
HAL Id: hal-01942306
https://enpc.hal.science/hal-01942306

Submitted on 3 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Interval Branch and Bound Algorithm for
Parameter Estimation

Bertrand Neveu, Martin de La Gorce, Pascal Monasse, Gilles Trombettoni

To cite this version:
Bertrand Neveu, Martin de La Gorce, Pascal Monasse, Gilles Trombettoni. A Generic Interval Branch
and Bound Algorithm for Parameter Estimation. Journal of Global Optimization, 2019, 73 (3), pp.515-
535. �10.1007/s10898-018-0721-3�. �hal-01942306�

https://enpc.hal.science/hal-01942306
https://hal.archives-ouvertes.fr


Journal of Global Optimization manuscript No.
(will be inserted by the editor)

A Generic Interval Branch and Bound Algorithm
for Parameter Estimation

Bertrand Neveu · Martin de la Gorce ·
Pascal Monasse · Gilles Trombettoni

Received: date / Accepted: date

Abstract In engineering sciences, parameter estimation is a challenging prob-
lem consisting in computing the parameters of a parametric model that fit
observed data. The system is defined by unknown parameters and sometimes
internal constraints. The observed data provide constraints on the parame-
ters. This problem is particularly difficult when some observation constraints
correspond to outliers and/or the constraints are non convex. The ransac
randomized algorithm can efficiently handle it, but is non deterministic and
must be specialized for every problem. This paper presents the first generic
interval Branch and Bound algorithm that produces a model maximizing the
number of observation constraints satisfied within a given tolerance. This tool
is inspired by the IbexOpt Branch and Bound algorithm for constrained global
optimization (NLP) and is endowed with an improved version of a relaxed in-
tersection operator applied to observations. Experiments have been carried
out on two different computer vision problems. They highlight a significant
speedup w.r.t. Jaulin et al.’s interval method in 2D and 3D shape recognition
problems (having 3 parameters). We have also obtained promising results on
a stereo vision problem where the essential matrix (5 parameters) is estimated
exactly at a good accuracy in hours for models having a thousand points, a
typical size for such problems.

B. Neveu
LIGM, École des Ponts ParisTech, Université Paris–Est, France
E-mail: Bertrand.Neveu@enpc.fr

M. de la Gorce
LIGM, École des Ponts ParisTech, Université Paris–Est, France
E-mail: martin.delagorce@gmail.com

P. Monasse
LIGM École des Ponts ParisTech, Université Paris–Est, France
E-mail: Pascal.Monasse@enpc.fr

G. Trombettoni
LIRMM, University of Montpellier, CNRS, France
E-mail: Gilles.Trombettoni@lirmm.fr



2 Bertrand Neveu et al.

1 Introduction

Parameter estimation is a difficult problem widely studied by engineering sci-
ences. It consists in determining the n numerical parameters of a model based
on m observations. Calibration or geolocation can be viewed as specific pa-
rameter estimation problems.

A parameterized model is defined by an implicit equation f(x,p) = 0, p =
(p1, . . . , pn) being the n-vector of parameters to be determined. An observation
oi is a d-dimensional vector of observed data (values) for x. Given a finite set
of observations {o1, . . . ,oi, . . . ,om}, we search for a parameter vector that fits
the observations, i.e. that satisfies the observation constraints f(oi,p) = 0.

Because the model is not perfect (i.e., f is an approximation of the real
model) or due to uncertainties on the observations oi, there exists generally
no model fitting all the observation constraints exactly. If f is linear, it is
possible to compute analytically the parameters minimizing

∑
i f(oi,p)2. This

least square method, or other minimization criteria, can also be applied to
parameter estimation in which f is non linear. In this case, numerical local
methods are generally used to estimate the parameters, such as the Levenberg-
Marquardt algorithm, a quasi-Newton method of choice in computer vision.

The least square method is relevant when the errors on the observations are
small, i.e. when the errors are bounded or when the actual observation values
follow a probability law. Unfortunately, the answer of this least square method
is poor in presence of outliers. Outliers can have numerous origins, including
extreme values of the noise, erroneous measurements and data reporting errors.

In this paper, we consider a different approach where the observations are
partitioned into two groups:

– An observation oi is an inlier (i.e., compatible with the parameter vector p)
when it satisfies an observation constraint, given by the implicit equation
above but within a tolerance value τ :

−τ ≤ f(oi,p) ≤ +τ.

– An observation oi is an outlier if it does not satisfy the corresponding
observation constraint.

Thus, the problem addressed in this paper is to compute a model fitting
a maximum number of observations. In a variant, we search for parameter
vectors that fit at least q of these observations (with n ≤ q ≤ m, where n is
the number of parameters to estimate).

More formally, the consensus set Consensus(p) is the set of observations
compatible with p:

Consensus(p) = {oi| − τ ≤ f(oi,p) ≤ +τ}. (1)

The parameter estimation problem can be formulated as a numerical constraint
satisfaction problem (resolution problem) with n variables p = (p1, . . . , pn)



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 3

having a real interval domain, and a constraint stating that at least q obser-
vations are compatible with the model:

card(Consensus(p)) ≥ q. (2)

The optimization version of this problem simply consists in maximizing the
cardinality of the consensus set, i.e.

arg max
p

(card(Consensus(p))). (3)

More generally, a parameterized model can be defined by the observation con-
straints and internal constraints between parameters C(p), so that the estima-
tion parameter problem handled by the interval Branch and Bound proposed
in this paper will be defined as follows:

arg max
p

(card(Consensus(p))) s.t. C(p). (4)

The random sample consensus algorithm (ransac) [12] has become a state-
of-the-art tool to achieve a parameter estimation robust to outliers. This
stochastic algorithm proceeds by randomly sampling observations for deter-
mining a model (n observation constraints for determining n parameters),
before checking the number of other observations compatible with this model.
However, ransac cannot guarantee that the computed model fits a maximum
number of observations, and the sampling phase is dedicated to the parameter
estimation problem studied. For instance, in the stereo vision problem tested
in our experiments, computing a first model which fits 5 observations requires
a symbolic computation known as the “five points method” [28].

In the landscape of exact approaches, only a few works have been proposed.
In addition, the existing deterministic algorithms are ad-hoc and are strongly
dependent on the application domain.

This paper proposes a first generic Branch and Bound algorithm to param-
eter estimation for which the main user inputs are the observation constraint
expression f and the associated tolerance τ (see (1)).

This approach extends and improves Jaulin et al.’s work based on inter-
val constraint programming [17,16]. This is a combinatorial algorithm that
explores the parameter space using an interval method and uses a relaxed in-
tersection operator between boxes to better contract the parameter space in
presence of outliers without losing solutions.

After a background on ransac, interval methods and Jaulin et al.’s ap-
proach in Section 2, we describe in Section 3 an interval branch and bound
algorithm that can compute the model satisfying a maximum number of obser-
vation constraints. The algorithmic improvements can bring significant gains
in performance compared to the basic approach, as shown in experiments on
shape detection and stereo vision problems (see Section 4).



4 Bertrand Neveu et al.

2 Background

This section includes the principles of the ransac algorithm and the deter-
ministic interval approach proposed by Jaulin et al. We also present an interval
Branch and Bound (B & B) for constrained global optimization from which our
generic interval parameter estimator is inspired.

2.1 The ransac algorithm

The RANdom SAmple Consensus algorithm (ransac) [12] has become a state-
of-the-art tool to achieve a parameter estimation robust to outliers. In addi-
tion to the observed dataset, the input of ransac is the tolerance τ in the
observation constraints (see (1)) and, in the resolution version of parameter
estimation, a number q of inliers. ransac is a stochastic and non exact method
that searches for the best parameter vector by repeating the following steps.
q is a fixed threshold in the resolution version. In the optimization version
maximizing the consensus cardinal, q is initialized to n (see below) and takes
the maximum cardinal of the consensus set found during the process.

1. Random sampling: A subset of the observations is randomly selected. The
cardinality of the sample is the smallest sufficient to determine the model
parameters: n observation constraints are generally required to determine
the n parameters.

2. A parameter vector p corresponding to a model that fits the selected sample
is computed by solving the selected system of n observation constraints.

3. Consensus: One checks if at least q elements of the entire observation
dataset are inliers given the tolerance parameter τ .

4. If a consensus is obtained, a second and better model may be computed by
using the whole consensus set. q is updated accordingly in the optimization
version.

In some problems, e.g. shape detection, the goal is to compute all the
valid models fitting at least q observations. In this case, a ransac version
like the one presented in [30] finds the different models in a greedy way: when
a model has been found, it removes the observation constraints involved in
the consensus set before searching for a next model. There is of course no
guarantee that this approach can find all the valid models.

2.2 Complete interval constraint programming approach by Jaulin et al.

A parameter estimation method based on interval constraint programming
that is robust to outliers was first described in [17]. Intervals are the first
ingredient of the approach.



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 5

2.2.1 Interval arithmetic and contractors

We denote by [xi] = [xi, xi] the interval/domain of the real-valued variable xi,
where xi, xi are floating-point numbers. A Cartesian product of intervals like
the domain [x] = [x1] × ... × [xN ] is called a (parallel-to-axes) box. width(xi)
denotes the size or width xi−xi of an interval [xi]. The width of a box is given
by the width xmax − xmax of its largest dimension xmax. The perimeter of a
box, given by

∑
i xi − xi, is another size measurement used in this paper.

Interval methods also provide contracting operators (called contractors),
i.e. methods that can reduce the variable domains involved in a constraint or
a set of constraints without loss of solutions. Let us consider one observation oi
and a subspace of the parameter space given by a box [p]. Given an observation
oi, we denote Vi the set of parameter vectors that are compatible with that
observation, i.e.

Vi = {p | − τ ≤ f(oi,p) ≤ +τ}. (5)

The set of parameter values within that box that are compatible with oi is
given by Vi∩ [p]. A contractor is able to reduce the input box [p] while keeping
all the points in Vi ∩ [p], i.e. without losing any solution. The main contractor
used in this paper is the well-known HC4-revise [3,21], also called forward-
backward. This contractor handles a single constraint and obtains a (generally
non optimal [11]) contracted box including all the solutions of that constraint.
Let us give the principles of HC4-revise on the constraint f(oi,p) ≤ +τ .

The forward phase traverses the expression tree of the constraint bottom up
using interval arithmetic. In the example, the unknowns p are replaced by their
intervals [p] in the expression and interval arithmetic evaluates [f ]([oi], [p]).
For instance, if f(o1,p) = o1 + p1 + p2 with o1 = 2.5 and [p] ∈ [−2, 3]× [0, 1],
we have [f ]([o1], [p1], [p2]) = [2.5, 2.5] + [−2, 3] + [0, 1] = [0.5, 6.5]. The image
interval is then intersected with [−∞, τ ] because the constraint is an inequal-
ity. If the tolerance τ is 1e-1, then the intersection is empty. The contractor
terminates with an empty contracted box, which proves that no vector inside
the initial domain [p] satisfies the constraint. If the resulting interval [r] is not
empty, e.g. the tolerance is 5, then the computed interval is [r] = [0.5, 5] and
one can run the second phase.

In the backward phase, the expression tree is traversed top-down, and in-
terval arithmetic is applied on so-called inverse operators. Without detailing,
this phase amounts to evaluating all the (inverse) functions isolating every
variable occurrence. Consider for instance the inverse function fp1 used to
contract p1: fp1(o1, p2) = r − o1 − p2. We evaluate fp1 using interval arith-
metic, which produces the following contraction: [p1] := [p1]∩[fp1 ]([o1], [p2]) =
[−2, 3] ∩ ([0.5, 5]− [2.5, 2.5]− [0, 1]) = [−2, 3] ∩ [−3, 2.5] = [−2, 2.5].

To contract a system of constraints, the HC4 algorithm performs a prop-
agation loop applying iteratively the HC4-Revise procedure introduced above
on each constraint individually until a quasi fixpoint is obtained in terms of
contraction.



6 Bertrand Neveu et al.

2.2.2 Jaulin et al.’s combinatorial interval method for parameter estimation

Jaulin et al. proposed in [18] a simple deterministic algorithm based on interval
methods to handle inverse problems:

– A search tree is built to exhaustively explore the parameter space. [p] is
recursively subdivided: one variable pi in p is selected, its domain [pi] is
bisected into two sub-intervals and the two corresponding sub-boxes are
explored recursively. The combinatorial process stops when a precision is
reached, i.e. when the width of the current box is inferior to εsol (the box
is thus a leaf of the search tree).

– At each node of the tree, the current box is contracted w.r.t. the obser-
vation constraints, and sometimes eliminated, using the forward-backward
contractor described above.

Compared to ransac, the main advantage of this approach is that all
the valid model instances can be produced in an exhaustive way. In addition,
bounded errors can also be taken into account in the observed data: a measure-
ment with a bounded error can be modelled by a (constant) box [o] and not
a vector. The main drawback is that outliers lead to an empty contracted box
(i.e., no model instance exists in the box) since the parameter box contracted
using an outlier observation constraint does not intersect the other ones.

The second ingredient used in the parameter estimation tool based on
interval constraint programming was also proposed by Jaulin et al. to deal
with outliers (see [16]). Like ransac, the approach assumes that at least q
observations are inliers, the other ones being viewed as potential outliers.

This idea is implemented by the q-intersection operator. This operator
relaxes the previous intersection of m boxes (corresponding in our inverse
problem to the contraction of [p] w.r.t. all the m observation constraints) by
the union of all the intersections obtained with q boxes. More formally:

Definition 1 Let S be a set of boxes. The q-intersection of S, denoted by ∩qS,
is the box of smallest perimeter that encloses the set of points of Rn belonging
to at least q boxes.

For instance, the box in dotted lines in Fig. 1–b is the 4-intersection of the
m = 10 two-dimensional boxes (in plain lines).

The parameter estimation tool proposed by Jaulin et al. has been extended
to cope with outliers using a q-intersection operator. The contraction phase
is replaced by a more sophisticated routine called contractAndQinter in this
paper:

1. A forward-backward contraction is achieved on each of the m observation
constraints, which produces a set S of boxes. Note that no (standard)
intersection is achieved on these boxes, i.e. no propagation loop is achieved
to contract all the constraints simultaneously.

2. The box returned by contractAndQinter is the q-intersection of these
contracted boxes: ∩qS.



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 7

(a) A set S of 2-dimensional boxes (b) The dashed box is ∩4S. Zones that be-
long to at least 4 boxes are darkened.

Fig. 1 Illustration of q-intersection for q = 4, m = 10, n = 2.

The q-intersection of boxes is a difficult problem and has been proven DP-
complete in [6] where an exact algorithm based on the search of q-cliques has
been proposed. In this paper, we simply resort to a non optimal q-intersection
operator often used in parameter estimation. Computing a reasonable but
non optimal enclosure of ∩qS may be satisfactory, provided it can be done
in polynomial time, since the q-intersection operator is typically used to filter
the search space at each node of a search tree. It appeared that the exact
q-intersection algorithm was too costly for the problems studied in this paper.

This algorithm, called here q-proj, solves the problem on each dimension
independently. For each dimension i, the algorithm computes the projection
S[i] of the boxes and solves the q-intersection problem on S[i]. Since S[i] is a
set of intervals, each ∩qS[i] can be computed in polynomial time by sorting
the lower and upper bounds using a method first introduced in [8]. The overall
complexity of q-proj is O(nm log(m)). Figure 2 illustrates the algorithm.

Fig. 2 Principle of q-proj for q = 2, n = 2. The algorithm outputs the dashed box, an
overestimate of ∩2S.



8 Bertrand Neveu et al.

Jaulin et al.’s interval-based approach has been used in several param-
eter estimation applications, including geolocation. More recently, a 3D re-
construction problem has been handled by estimating the coefficients of the
transformation matrix between two poses [4].

2.3 IbexOpt: a global optimization code based on interval techniques

The parameter estimation code proposed in this paper (see Section 3) provides
an optimization tool finding a parameter vector that maximizes the number q
of observation constraints satisfied. Its overall architecture is inspired by the
IbexOpt global optimization code available as a plugin of the open source C++
Interval Based EXplorer IBEX library [7]. Let us provide a brief overview of
IbexOpt. Details can be found in [32,26].

IbexOpt handles continuous global optimization under inequality constraints
defined by:

min
x∈[x]

f(x) s.t. g(x) ≤ 0

where f : Rn → R is the real-valued objective (non convex) function and
g : Rn → Rm is a vector-valued (non convex) function. x = (x1, ..., xi, ...xn) is
a vector of variables varying in a domain (i.e., a box) [x]. A point x is said to
be feasible if it satisfies the constraints.

The algorithm is launched with the vector of constraints g, the objective
function f and with the input domain initializing a list Boxes of boxes to
be handled. εobj is the absolute or relative precision required on the objective
function and is used in the stopping criterion. Therefore, the algorithm com-
putes a feasible point of cost f̃ such that no other solution exists with a cost
lower than f̃−εobj . IbexOpt adds a variable xobj in the problem (to the vector
x of variables) corresponding to the objective function value, and a constraint
f(x) = xobj .

IbexOpt is a B&B algorithm that maintains two main types of information
during the iterations:

– f̃ : the value of the best feasible point x ef found so far, and
– fmin: the minimal value of the lower bounds xobj of the nodes [x] to explore,

i.e. the minimal xobj in the list of open nodes and in the list of the discarded
small nodes/boxes.
In other terms, in every box [x], there is a guarantee that no feasible point
exists with an objective function value lower than xobj .

Starting with the initial box, the B&B algorithm selects iteratively one
node to handle until the list of open nodes becomes empty. The selected box
[x] is split into two sub-boxes along one dimension (selected by any branching
strategy) that are handled by a Contract&Bound procedure.

The Contract&Bound procedure contracts the handled box without loss
of feasible part [7]. In other words, some infeasible parts at the bounds of



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 9

the domain are discarded by constraint programming (CP) [33,3,25] and con-
vexification [31,22] algorithms. This contraction works on the extended box
including the objective function variable xobj and on the associated constraint,
so improving xobj amounts to improving the lower bound of the objective func-
tion image (lower bounding).

The procedure also carries out upper bounding. It calls one or several
heuristics searching for a feasible point x ef that improves the best cost f̃ found
so far. If the upper bound of the objective value is improved, it removes from
the set of open nodes those having xobj > f̃ − εobj . Note that each time a new

upper bound f̃ is found, a constraint xobj ≤ f̃ − εobj is added to the problem
for decreasing the upper bound of the objective function in the box. Imposing
f̃ − εobj as a new upper bound (and not only f̃) aims at finding a solution
significantly better than the current best feasible point.

Finally, Contract&Bound pushes the two sub-boxes into the set Boxes of
open nodes. However, if the size of a box reaches a given precision, the box
will be no more studied (i.e., bisected) and the lower bound of the objective
function fmin is updated with the value of the objective function in this small
discarded box.

Node selection strategy

Several strategies are available in IbexOpt to select a node in the list of open
nodes. In a standard approach, the search tree is traversed in best-first order by
selecting at each iteration the node having the lowest xobj value. This strategy
may require an exponential memory to store the list of open nodes.

An efficient variant calls a probing procedure named feasible diving at each
node of this best-first search strategy to better intensify the search (see [26]).
The adaptation of this FeasibleDiving procedure to our B & B method for
parameter estimation is detailed in the next section.

3 A Parameter Estimation Algorithm Fitting a Maximum Number
of Inliers

We have designed an interval B & B algorithm for parameter estimation that
computes a model maximizing the consensus, i.e. maximizing the number of
valid observations (inliers) of a parameterized model. It appeared that the
standard best-first search strategy has difficulties finding a good solution and
that a depth first search strategy gets stuck in a local optimum area. Therefore
we have used a mixed strategy based on best-first search where, at each node,
a feasible diving procedure [26] is performed.

The EstimB&B algorithm presented in Algorithm 1 implements a Best-First
search algorithm using Feasible Diving for computing a parameterized model
that maximizes the number of inliers. The algorithm returns the best solution
found (best is the node where the best solution has been found), with a number



10 Bertrand Neveu et al.

qmin of validated inliers, and an interval [qmin, qmax]. Two main cases can occur.
Either the precision ∆obj required on the number of inliers is obtained, i.e.
qmax − qmin ≤ ∆obj , or qmax − qmin > ∆obj , which means that “small” boxes
of width inferior to εsol remain open (unexplored) with a number of inliers at
most equal to qεsol

max. In other terms, qεsol
max is a maximum number of inliers in a

small box discarded by the εsol parameter. The parameter qm is a minimum
number of inliers imposed by the user in a solution (qm ≥ n+ 1), qm = n+ 1
being a default value. It is useful for finding a significant first current solution
at the beginning of the solving process. The algorithm is also called with the

EstimB&B (p, [p]init, C, f , o = {o1, . . . ,oi, . . . ,om}, τ , εsol, ∆obj , qm)
node.box ← [p]init
Cobs ← {−τ ≤ f(oi,p) ≤ +τ | oi ∈ o} // Observation constraints
node.qmin ← qm −∆obj − 1
best← node
qεsol
max ← 0 /* The highest cost of the nodes having reached the εsol
precision. */

(node, best, qεsol
max)← Contract&Bound (node, C, εobj , ∆obj , best, qεsol

max)
nodeHeap ← {node}
while nodeHeap 6= ∅ do

node ← Pop (nodeHeap)
(best, nodeHeap, qεsol

max) ← FeasibleDiving (node, C, Cobs, best,
nodeHeap, εsol, qεsol

max)

qmax ← max(qεsol
max, qmin +∆obj)

return (best.solution, best.qmin, qmax)
Algorithm 1: Interval-based B & B calling Feasible Diving at each node

model as parameter: the parameters p of the model, i.e. the variables to be
determined using the internal constraints C and the observation constraints
Cobs = {−τ ≤ f(oi,p) ≤ +τ} (see Section 1).

The algorithm maintains a set of open nodes nodeHeap implemented by
a heap data structure having at its top the node with the largest number of
possible inliers (i.e., an upper bound qmax of the objective function value to
maximize). Several records are associated to a node: the corresponding do-
main (box), the maximum set possibleCS (CS stands for consensus set) of
observation constraints in the node (i.e., the constraints that have not been
discarded by the q-intersection algorithm), and the set of observation con-
straints validCS guaranteed to be satisfied in the box and its cardinality
qmin = card(validCS) corresponding to a lower bound of the number of in-
liers guaranteed to belong to the box, if a feasible point has been found in the
box.

The loop in Algorithm 1 performs a best-first search calling at each itera-
tion the FeasibleDiving function. From the selected node, FeasibleDiving,
described in Algorithm 2, builds a tree in depth-first order and keeps only



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 11

FeasibleDiving (node, C, Cobs, best, nodeHeap, εsol, qεsol
max)

while node.box 6= ∅ and width(node.box) > εsol and not
node.isLeaf do

(node1, node2) ← Bisect (node) // Bisection of node.box
(node1, best, qεsol

max) ← Contract&Bound (node1, C, Cobs, εobj ,
∆obj ,best,qεsol

max)
(node2, best, qεsol

max) ← Contract&Bound (node2, C, Cobs, εobj ,
∆obj ,best,qεsol

max)
(nodebetter, nodeworse) ← Sort (node1, node2)
if nodeworse.box 6= ∅ and width(nodeworse.box) > εsol and not
isLeaf then
nodeHeap← Push(nodeworse, nodeHeap)

node← nodebetter

return (nodeHeap, best, qεsol
max)

Algorithm 2: The Feasible Diving procedure run at each node of our
interval B&B algorithm.

the most promising node at each iteration. More specifically, the box in the
node is bisected along one dimension and the two sub-boxes are handled by
the Contract&Bound procedure. The sub-box with the largest qmax is handled
in the next step while the other sub-box is pushed into the heap nodeHeap of
open nodes. Thus, contrary to a standard depth-first search, FeasibleDiving
does not perform any backtracking. That is why we call it a greedy or diving
algorithm.

Contract&Bound (node, C, Cobs, εsol, ∆obj , best, qεsol
max)

node← ContractAndQinter (node, C, Cobs, best.qmin +∆obj + 1)
if node.box 6= ∅ then

node← ValidateBox(node, C, Cobs)
if node.qmin > best.qmin then // New best solution found

best ← node
nodeHeap← FilterOpenNodes(nodeHeap, best.qmin +∆obj)

if width(node.box) < εsol then
qεsol
max ← max(qεsol

max, node.qmax)
else

if node.qmin = node.qmax then
node.isLeaf ← true

return (node, best, qεsol
max)

Algorithm 3: Contraction of a node box and computation of valid
inliers



12 Bertrand Neveu et al.

Algorithm 3 describes the Contract&Bound function handling every open
node. It contracts the node box and tries to find more than best.qmin + ∆obj

valid (guaranteed) satisfied observation constraints inside the box. Recall that
the best node found so far has at least qmin valid inliers, so that the next best
node (if any) is searched for with a cost at least equal to best.qmin +∆obj + 1.

The ContractAndQinter contraction procedure

This procedure calls standard interval contraction procedures and a q-intersection
projection procedure (see the q-proj algorithm in Section 2.2.2).

1. The box is first contracted by the constraints C between parameters, if
any: first, the HC4 constraint propagation algorithm (see Section 2.2.1) is
performed; compared to Jaulin et al.’s algorithm, we add calls to a linear
programming solver for improving variable interval bounds, using a linear
relaxation of the constraints based on affine arithmetics [27].

2. The q-intersection projection algorithm, using q = best.qmin + ∆obj+1 is
then called on the parameter directions, plus one. Indeed, q-proj is also
called on an additional direction for which the contraction expected is
better. Details can be found in [24].

3. An upper bound node.qmax of the number of inliers in the node is given by
the minimum over all dimensions of the maximum number of intersected
intervals found by the q-intersection projection procedure in a dimension.

4. If node.qmax < q, then the node box becomes empty and the corresponding
branch in the tree will be pruned. Also, node.qmax may be inferior to the
number of possible observations in the box (i.e., card(node.possibleCS)),
in particular if the box contains several valid models (solutions).

The ValidateBox procedure for finding a better feasible point

To improve the lower bound, one has to find a feasible point in the current
box, i.e. a so-called valid or guaranteed point that satisfies all the constraints
C, if any, and a greater number of observation constraints (inliers) than the
current solution. This is the aim of the ValidateBox procedure.

When C is empty, one can simply compute the number of inliers at one
point in the current box, for example at the middle of the box.

When the parameters have constraints between them (i.e., C is not empty),
the search of the solution validating inliers is a difficult task per se, since the
selected vector must also satisfy the constraints in C. To find this feasible
point, we use an algorithm similar to the algorithm finding feasible points in
IbexOpt (see [1]). Every equation h(p) = 0 in C is replaced by two inequalities
−εeq ≤ h(p) ≤ +εeq (e.g., εeq is fixed to 1 e-4 in our experiments). We will
then try to guarantee with interval-based calculations that the solution found
will satisfy these relaxed constraints, as follows. First, we linearize these con-
straints in order to build an inner polytope inside the box where all the points



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 13

satisfy the constraints C.1 Second, if an inner polytope has been found, we
use a linear programming approach to pick a point (vertex) of this polytope.
Third, we compute the number of inliers at this point and update the new
current solution if the number improves the best number of inliers found so
far (in the best node). Different inner polytopes may be built and, for a given
polytope, different vertices may be selected. Therefore several random runs of
this routine are performed. We experimentally fixed the maximum number of
runs to 10, stopping the procedure as soon as an empty inner polytope is built.

If a new best solution is found by ValidateBox, then the FilterOpenNodes
procedure removes from the nodeHeap set of open nodes those for which
node.qmax is inferior or equal to best.qmin +∆obj .

Note that Jaulin et al.’s method on which we have built our tool does
not have any ValidateBox procedure to guarantee the computed model. Only
small boxes are returned in which one expects (with no guarantee) to have a
real vector checking the observation constraints.

Towards a generic code for parameter estimation

With the implementation of our EstimBB code, we are close to providing a
generic tool for parameter estimation taking into account outliers. More specif-
ically, it is straightforward to provide our tool with most of the code parame-
ters:

– the parameterized model (model parameters and internal constraints),
– the observation constraints made of the f expression, the τ relaxation value

of the equality constraints, and the oi observations, and
– the ∆obj and εsol precision parameters.

The contractor part could be made more generic, i.e. could be specified
outside the C++ code. It is for now encoded in the IBEX C++ library follow-
ing the contractor programming principles [7]. For example, for the essential
matrix estimation described in the next section, the IBEX code specifies that
HC4 is first called on the internal constraints C, and then the Affine relax-
ation technique (ART) contracts the same system before the q-intersection
contractor (q-proj) uses the observation constraints. This means that if users
want to solve a new problem, either they must either copy-paste the C++
code encoding the same sequence of contractors, or modify it to change the
contractors involved.

4 Experiments

The algorithms were implemented in IBEX. We made preliminary experiments
on the shape detection problem studied in [24], replacing the search of all

1 Note that this algorithm is heuristic in that it is possible that no such inner polytope is
found.



14 Bertrand Neveu et al.

solutions with at least q inliers by the optimization problem that searches for
a solution maximizing the number of inliers. Second, we tried to solve the more
challenging problem of essential matrix estimation in stereo vision.

4.1 Shape Detection

The combination of several improvements to Jaulin’s et al. method brings a
significant speedup of two orders of magnitude on each tested instance of 3D
plane and 2D circle detection problems. The different improvements are de-
scribed in [24] and let us briefly summarize the principle of the most important
one. The ContractAndQinter procedure has been extended to better contract
the boxes/nodes, using a new dimension. Once the q-proj algorithm ends, a
new procedure linearizes all the observation constraints and projects them on
a new axis, along the mean normal direction. On this new dimension the inter-
vals are expected to be smaller and q-intersecting them will more likely reduce
the resulting box.

These problems have a parameter space of dimension n = 3 and have no
additional (internal) constraints. First experiments dealing with the search of
all planes or circles are described in [24]. They suggested that our interval
B&B algorithm could also guarantee a model maximizing the number of in-
liers while ensuring a good performance. We have verified that we obtain the
same speedups for all the improvements when we search for the best model in
number of inliers. The Branch & Prune algorithm in [24] was replaced by the
B&B algorithm presented in Section 3.

For plane detection, we have generated 9 artificial test cases, with different
numbers of points, numbers of planes to detect, and inlier rates (i.e., percentage
of points belonging to a plane). All the 3D points belong to a bounded box.
The inlier points belonging to each plane have been placed near the plane: two
coordinates are random, and the third one is computed to satisfy the thick
equation of the plane. The remaining points have been uniformly randomly
generated in the bounding box. In order to be close to the real case described
further, the planes are made of 2 sets of orthogonal planes (e.g., 2 vertical
and 2 horizontal planes for the instances P1 to P3). Table 1 presents the
characteristics of the test cases: the number of points m, the number of planes,
the minimum inlier rate r and the maximum inlier rate. We run our algorithm
with the following parameters qm = r ∗m, τ = 0.001 and εsol = 0.00001. The
time out (TO) was set to 10,000 seconds.

Table 1 Characteristics of the artificial plane detection test cases

Test case P1 P2 P3 P4 P5 P6 P7 P8 P9

#points 1000 1000 1000 1000 1000 1000 4000 4000 4000
#planes 4 4 4 25 25 25 25 25 25
minimum inlier rate 10% 5 % 4 % 2 % 1.5% 1% 2% 1.5% 1%
maximum inlier rate 20% 10 % 10 % 2 % 1.5% 1% 2% 1.5% 1%



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 15

We have also tested our algorithm on two real 3D point clouds, issued from
parts of scene1 of velodyndata2 [19]. We selected from this urban scene the
529 points labeled house40, and the 3611 points labeled house44, two specific
buildings in the scene. These problems are named H40 and H44 in the tables.
We run our algorithm with the parameters τ = 0.001, εsol = 0.0001, qm = 21
for H40 and qm = 75 for H44.

We made finally an experiment for circle detection in a 2D photo. The data
are issued from a buoy detection problem [16] amounting to finding a circle
in a submarine photo. We used the data of the paper with 614 points (C1),
and created a (more) noisy problem C2 with 1228 points, randomly adding to
the original problem 614 outliers. The parameters are the center coordinates
(x and y) and the radius (r) of the circle to be detected. An observation oi is
given by the coordinates oxi and oyi of the point in the image. The equation
is then

(x− oxi)2 + (y − oyi)2 = r2. (6)

We run our algorithm with the parameters qm = 57, τ = 11 and εsol = 0.02.

Table 2 Maximum number of inliers and CPU time results on plane and circle detection
test cases

Test case P1 P2 P3 P4 P5 P6 P7 P8 P9 H40 H44 C1 C2

#inliers 202 103 103 26 22 16 94 76 55 38 171 58 58
QInterEstim 1.0 2.2 3.6 17.8 34.5 102.7 50.4 86.2 206.4 2.9 838.5 7.7 24.2
BasicEstimBB 7.9 61.7 62.6 4579 8121 TO TO TO TO TO TO 28.3 89.4
EstimBB 0.2 0.5 0.5 11.0 16.9 40.0 40.1 62.0 126.6 1.3 193.6 1.3 6.4

We report in Table 2 the maximum number of inliers found (and proven)
by our algorithm, the CPU times required (in second) by the QInterEstim
algorithm described in [24] for computing all models (planes, circles), by the
basic B&B algorithm using q-intersection named BasicEstimBB, without all
improvements detailed in [24], and by our EstimBB algorithm that includes all
these improvements. We can note that, as expected, finding and proving an
optimal solution is faster than finding all solutions. The QInterEstim results
are slightly different from those presented in [24], since the algorithm has been
rerun in the current version of IBEX to make the comparison fair.
Observation: We have compared the application of our generic EstimBB code
to shape recognition with a mixed-integer program for 2D line detection in
the plane. The MIP model was solved by CPLEX.3 It turns out that the MIP
model is competitive with our interval approach only for a small number of
points or a large inlier rate. The MIP approach does not scale up either to
a parameter space of dimension 3 (plane detection in 3D space). The MIP
model, adapted to find a plane with a maximum number of inliers, could solve

2 See sites.google.com/site/kevinlai726/datasets
3 Thanks to Leo Liberti for suggesting the MIP model.



16 Bertrand Neveu et al.

to optimality the problem P1 with only 200 points and the same inlier rate in
1320 seconds, whereas our EstimBB code solved it in 0.07 second.

4.2 Essential Matrix of a Stereo Image Pair Estimation

In computer vision, the essential matrix is a 3×3 matrix having some internal
constraints, which relates corresponding points in stereo images assuming that
the cameras satisfy the pinhole camera model.

4.2.1 Problem presentation

The essential matrix, discovered by Longuet-Higgins [20], encodes the relative
position and attitude of two cameras following the (ideal) pinhole model. To
each camera, called arbitrarily left and right, is attached an orthonormal co-
ordinate frame, whose z-axis is the view direction. A 3D point, of coordinates
M =

(
X Y Z

)ᵀ in the right camera frame, is only observed up to scale as
its projection into the image plane mR = λ(M)M with λ(M) = fR/Z, with
fR > 0 the focal length of the right camera (see Figure 3 left). The point is
observed in the left image at mL = µ(M)(RM + T ) with R and T the rota-
tion and translation matrices mapping from right to left coordinate frames.
Substituting M as a function of mR in the latter equation yields:

mL = µ(M)/λ(M)RmR + µ(M)T, (7)

which amounts to saying that vectors mL, RmR and T are linearly dependent.
This dependency can be rewritten into the epipolar equation:

det
(
mL T RmR

)
= mᵀ

L (T ×R)mR = 0, (8)

where the essential matrix E = T × R denotes the 3× 3 matrix composed of
the columns of R multiplied on the left by T with the vector product.

Inversely, through a factorization of E, the pair (R, T ) can be recovered,
yielding relative pose and attitude of the stereo system of cameras. Each
matching point pair (mi

L,m
i
R) gives a single homogeneous constraint on E,

so that E can only be computed up to an unknown scale. This means that
only the direction of T can be estimated, a phenomenon known as scale am-
biguity.

The epipolar equation (8) can be interpreted, algebraically, as an orthogo-
nality relation between the vector mL and the vector EmR, or, geometrically,
as the point mL being in the plane through OL orthogonal to the vector di-
rection EmR. Intersecting this plane with the image plane Z = fL yields a
line in the image, called the epipolar line (in left image) associated to mR, and
mL is on this line. Symmetrically, mR is in the plane through OR orthogo-
nal to direction EᵀmL. The vectors yielding no epipolar line are eL = µT and
eR = λR−1T characterized by EeR = EᵀeL = 0. These points, called epipoles,
designate the direction of one camera center relative to the coordinate frame
of the other camera (see Figure 3 right).



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 17

R

T

X

X

Z

Y

Y

Z

OL

OR

fL

fR

M

mL

eL
eR

mR

Fig. 3 Left: Local coordinate systems attached to optical centers OL and OR of the views
of the stereovision pair. Their focal lengths are fL and fR. The relative translation T and
rotation R align the coordinate frames. Right: Projection of a 3D point M on both views
as points mL and mR. The epipolar lines, intersections of the plane OLMOR with the two
image planes, go through epipoles eL and eR.

The estimation of E is done through matching point pairs (mi
L,m

i
R) repre-

senting an observation oi via a procedure known as the 5-point algorithm [28],
exploiting the non-linear constraints on matrix E:

‖E‖ = 1 2E EᵀE − trace(E Eᵀ)E = 0 det(E) = 0, (9)

where the norm constraint on E prevents the trivial solution E = 0 of the
other two equations. Since automatically computed matching pairs (mi

L,m
i
R)

may be outliers for some i, the RANSAC algorithm [12] (see Section 2.1) is
traditionally used: five pairs are selected to estimate E, then the number of
other pairs, called inliers, compatible with this estimation (up to the thresh-
old q) is counted; the procedure is repeated and the estimation of E with a
maximal number of inliers is returned. However, the five-point procedure is
complex due to its non-linear constraints (9). Therefore they are often relaxed
in favor of the estimation of the fundamental matrix F = (K−1

L )ᵀEK−1
R ,

where KL and KR map direction vectors mL and mR to the image points xL
and xR in homogeneous coordinates [15]. The fundamental matrix satisfies the
epipolar equation linked to image points xᵀ

L F xR = 0, and the only constraint
on the 3 × 3 matrix F is det(F ) = 0. From matching image points (xiL, x

i
R),

the simpler eight-point algorithm can be used in a RANSAC procedure and
the determinant constraint enforced a posteriori. Also, the slightly more com-
plex seven-point algorithm, embedding this constraint, can be used [23]. To
summarize, the cardinality of a RANSAC sample can be chosen as n = 5
(direct essential matrix estimation), n = 7 (via the fundamental matrix with
singularity constraint), or n = 8 (the same but with the singularity constraint
enforced a posteriori).

4.2.2 Related Work

The classical methods, based on RANSAC, are not able to guarantee that the
solution found is optimal, i.e. are not able to maximize the number of inliers.
Some works, in solving different computer vision optimization problems, tried
to find the maximum number of inliers, using a B & B method.



18 Bertrand Neveu et al.

One work [34] studies the estimation of the essential matrix and follows
an approach close to ours: it maximizes the number of inliers using a B&B
method. The differences lie in the essential matrix parameterization and in the
angular reprojection error criterion used in their approach. This extends the
earlier global optimization approach proposed in [14], where a B&B algorithm
is used to directly search for an essential matrix minimizing the maximum
reprojection error, without identifying outliers. Note that these approaches
rely on ad-hoc considerations about the essential matrix problem, while our
proposed method is a direct application of the generic algorithm.

Another work [9,10] solves different computer vision problems as homog-
raphy estimation, linearised fundamental matrix, or affine registration, finding
the maximum number of inliers. The B & B approach used builds a search tree,
branching directly on the inliers set. The optimization at each node handles
a pseudo-convex problem. Good results are obtained for problems with a low
outlier rate.

Rotational homography with unknown focal lenth is studied in [2]. A spe-
cific parameterization is used for the 4 parameters (rotation angles and focal
length).

The camera pose and feature correspondence problem is solved by a B & B
method in the 6D space of camera poses [5]. Specific computations are pro-
posed for finding a tight upper bound.

4.2.3 Model implementation

We implemented the essential matrix estimation problem as a parameter esti-
mation problem:

– Observations: oi =
(
mi
L,m

i
R

)
:=
(
K−1
L wiL,K

−1
R wiR

)
. Calibration matrices

KL and KR are known (depending on focal lengths fL and fR, and the
positions of principal points, orthogonal projections of camera centers OL
and OR on their associated image plane), their last row is

(
0 0 1

)
and

points are in homogeneous pixel coordinates w =
(
u v 1

)>.
– Model: the essential matrix E is represented by a 3× 3 matrix with 9 vari-

ables, linked by the non-linear constraints presented above: normalization,
determinant, essential matrix constraints. Overall, these constraints remove
4 degrees of freedom. Our parameter vector is thus p =

(
E11, E12, . . . , E33

)
.

The internal constraints C(p) are the 11 scalar equations (9).
– Criterion: maximization of the number of inliers, with a given tolerance τ .

An inlier is an observation o =
(
mL,mR

)
such that

−τ ≤ f(o,p) = m>L E mR ≤ τ. (10)

However, for a point near the epipole, such that m>LE ∼ 0 or EmR ∼ 0,
the preceding test can succeed whatever the corresponding point, respec-
tively mR or mL. Therefore, we add the following requirement for an inlier,
depending on a threshold εepi:

min(‖E>mL‖∞, ‖EmR‖∞) > εepi. (11)



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 19

For estimating this essential matrix model with constraints, we use the
generic EstimBB described by Algorithm 2 that carries on a Best First Search
strategy performing feasible diving (FD) at each node. The bisection strat-
egy used is the classical Largest First strategy available in IBEX, where at
each node the variable with the largest interval is chosen to be bisected. The
other details of the algorithm, the contraction procedures and the policy for
validating inliers have been presented in Section 3.

4.2.4 Experimental results

We tested our method on the 6 real instances for essential matrix estimation
from USAC library [29], named test1 to test6, with between m = 534 and
m = 2245 pairs of 2D points.

The tolerance τ was estimated for each instance as the result of a variant of
the RANSAC algorithm, that determines this parameter based on statistical
considerations [23]. The parameters of the algorithm reported in the left part
of Tables 3 and 4 are the size limit εsol of bisected boxes and the precision
∆obj on the number of inliers.

The results reported on the right part of the tables are an interval [a, b] on
the number of inliers, meaning that a solution with a inliers has been validated
and that no solution with a number of inliers greater than b exists. We also
reported the CPU time in second, the number of nodes, and the memory used
in MBytes on an x86-64 CPU at 1600 MHz. An entry > 100, 000 means that
the timeout of 100, 000 seconds was reached. The test2, test3, test4 and test5
instances are solved to optimality with a 1% precision on the number of inliers
w.r.t the total number of correspondences. In Table 3, we can see that our
search algorithm is always significantly faster than the traditional Best First
Search (BFS). It also quickly finds good solutions and its memory consumption
is smaller than BFS (see the memory column).

Depth First Search (DFS) can only solve test2 and is 2.5 times slower than
FD. For the other instances, DFS remains stuck in a local optimum area, and
is unable to give an upper bound, or terminates with a larger precision (test5 ).

Figure 4 shows the 427 inliers found among the 534 point-point correspon-
dences of both images of test2. Each point is displayed with a portion of the
epipolar line issued from its matching point and the estimated essential ma-
trix. Most points are on, or close to, their epipolar line. Visual inspection (no
ground truth is provided for these datasets) checks that all are correct, except
a few mismatches that stand out: 3 points on the right half of the left image,
and 1 point on the brick wall of the right image. These cannot be real since
the corresponding zones are out of the frame of the alternate image. Still, they
are classified as inliers because they are close to their epipolar line by chance.
Indeed, the epipolar test is a point-to-line distance, so 1D in nature. Knowing
the image is 800 pixels high and epipolar lines are mostly horizontal, with
a 1-pixel tolerance, a pair of points randomly chosen independently in both
images can be misclassified as an inlier with a probability of 1/400. Given the
number of input pairs, it should not be surprising that a few mismatches are



20 Bertrand Neveu et al.

Fig. 4 USAC test2 results: 427 inliers found among 534 correspondences

not rejected. The detected outliers are shown in Figure 5. They are represented
by red points. Portions of the corresponding epipolar lines are in light brown
while the altitude vectors, in cyan, show the error. A couple of correspondences
are a close call (near their epipolar lines), and could have been classified as
inliers with a slightly looser tolerance.

Fig. 5 USAC test2 results: 107 outliers found among 534 correspondences

Table 4 reports the results on test1 and test6 instances. Since these in-
stances were not able to be solved to optimality, we also tested partial in-
stances with only m = 320 correspondences and computed the number of
inliers validated by the essential matrix result on these partial instances.

The test1 instance is the most difficult one, since the tolerance is smaller
and one has to go deeper in the search tree to validate the solution. The
algorithm did not terminate in 100,000 seconds, even with a partial instance
of 320 correspondences. We computed for this partial instance an essential
matrix that has 2009 inliers when we validate it on the entire instance. This
is better than the 2005 inliers directly computed on the entire instance.

The test6 instance is also difficult because the percentage of inliers is small.
We solved a partial instance with 320 correspondences to optimality. The
essential matrix computed on this partial instance validates 546 inliers on the



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 21

Table 3 Experimental results on essential matrix estimation on the USAC test2, test3,
test4 and test5 instances.

instance size tolerance algorithm εsol ∆obj inliers time nodes memory
test2 534 0.002 FD 0.0001 4 [427 432] 13,244 5,944,460 289
test2 534 0.002 BFS 0.0001 4 [427 431] 17,536 7,330,800 874
test2 534 0.002 DFS 0.001 4 [427 432] 31,904 9,829,778 53
test3 1026 0.001 FD 0.0001 9 [778 788] 15,270 4,253,024 202
test3 1026 0.001 BFS 0.0001 9 [779 788] 21,391 5,417,166 803
test3 1026 0.001 DFS 0.001 9 [24 1026] > 100,000 64
test4 877 0.0005 FD 0.0001 8 [598 606] 15,051 4,981,658 197
test4 877 0.0005 BFS 0.0001 8 [599 607] 24,658 7,313,670 961
test4 877 0.0005 DFS 0.001 8 [85 877] > 100,000 47
test5 1083 0.002 FD 0.0001 10 [657 667] 43,918 10,892,426 486
test5 1083 0.002 BFS 0.0001 10 [657 667] 53,453 12,448,860 794
test5 1083 0.002 DFS 0.01 10 [650 721] 76,891 23,939,194 65

Table 4 Experimental results on essential matrix estimation on the USAC test1 and test6
instances.

instance size tolerance algorithm εsol ∆obj inliers time nodes memory
test1 320 0.0002 FD 0.001 2 [289 295] >100,000 2198
test1 2245 0.0002 FD 0.001 21 [2005 2102] >100,000 1009
test6 320 0.002 FD 0.001 2 [96 98] 72,321 55,626,252 1569
test6 2201 0.002 FD 0.001 21 [526 949] >100,000 3777

entire instance with 2201 correspondences in 72,321 seconds, i.e. a greater
number than the 526 inliers obtained with the algorithm running in 100,000
seconds on the entire instance.

We also performed experiments on the two image pairs from the Corridor
(Figure 6) and Valbonne (Figure 7) data sets4 also tested in [34]. 89 SIFT
matches were generated for each pair using the online SIFT code.5 The intrinsic
camera parameters for the Valbonne church come from [13]. In these figures,
inliers are marked with green points while outliers are linked by red lines. For
each outlier, a portion of the epipolar lines is displayed in pale brown while
the altitudes, marking the distance to the epipolar line, are shown in cyan.

A close inspection of these results show that there are two false negatives
for the Corridor dataset: one is on the appliance at head level fixed to the
wall, while the other corresponds to a point very close to the epipole in the
left image. The latter is a true match but the proximity to epipole induces
an imprecise epipolar line, leading to a point-line distance of 7 pixels. There
are also two false positives, one obviously on the pipe on the up-right part of
the left image, the other on the corner of the letter O on the floor in the left
image. Concerning the Valbonne dataset, all points are correctly classified.

The results are reported in Table 5. The Valbonne pair was easier to solve
because of its smaller outlier rate. An objective comparison with the results

4 http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
5 http://demo.ipol.im/demo/82/



22 Bertrand Neveu et al.

Fig. 6 Oxford Corridor results: 58 inliers found among 89 correspondences

of [34] is not possible because the input SIFT points were not provided, and
different SIFT implementations differ notoriously in their results.

Table 5 Experimental results on essential matrix estimation on Corridor and Valbonne
instances

instance size tolerance algorithm εsol ∆obj inliers time (sec.) nodes
Corridor 89 0.002 FD 0.0001 0 [58 59] 5228 5,589,406
Corridor 89 0.002 FD 1.e-8 0 [58 58] 5973 6,331,172
Valbonne 89 0.002 FD 0.0001 0 [76 76] 1344 1,492,470

We also tried another criterion with a more geometric sense, the Sampson
error, to decide whether a matching is an inlier. This criterion is more costly to
compute and it is more difficult for the q-proj procedure to discard the outliers.
The results are for the moment limited to a partial instance of test2 with 20
correspondences, where a result of [17 20] inliers is found in 28, 900 seconds.
The current solver cannot handle either the fundamental matrix estimation
problem useful in stereo vision (dimension 7).

5 Conclusion

This paper has presented an exact interval B&B approach implemented in
IBEX for a parameter estimation taking into account outliers. The correspond-
ing code is rather generic and has the potential to become an IBEX plug-in.
First experiments on two computer vision problems (shape detection in di-
mension 3 and essential matrix estimation in dimension 5) suggest that the
current interval B&B algorithm provides good results in medium dimension,



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 23

Fig. 7 Valbonne church results: 76 inliers found among 89 correspondences

i.e. up to 4 or 5 parameters (depending on the inlier rate), whereas most exact
approaches cannot cope with dimension 3.

References

1. Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper Bounding in Inner Regions
for Global Optimization under Inequality Constraints. J. Global Optimization (JOGO)
60(2), 145–164 (2014)

2. Bazin, J.C., Seo, Y., Hartley, R., Pollefeys, M.: Globally Optimal Inlier Set Maximiza-
tion With Unknown Rotation and Focal Length. In: Proc. of European Conference of
Computer Vision (ECCV), LNCS, vol. 8690, pp. 803–817 (2014)

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box Con-
sistency. In: Proc. of International Conference on Logic Programming (ICLP), pp.
230–244 (1999)

4. Bethencourt, A., Jaulin, L.: 3D Reconstruction Using Interval Methods on the Kinect
Device Coupled with an IMU. Int. Journal of Advanced Robotic Systems 10 (2013)

5. Campbell, D., Peterson, L., Kneip, L., Li, H.: Globally-Optimal Inlier Set Maximisation
for Simultaneous Camera Pose and Feature Correspondence. In: IEEE International
Conference on Computer Vision (ICCV) (2017)

6. Carbonnel, C., Trombettoni, G., Vismara, P., Chabert, G.: Q-Intersection Algorithms
for Constrained-Based Robust Parameter Estimation. In: Proc. of Conference of the
Association for the Advancement of Artificial Intelligence (AAAI), pp. 2630–2636 (2014)

7. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–1100
(2009)



24 Bertrand Neveu et al.

8. Chew, P., Marzullo, K.: Masking Failures of Multidimensional Sensors. In: Proc. of
Reliable Distributed Systems, pp. 32–41 (1991)

9. Chin, T.J., Purkait, P., Eriksson, A., Suter, D.: Efficient Globally Optimal Consensus
Maximisation with Tree Search. In: Proc. of CVPR 15 (2015)

10. Chin, T.J., Purkait, P., Eriksson, A., Suter, D.: Efficient Globally Optimal Consensus
Maximisation with Tree Search. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 758–772
(2017)

11. Collavizza, H., Delobel, F., Rueher, M.: Comparing Partial Consistencies. Reliable
Computing 5(3), 213–228 (1999)

12. Fischler, M.A., Bolles, R.C.: Random Sampling Consensus: a Paradigm for Model Fit-
ting with Applications to Image Analysis and Automated Cartography. Commun. of
the ACM 24(6), 381–395 (1981)

13. Fusiello, A., Benedetti, A., Farenzena, M., Busti, A.: Globally Convergent Autocali-
bration Using Interval Analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence 26(12), 1633–1638 (2004)

14. Hartley, R., Kahl, F.: Global Optimization through Searching Rotation Space and Op-
timal Estimation of the Essential Matrix. In: Proceedings of ICCV (2007)

15. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
University Press (2003)

16. Jaulin, L., Bazeille, S.: Image Shape Extraction using Interval Methods. In: Proc. of
the 16th IFAC Symposium on System, pp. 378–383 (2009)

17. Jaulin, L., Walter, E.: Guaranteed Robust Nonlinear Minimax Estimation. IEEE Trans.
on Automatic Control 47 (2002)

18. Jaulin, L., Walter, E., Didrit, O.: Guaranteed Robust Nonlinear Parameter Bounding.
In: CESA’96 IMACS Multiconference (Symposium on Modelling, Analysis and Simula-
tion), pp. 1156–1161 (1996)

19. Lai, K., Fox, D.: Object recognition in 3d point clouds using web data and domain
adaptation. International Journal of Robotics Research 29(8), 1019–1037 (2010)

20. Longuet-Higgins, H.C.: A Computer Algorithm for Reconstructing a Scene from two
Projections. Nature 293(5828), 133–135 (1981)

21. Messine, F.: Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la
résolution des problèmes avec contraintes. Ph.D. thesis, LIMA-IRIT-ENSEEIHT-INPT,
Toulouse (1997)

22. Misener, R., Floudas, C.: ANTIGONE: Algorithms for coNTinuous / Integer Global
Optimization of Nonlinear Equations. J. Global Optimization (JOGO) 59(2), 503–526
(2014)

23. Moisan, L., Moulon, P., Monasse, P.: Fundamental Matrix of a Stereo Pair, with A
Contrario Elimination of Outliers. Image Processing On Line 6, 89–113 (2016). https:
//doi.org/10.5201/ipol.2016.147

24. Neveu, B., de la Gorce, M., Trombettoni, G.: Improving a Constraint Programming
Approach for Parameter Estimation. In: 27th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI), pp. 852–859 (2015)

25. Neveu, B., Trombettoni, G., Araya, I.: Adaptive Constructive Interval Disjunction: Al-
gorithms and Experiments. Constraints Journal 20(7), 452–467 (2015)

26. Neveu, B., Trombettoni, G., Araya, I.: Node Selection Strategies in Interval Branch and
Bound Algorithms. Journal of Global Optimization 64(2), 289–304 (2016)

27. Ninin, J., Messine, F., Hansen, P.: A Reliable Affine Relaxation Method for Global
Optimization. 4OR pp. 1–31 (2014)

28. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 26(6), 756–770 (2004)

29. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: Usac: A universal frame-
work for random sample consensus. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 35(8) (2013)

30. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for Point-Cloud Shape Detection.
Computer Graphics Forum 26(2), 214–226 (2007)

31. Tawarmalani, M., Sahinidis, N.V.: A Polyhedral Branch-and-Cut Approach to Global
Optimization. Mathematical Programming 103(2), 225–249 (2005)

32. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner Regions and Interval Lin-
earizations for Global Optimization. In: Proc. AAAI, pp. 99–104 (2011)



A Generic Interval Branch and Bound Algorithm for Parameter Estimation 25

33. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica : A Modeling Language for Global
Optimization. MIT Press (1997)

34. Yang, J., Li, H., Jia, Y.: Optimal Essential Matrix Optimization via Inlier-Set Maxi-
mization. In: Proc. of European Conference of Computer Vision (ECCV), pp. 111–126
(2014)


