]

(27)

which becomes, substituting the shear strains in Equations (25)
and (24):

W (i,i+1),ε13 =
1
2

hw2

2

[
GLZ

(
ϕi+1

2 − ϕi2

)2

+GZN

(
2
h

(
Ui+1

1 −Ui
1

)
− ϕi+1

2 − ϕi2

)2
] (28)
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xi3ϕ
i
2

−x1ψ2

longi. block

xi+1
3 φi,i+1

cross block

−x1ψ2

Ui
1

Ui+1
1

Ui
3

Ui+1
3

x1

x3

w

xi3
x1

xi+1
3

x1

Figure 8: Out-of-plane shear kinematics in plane x2 = 0 of the thick interface between lamellae (ψ2 < 0)

The same derivation of out-of-plane shear strain and associated
energy can be performed for the shear direction “2-3”, leading
to:

W (i,i+1),ε23 =
1
2

hw2

2

[
GLZ

(
ϕi+1

1 − ϕi1

)2

+GZN

(
2
h

(
Ui+1

2 −Ui
2

)
+ ϕi+1

1 + ϕi1

)2
] (29)

The orthotropy symmetry of CLT with gaps ensures the uncou-
pling between out-of-plane shear effects occurring in the x2 = 0
plane and in the x1 = 0 plane, and hence it is possible to sum
the shear strain energies derived for each shear plane.

Note that the contributions of out-of-plane shear strain εl13 in
the longitudinal blocks at top and bottom free faces of the unit-
cell are considered to be null, since they involve free edges that
do not carry much strain energy. Even if this hypothesis is not
strictly kinematically compatible, it is a better approximation
which is also made in the shear analogy method [22].

4.1.2. Beam kinematics and periodicity conditions
In Section 3, blocks were reduced to a rotational spring.

Here, because of the in-plane size of the blocks, the total length
of the beams is s = b − w. With Figure 8 as reference, the
displacement u of the longitudinal block must be continuous at
x1 = ±w/2 with the kinematics of the longitudinal beam ui .
For instance, this enforces for the out-of-plane displacement ui3:

u0,i
3 = Ui

3 +
w

2
ψ2 and us,i

3 = Ui
3 −

w

2
ψ2 (30)

where u0,i
j = uij(yt = 0) is the displacement of beam i at its first

extremity and us,i
j = uij(yt = s) is the displacement at its final

extremity. Similar arguments leads to the following periodicity
contraints between the end displacements of the beams:

us,i − u0,i = wt i × ψ with ψ =
©«
ψ1
ψ2
0

ª®¬ (31)

In order to ensure rotation continuity between blocks and beams,
the rotation of each block ϕi must equal the beam’s rotation at
both extremities:

θ0,i = ϕi and θs,i = ϕi, (32)

leading to the following periodicity constraints on the end rota-
tions of the beams:

θ0,i − θs,i = 0 (33)

4.2. The unit-cell loading
The periodic homogenization procedure considers, in the

3D continuum case, the stress in equilibrium with a body force
deriving from the variations of the bending moment [9]. Ac-
cording to Lebée and Sab [14], in the case of beam space frame,
this body force becomes beam distributed forces qi and torques
li . These loads derive from the stress state associated to the
curvatures χ found in Equation (7). The following beam dis-
tributed forces qi for longitudinal and cross beams can be found
as a function of the shear forces Q1 and Q2 :

qi =
©«
ziELSD−1

11 Q1
0
0

ª®¬(t i,ni,e3)

for i ∈ L (34)

and

qi =
©«
ziELSD−1

22 Q2
0
0

ª®¬(t i,ni,e3)

for i ∈ C (35)

Moreover, the distributed torques li applied on each beam are
derived as: li = ls/2,i + t i × qi(yt − s/2), where:

ls/2,i =
©«

0
EL InD−1

11 Q1
0

ª®¬(t i,ni,e3)

for i ∈ L (36)

and

ls/2,i =
©«

0
EL InD−1

22 Q2
0

ª®¬(t i,ni,e3)

for i ∈ C (37)
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Figure 9: Unit loads for the thick space frame analysis on a 5-ply unit-cell

Figure 9 shows the applied loads to a unit-cell of a panel.
The wooden blocks are also submitted to concentrated forces
wqi and torques wls/2,i , obtained integrating expressions (34)
and (36) over the length w of blocks.

The action of the loadings qi and li is analogous to Jouravski
formula for the shear stress in thin-walled beams [23] and may
be globally understood as follows. The longitudinal load qi

t

generates a resultant force in the longitudinal direction applied
by each beam to its corresponding block. This resultant being
different for each beam, the cross block between two longitudinal
beam is submitted to a horizontal shearing force.

4.3. Stress state in the unit-cell and shear force compliance
The procedure for determining the stress state of beams and

the related elastic energywhen the unit-cell is submitted to shear
forces is very similar to the procedure introduced in Section 3
and detailed in Appendix A for membrane and curvature load-
ings. The only differences are the presence of external beam
loadings qi and li , the modified periodicity conditions (Equa-
tions (31) and (33)) and fewer symmetry conditions. The stress
state of each beam depends on the out-of-plane beam rotations
θ0,i

1 and θ0,i
2 as well as the global inclinations of blocks ψα:

i ∈ L :


r it = ziELSD−1

11 Q1
(
yt −

s
2
)

r i3 =
1
αs

3

(
wψ2 + sθ0,i

2 +Q1
s3

12D11

)
mi

n = −
(
r i3 + D−1

11 EL InQ1

) (
yt −

s
2
) (38)

and

i ∈ C :


r it = ziELSD−1

22 Q2
(
yt −

s
2
)

r i3 =
1
αs

3

(
−wψ1 − sθ0,i

1 +Q2
s3

12D22

)
mi

n = −
(
r i3 + D−1

22 EL InQ2

) (
yt −

s
2
) (39)

where:
αs

3 =
s

GLZS3
+

s3

12EL In
, (40)

and the remaining terms of the stress state vanish.

Since the obtained shear strain energy of blocks is a function
of out-of-plane rotations θ0,i

α , global inclinations ψα and in-
plane displacements Ui

α (Equations (28) and (29)), the closed-
form expression of the unit-cell strain energy under the shear
forces depends on the set of 3N + 2 kinematic variables (θi1 for
i ∈ C, θi2 for i ∈ L, Ui

1, Ui
2, ψ1, ψ2). As in Section 3.2, the

unknown variables can be determined minimizing the potential
energy stored in the unit-cell. Minimizing first with respect to
the displacements Ui

α and setting U0
α = 0 for avoiding a rigid

translation of the unit-cell, leads to the direct determination of
2N in-plane displacements [24]. The solution of the remaining
linear system of N + 2 equations may not write in a compact
form. Hence, in order to simplify the expression of the strain
energy, the rotations of beams of the same type (longitudinal
or cross) are considered to be equal, leading to only two beam
rotations and two inclinations within a unit-cell: θl1, θ

c
2 , ψ1 and

ψ2. FE analyses revealed that this hypothesis is a reasonable
approximation of the actual complex behavior of the unit-cell
under out-of-plane shear strains. Then, the minimization with
respect to the four unknown rotations finally yields the closed-
form expression of all kinematic variables and therefore of shear
force stiffnesses.

The following expression of f RM11 is obtained from the elastic
energy:

f RM11 =
2αs

3
N + 1

+
b2(N2 + 2N − 3)

2hw2(N2 + 2N − 2)2
×[ [

(b − 2w)(N2 + 2N − 2) − b
]2

b2GLZ (N − 1)2(N + 3)
+

6
5GZN

N2 + 2N + 5
N + 1

]
(41)

The first term is related to the bending ans shear flexibility of
beams, the second is associated to the longitudinal shear of
blocks GLZ while the third term is the rolling shear compliance
GZN of blocks. Similarly, the expression of the shear force
compliance f RM22 related to shear force Q2 is:

f RM22 =
2αs

3
N − 1

+
b2(N2 − 2N − 3)

2hw2(N2 − 2N − 2)2
×[ [

(b − 2w)(N2 − 2N − 2) − b
]2

b2GLZ (N2 − 1)(N − 3)
+

6
5GZN

N2 − 2N + 5
N − 1

]
(42)

When b = w and the CLT has no gaps, the first term 2αs
3

N+1 related
to beams vanishes and Equations (41) and (42) return the shear
force compliances of a CLT having glued narrow edges.

5. Maximum longitudinal and rolling shear stress

When dealing with the out-of-plane behavior of CLT and
innovative timber panels, the governing failure modes are longi-
tudinal tensile failures of bottom layer and rolling shear failure
of cross layer. This was observed during many experimental
investigation of the literature [25, 26, 4, 27, 13]. In the previous
study by the authors [1], the tensile and rolling shear stresses at
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failure point of tested timber floors with wide gaps in 4-points
bending have been predicted with the FE homogenization and
were in agreement with mean strength values from the litera-
ture. In this Section, closed-form solutions for estimating the
maximum longitudinal and rolling shear stresses are derived.

5.1. Maximum longitudinal stress
The maximum stress related to bending in direction x1 oc-

curs in the top and bottom longitudinal lamellae. Equation (7)
gives the stress state of beams as function of themembrane strain
and plate curvature. From the bending constitutive equation, the
curvature may be written as function of the plate bending mo-
ment as: χ11 =

M11
D11

. Hence the non-vanishing components of
the resultant and moment in the top and bottom beams write as
function of the plate bending moment as M11 as:

r
± N−1

2
t = ±

N − 1
2

ELhS
M11
D11

and m
± N−1

2
n = EL In

M11
D11

(43)

Finally, the longitudinal stress in the top and bottom beam may
be recovered from the traction resultant and bending moment
from Navier equation:

σ11 =
r
± N−1

2
t

S
+ x
± N−1

2
3

m
± N−1

2
n

In
(44)

Combining these equations leads to the following expression of
extremal longitudinal stress :

σextr.
11 = ±

12bN M11

wh2(N + 1)(N2 + 2N − 2)
(45)

Note that the plate bending moment M11 is per unit length and
therefore is normalized over the panel’s width.

5.2. Maximum rolling shear stress
The mean rolling shear stress in cross blocks can be esti-

mated as σi
13 =

V i

w2 , where V i is the shearing force in direction
x1 on the considered wooden block. This force can be obtained
from the equilibrium of forces showed in Figure 10. The plate

V ie1

qi
t e1

x3

x1

Figure 10: Shearing forceV i from the equilibrium along x1 direction

shear force loadings qi
t are axial distributed forces per unit-

length and their resultant applied on the longitudinal block has
to be in equilibrium with the shearing force V i . Therefore sub-
stituting the closed-form expression of qi

t from Equation (34)
leads to:

V i =
whbELQ1

D11

∑
j≤i−1
j∈L

z j, (46)

where the partial sum operates only on longitudinal beams.
The maximum shearing force is obtained when i represents the
position of the cross block closest to the mid-plane of the cross
section. The corresponding average rolling shear stress in the
most sheared cross block writes as:

σextr.
13 =

24
⌊
N+2

4
⌋2

b2Q1

hw2(N + 1)(N2 + 2N − 2)
(47)

where bxc denotes the integer value of x.

6. Comparison

In this Section, the elastic behavior predicted by closed-form
solutions is compared with the reference behavior predicted
by the numerical homogenization [1] and existing simplified
approaches. The derived closed-form expression for the bending
stiffness is similar to the volume fraction approach already
presented in [1]. This leads to the same conclusions which are
not repeated here. The focus is given first on the in-plane shear
and the torsion stiffness. Finally, the shear force stiffness as well
as the extremal stress predictions are presented.

Regarding the plate stiffnesses, the results of each method
are normalized with the stiffness of a CLT panel with glued
narrow edges predicted by the FE method, in order to show the
reduction of stiffness as a function of gaps.

6.1. In-plane shear and torsion stiffness
The comparison between Equations (18) and (19) predicting

the in-plane shear and torsional stiffness and FE homogenization
results from [1] is plotted in Figure 11 and 12 for different
panel’s lay-ups. The current approach from the working draft
of CLT design section in the revised Eurocode 5 1-1 [28] and
the effective modulus suggested by [8] are compared as well.

The simplified closed-form solution (18) for in-plane shear
stiffness returns a very good agreement with the reference nu-
merical results. Since Moosbrugger et al. [8] based their ap-
proach on a representative CLT sub-element having an infinite
number of layers, such approach overestimates the in-plane shear
stiffness for 3-ply and 5-ply, while is more in agreement with
the 7-ply results.

Dealing with the torsional stiffness (19), the derived closed-
form expression are in good agreement with the reference behav-
ior for timber panels with wide gaps made of lamellae having
a small aspect ratio. When the the aspect ratio is large, the
predicted torsional stiffness with all closed-form expressions
deviates from the numerical results. For narrow gaps the over-
estimation of the stiffness remains acceptable, while for wide
gaps the torsional stiffness is significantly underestimated. A
possible explanation of this underestimation could be that the
torsional warping of thin lamellae is prevented when they are
glued together, leading to a higher global torsional stiffness than
expected. Indeed, the closed-form approach assumes free tor-
sion warping of lamellae.

The current approach of the working draft on CLT design
of the new version of Eurocode 5 1-1 is based on the approach
fromMoosbrugger et al. [8], introducing FEfitting parameters to
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take into account a finite number of layers [18, 29]. This method
gives a single value of reduced stiffnesses due to unglued lateral
lamellae, neglecting the influence of gaps up to 6 mm. As
Figure 11 and 12 show, the narrow gaps have a non-negligible
influence of the reduction of CLT in-plane stiffnesses and may
lead to a 20% drop of the predicted stiffness. In practice, this
drop may be not so severe since, 6 mm is the maximum admitted
length of gaps by [3] and does not reflect the average spacing.
Another mitigating effect is the filling of gaps with glue during
the pressing of layers [7], increasing so the in-plane rigidity
of the panel. The closed-form solutions presented here have
the advantage of being conservative and extended to innovative
panels with wide gaps.

6.2. Shear force stiffness
In Figure 13, the reduction of the shear force stiffness pre-

dicted with the closed-form expression (41) and the numerical
homogenization results are compared for different lay-ups.

At narrow gaps, all closed-form solutions are almost super-
imposed showing no dependency from the lamella’s aspect ratio
w/h, while the numerical homogenization shows dependency.
This is because the out-of-plane shear of lamellae having lateral
free edges leads to additional stresses perpendicular to the grain
which are dependent on the lamella’s aspect ratio. These effects
are well predicted by the FEM modeling but they are not taken
into account in the present closed-form approach. Introducing
a modified rolling shear modulus depending on the lamellae
aspect ratio would improve the prediction.

Furthermore, while increasing the number of layers, pro-
gressive overestimation of the shear force stiffness is observed,
especially at narrow gaps. This derives from the kinematic
hypothesis of equal rotations of blocks having the same orienta-
tion made in Section 4.3. For the 3-ply lay-up such hypothesis
is trivially satisfied. However, the more the number of lay-
ers increases, the more this hypothesis deviates from the actual
kinematics. For 5-ply and 7-ply, the closed-form expression still
returns an acceptable approximation of the reference behavior.

Globally, the derived closed-form solution for predicting the
shear force compliance of CLT and innovative panels are in good
agreement with the reference numerical results at both narrow
and wide gaps. On the contrary, the simplified approach of
volume fraction strongly overestimates the shear force stiffness,
especially at wide gaps.

6.3. Maximum longitudinal and rolling shear stresses
The suggested closed-form expressions (45) and (47) for

predicting the maximum longitudinal and rolling shear stresses
in CLT and innovative panels under out-of-plane loads are com-
pared in this section to the FE stresses found with the numerical
homogenization [1]. Dealing with the longitudinal stress, there
are no stress concentration [1] and therefore the maximum value
at the top or bottom lamellae can be directly identified. In con-
trast, the rolling shear stress shows stress concentration due to
the presence of free edges [30, 1]. Figure 14 shows the dis-
tribution of the σ13 shear stress in the glued area of the 7-ply
innovative panel from FE computations. Only half width of the
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Figure 14: Distribution of rolling shear stress in the central lamella of a 7-ply
(w = 100 mm, h = 30 mm)

lamellae is showed. The maximum value of rolling shear stress
is numerically evaluated at the central point A of the lamella
closest to neutral axis of the panel (Figure 14).

Figures 15 presents the relative difference between the nu-
merical and closed-formmaximum stresses as a function of gaps
and for different lay-ups. The relative difference is defined as:

δ =
σmax, Num − σmax, Closed

σmax, Num (48)

In all figures, the relative distance does not seem fully smooth.
As the closed-form formula are regular, these rather small am-
plitude oscillations come from the numerical discrepancy of the
FE simulations. Indeed, contrary to stiffnesses which are av-
eraged quantities in the homogenization procedure, stresses are
local data more sensitive to the FE mesh.

The closed-form prediction of maximum longitudinal stress
returns a very good agreement with reference numerical results,
showing relative difference between 0% and 4%. In particular,
for a 3-ply, the relative difference is very low, close to 1%. For
the 7-ply configuration, the closed-form prediction of maximum
longitudinal stress can reach up to 4% of deviation from the FE
reference.

For both 3-ply and 7-ply lay-ups, the closed-form predic-
tion of maximum rolling shear stress is generally overestimated
between 4% and 10%. However, in the case of thick lamellae
having narrow gaps the rolling shear stress is underestimated of
about 4%. This is because the free narrow edge generates rather
non-uniform stress distributions especially when the aspect ratio
is small.

Globally, the obtained relative difference between -4% and
+10% is an acceptable approximation, considering the simplic-
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Figure 15: Relative difference δ between numerical and closed-form maximum longitudinal and rolling shear stresses in 7-ply (top) and 3-ply (bottom) panels for
w/h = 3.33 (left) and w/h = 10 (right)

ity of use of a closed-form solution compared to FE homoge-
nization. The prediction of longitudinal stress is accurate, while
themaximum rolling shear stresses can be predictedwith a slight
overestimation but less than 10%, that is, from an engineering
point of view, on the safe side but not too conservative.

7. Conclusion

In this paper, closed-form solutions have been derived for
predicting the elastic mechanical behavior of CLT panels and
innovative timber products with wide gaps. A Reissner-Mindlin
homogenization scheme has been applied to a simplified geom-
etry of a periodic unit-cell made of beams connected by means
of wooden blocks.

The final closed-form expressions for predicting bending,
in-plane shear, torsional and shear force stiffnesses have been
compared to the numerical homogenization. The bending stiff-
ness expression is equivalent to theClassical Lamination Theory
with volume fractions already compared in [1].

The suggested closed-form solution for the in-plane shear
stiffness is in good agreement with numerical results and takes
explicitly into account the number of lamellaewithout numerical
fitting. Furthermore, it gives a prediction of in-plane shear and
torsion stiffnesses similar to the method currently considered in
the working draft for CLT design in Eurocode 5 [28]. When the
gaps between lamellae are large, the present formulas improve
these predictions.

The obtained expression of shear force compliance is based
on a simplified hypothesis on the shear kinematics of the unit-
cell. For the 3-ply lay-up such hypothesis is satisfied and the
closed-form solution for the 3-ply shear force stiffness is close
to numerical results. Dealing with 5-ply and 7-ply, the closed-
form expression still returns an acceptable approximation of the
reference shear force stiffness. Finally, the obtained closed-form
expressions for estimating themaximum longitudinal and rolling
shear stress acting on CLT floors with gaps show a relative
distance from the reference FE results between -4% and +10%,
which is a good approximation.

The simplified expressions derived in this study can be used
for predicting the elastic behavior of CLT and innovative panels
with gaps in practical applications which require a thick plate
model and may be used, for instance, for estimating the plate
buckling strength of innovative panels [31].

Appendix A. Derivation of beam stress and energy

The beam constitutive equations for translations ui and ro-
tations θi fields are:

r i = Fi ·

(
dui

dyt + t i × θi
)

mi = H i · dθ
i

dyt

(A.1)

where r i and mi are respectively beams’ resultant forces and
bending moments that describe the beam stress state. The beam
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equilibrium equations are:{
dr i
dyt + qi = 0
dmi

dyt + t i × r i + li = 0
(A.2)

where qi and li are distributed forces and torques respectively.
In order to derive the bending and membrane stiffnesses of

the panel, the loads consist in imposed relative displacements
and rotations taking into account periodicity conditions uext,i

and θext,i (see Figure 5 and [14]). For longitudinal beams i ∈ L,
this writes as:

ub,i − u0,i = uext,i =
©«
b(e11 + zi χ11)
b(e12 + zi χ12)
−b2

2 χ11

ª®¬(e1,e2,e3)

(A.3)

θb,i − θ0,i = θext,i =
©«
−bχ12
bχ11

0

ª®¬(e1,e2,e3)

(A.4)

where u0,i = ui(yt = 0) and ub,i = ui(yt = b) and the same for
θi . For cross beams i ∈ C, this writes as:

ub,i − u0,i = uext,i =
©«
b(e12 + zi χ12)
b(e22 + zi χ22)
−b2

2 χ22

ª®¬(e1,e2,e3)

(A.5)

and

θb,i − θ0,i = θext,i =
©«
−bχ22
bχ12

0

ª®¬(e1,e2,e3)

(A.6)

As only relative displacements are enforced between beams’
extremities, the rigid motion of the unit cell needs also to be
prevented. Periodicity conditions prevent the 3 rigid rotations
and only 3 rigid translations needs to be restrained eventually.

Since there are no external beam loads qi or li , integrating
Equations A.2 leads to constant resultants and linear moments:

r i = r0,i mi = mb/2,i −

(
yt −

b
2

)
t i × r0,i (A.7)

where r0,i = r i(yt = 0) and mb/2,i = mi(yt = b/2) are integra-
tion constants. Substituting Equations A.7 into the constitutive
equations A.1 and integrating from yt = 0 yields:

θi − θ0,i =
(
H i

)−1
·

(
ytm

b/2,i +
yt

2
(yt − b) t i × r0,i

)
(A.8)

Rewriting the above expression for yt = b yields the left term
equal to θi(b) − θi(0). This difference is equal to the imposed
rotation field θext,i (Equations A.3 and A.5). Therefore mb/2,i

writes as:
mb/2,i =

H i · θext,i

b
(A.9)

The same procedure can be applied, substituting the expression
of θi found in Equation A.8 into the constitutive equation of
displacements. This leads to the following expression for r0,i:

r0,i = Pi ·

[
uext,i + t i ×

(
bθ0,i + b

2 θ
ext,i

)]
(A.10)

where the operator Pi is, in the beam’s reference frame:

Pi =
©«
(ELS)−1 0 0

0 αn 0
0 0 α3

ª®¬(t i,ni,e3)

(A.11)

with:
αn =

b
GLZSn

+
b3

12EL I3
(A.12)

and
α3 =

b
GLZS3

+
b3

12EL In
. (A.13)

Furthermore, from symmetry considerations regarding specif-
ically the membrane and curvature loadings, it is possible to
prove that:

u0,i
1 = u0,i

2 = u0,i
3 = θ

0,i
1 = θ

0,i
2 = 0. (A.14)

Hence the only remaining unknowns are:

θ0,i = θ0,i
3 e3. (A.15)

Now that the resultant forces and moments of beams are de-
termined, it is possible to write the elastic energy of each beam i
(Equation 1) as function of the applied relative displacements
uext,i and rotations θext,i as well as the unknown rotations θ0,i

3 :

Ubeam,i
(
θ0,i

3

)
=

1
2

{[
uext,i + t i ×

(
θ0,ib + b

2 θ
ext,i

)]
· Pi

·

[
uext,i + t i ×

(
θ0,ib + b

2 θ
ext,i

)]
+

[
1
b

t
θext,i · H i · θext,i

]}
.

(A.16)

Appendix B. Correction of the beam length for in-plane
shear and torsional stiffness

When Kθ = ∞ and b = w, Equation (18) has to return the in-
plane shear stiffness of a massive CLT panel without lateral gaps
A33 = 2NhGLZ . This is possible introducing a correction x over
the beam length. Furthermore, since the term related to in-plane
bending (b−w)

3

12EI3
has to vanish when the lateral lamellae are glued

(b = w), the beam length under in-plane bending is set at b−w.
The modified beam compliance α∗n is α∗n = b−x

GLZS2
+
(b−w)3

12EL I2
and

the relation to satisfy can be written as:(
2N w−x

GLZS2

N2 − 1

)−1

= 2GLZNh (B.1)

where the left term is Equation (18) substituting Kθ = ∞ and
b = w. Considering a large number of layers (N = ∞) in order
to overcome the influence of upper and lower free edges, one
can find that the correction on the beam length under in plane
shear is x = 19w/24. The same correction factor can be found
applying the same procedure to Equation (19) for the torsion
stiffness. Finally, the corrected value α∗n =

b−19w/24
GLZ5wh/6 +

(b−w)3

ELw3h
may be used in Equations (18) and (19).

15



References
[1] L. Franzoni, A. Lebée, F. Lyon, G. Forêt, Elastic behavior of Cross Lam-

inated Timber and timber panels with regular gaps: Thick-plate modeling
and experimental validation, Engineering Structures 141 (2017) 402–416.

[2] R. Brandner, G. Flatscher, A. Ringhofer, G. Schickhofer, A. Thiel, Cross
Laminated Timber (CLT): overview and development, European Journal
of Wood and Wood Products 74 (2016) 331–351.

[3] EN-16351, Timber Structures: Cross Laminated Timber, requirements,
European Committee for Standardization, CEN, Bruxelles, Belgium,
2016.

[4] G. Hochreiner, J. Füssl, J. Eberhardsteiner, Cross Laminated Timber
plates subjected to concentrated loading. Experimental identification of
failure mechanisms, Strain 50 (2013) 68–71.

[5] E. I. A. Flores, K. Saavedra, J. Hinojosa, Y. Chandra, R. Das, Multi-scale
modelling of rolling shear failure in cross-laminated timber structures by
homogenisation and cohesive zonemodels, International Journal of Solids
and Structures 81 (2016) 219–232.

[6] L. Franzoni, A. Lebée, F. Lyon, G. Forêt, Influence of orientation and
number of layers on the elastic response and failure modes on CLT floors:
modeling and parameter studies, European Journal of Wood and Wood
Products (2016).

[7] R. Brandner, P. Dietsch, J. Droscher, M. Shulte-Wrede, H. Kreuzinger,
M. Sieder, G. Schickhofer, S.Winter, Shear properties of Cross Laminated
Timber (CLT) under in-plane load: test configuration and experimental
study, in: Proceedings of the 2nd International Network on Timber
Engineering Research meeting.

[8] T. Moosbrugger, W. Guggenberger, T. Bogensperger, Cross Laminated
Timber wall segments under homogeneous shear with and without open-
ings, in: Proceedings of the 9thWorld Conference on Timber Engineering.

[9] A. Lebée, K. Sab, A Bending-Gradient model for thick plates. Part I:
Theory, International Journal of Solids and Structures 48 (2011) 2878–
2888.

[10] A. Lebée, K. Sab, A Bending-Gradient model for thick plates, Part II:
Closed-form solutions for cylindrical bending of laminates, International
Journal of Solids and Structures 48 (2011) 2889–2901.

[11] A. Lebée, K. Sab, Justification of the Bending-Gradient Theory Through
Asymptotic Expansions, in: H. Altenbach, S. Forest, A. Krivtsov (Eds.),
Generalized Continua as Models for Materials, Springer-Verlag Berlin
Heidelberg, 2013, pp. 217–236.

[12] K. Sab, A. Lebée, Homogenization of Thick and Heterogeneous Plates,
Wiley-ISTE, 2015.

[13] L. Franzoni, A. Lebée, F. Lyon, G. Forêt, Bending behavior of regularly
spaced CLT panels, in: WCTE 2016 - World Conference on Timber
Engineering.

[14] A. Lebée, K. Sab, Homogenization of a space frame as a thick plate:
Application of the Bending-Gradient theory to a beam lattice, Computers
& Structures 127 (2013) 88–101.

[15] L. Franzoni, A. Lebée, G. Forêt, F. Lyon, Advanced modeling for design
helping of heterogeneous CLT panels in bending, in: International Net-
work on Timber Engineering Research - INTER - Meeting 48, Sibenik,
Croatia, pp. 1–11.

[16] O. Perret, A. Lebée, C. Douthe, K. Sab, Experimental determination of
the equivalent-layer shear stiffness of CLT through four point bending of
sandwich beams, submitted (2017).

[17] O. Perret, A. Lebée, C. Douthe, K. Sab, Equivalent layer stiffness of CLT:
Closed-form bounds and numerical validation, submitted (2018).

[18] T. Bogensperger, T. Moosbrugger, G. Silly, Verification of CLT-plates
under loads in plane, 11th World Conference on Timber Engineering
2010, WCTE 2010 1 (2010) 231–240.

[19] R. A. Joebstl, T. Bogensperger, G. Schickhofer, G. Jeitler, Mechanical
Behaviour of Two Orthogonally Glued Boards Technical experiment to
determine torsional parameters, Proceedings of the 8th World Conference
on Timber Engineering (2004).

[20] H. J. Blass, R. Goerlacher, Zum Trag- und Verformungsverhalten von
BrettsperrholzElementen bei Beanspruchung in Plattenebene, Bauen mit
Holz 11 (2002) 30–34.

[21] G. Jeitler, Versuchstechnische ermittlung derverdrehungskenngroessen
von orthogonal verklebten brettlamellen (German), TU Graz - Graz Uni-
veristy of Technolgy, Graz, Austria, 2004.

[22] H. Kreuzinger, Plate and shell structures. Amodel for common calculation
tools (in German), Bauen mit Holz 1 (1999) 34–39.

[23] D. I. Jouravskii, Remarques sur la résistance d’un corps prismatique et
d’une pièce composée en bois ou en tôle de fer à une force perpendiculaire
à leur longueur, Annales des Ponts et Chaussées 12 (1856) 328–351.

[24] L. Franzoni, Mechanical behavior of regularly spaced Cross Laminated
Timber panels. Modeling and experimental validation in ambient and fire
conditions, Ph.D. thesis, Université Paris-Est, 2016.

[25] C. Czaderski, R. Steiger, M. Howald, S. Olia, A. Gulzow, P. Niemz, Tests
and calculations on 3-layered cross-laminated solidwood panels supported
at all edges, European Journal of Wood and Wood Products 65 (2007)
383–402.

[26] P. Mestek, Cross Laminated Timber panels under concentrated loads:
design with local shear reinforcement (in German), Ph.D. thesis, Munich
University of Technology, 2011.

[27] G. Hochreiner, J. Füssl, E. Serrano, J. Eberhardsteiner, Influence of
wooden board strength class on the performance of Cross Laminated Tim-
ber plates investigated by means of full-field deformations measurements,
Strain 50 (2014) 161–173.

[28] Eurocode 5-1-1, Working draft of design of CLT in a revised Eurocode
5-1-1. Version 2015-10-30 (confidential), European Committee for Stan-
dardization, CEN, Bruxelles, Belgium, 2015.

[29] G. Silly, Numerical study on in-plane shear and torsional stiffness of
Cross Laminated Timber (in German), Diplomarbeit, Graz University of
Technology, 2010.

[30] T. Ehrhart, R. Brandner, G. Schickhofer, A. Frangi, Rolling Shear Prop-
erties of some European Timber Species with Focus on Cross Laminated
Timber (CLT): Test Configuration and Parameter Study, in: Proceed-
ings of the 2nd International Network on Timber Engineering Research
meeting, pp. 1–15.

[31] O. Perret, A. Lebée, C. Douthe, K. Sab, The Bending–Gradient theory
for the linear buckling of thick plates: Application to Cross Laminated
Timber panels, International Journal of Solids and Structures 87 (2016)
139–152.

16


