
An Interval Branch and Bound Algorithm for Parameter
Estimation and Application to Stereovision

Bertrand Neveu1,a),b), Martin de la Gorce1,c), Pascal Monasse1,d) and Gilles
Trombettoni2,e)

1LIGM, Ecole des Ponts Paristech, Université Paris Est, France
2LIRMM, Université de Montpellier, CNRS, France

a)Corresponding author: Bertrand.Neveu@enpc.fr
b)Bertrand.Neveu@enpc.fr

c)martin.delagorce@gmail.com
d)Pascal.Monasse@enpc.fr

e)Gilles.Trombettoni@lirmm.fr

Abstract. The parameter estimation problem is a challenging problem in engineering sciences consisting in computing the parame-
ters of a parametric model that fit observed data. The system is defined by unknown parameters and sometimes internal constraints.
The observed data provide constraints on the parameters. The parameter estimation problem is particularly difficult when some
observation constraints correspond to outliers and/or the constraints are non convex. For dealing with outliers, the RANSAC ran-
domized algorithm is efficient, but non deterministic, and must be specialized for every problem. In this work, we propose a generic
interval branch and bound algorithm that produces a model maximizing the number of observation constraints satisfied within a
given tolerance. This tool is inspired by the IbexOpt Branch and Bound algorithm for constrained global optimization (NLP) and
is endowed with an improved version of a relaxed intersection operator applied to the observations. The latest version of our B&B
follows the Feasible diving strategy to visit the nodes in the search tree. Experiments on a stereovision problem have validated the
approach.

PARAMETER ESTIMATION

Parameter estimation is a difficult problem widely studied by engineering sciences. It consists in determining the
n numerical parameters of a model based on m observations. Calibration or geolocation can be viewed as specific
parameter estimation problems.

A parameterized model is defined by an implicit equation f (x,p) = 0, p = (p1, . . . , pn) being the n-vector of
parameters to be determined. An observation oi is a d-dimensional vector of observed data (values) for x. Given a finite
set of observations {o1, . . . , oi, . . . , om}, we search for a parameter vector that fits the observations, i.e. that satisfies the
observation constraints f (oi,p) = 0. Because the model is not perfect or due to uncertainties on the observations oi,
there exists generally no model fitting all the observation constraints exactly. In addition, the answer of least square
methods or numerical local methods (for nonlinear observation constraints) is poor in the presence of outliers. Outliers
can have numerous origins, including extreme values of the noise, erroneous measurements and data reporting errors.

That is why we consider an approach where the observation constraints are handled within a tolerance value τ:

−τ ≤ f (oi,p) ≤ +τ.

The observations are partitioned into a group of outliers and a group of inliers. The inliers correspond to the consensus
set (Consensus(p)), i.e. the set of observations compatible with p:

Consensus(p) = {oi| − τ ≤ f (oi,p) ≤ +τ}. (1)

Outliers do not satisfy the corresponding relaxed observation constraints.



The problem is to compute a model fitting a maximum number of observations. More precisely, a parameterized
model can be defined by the observation constraints and internal constraints between parameters C(p), so that the
estimation parameter problem handled by the interval Branch and Bound proposed in this paper is defined as follows:

arg max
p

(card(Consensus(p))) s.t. C(p). (2)

PARAMETER ESTIMATION FITTING A MAXIMUM NUMBER OF INLIERS

Interval Arithmetic and Contractors
We denote by [xi] = [xi, xi] the interval/domain of the real-valued variable xi, where xi, xi are floating-point numbers.
A Cartesian product of intervals like the domain [x] = [x1] × ... × [xN] is called a (parallel-to-axes) box. width(xi)
denotes the size or width xi − xi of an interval [xi]. The width of a box is given by the width xmax − xmax of its largest
dimension xmax. The perimeter of a box, given by

∑
i xi − xi, is another size measurement.

Interval methods also provide contracting operators (called contractors), i.e. methods that can reduce the variable
domains involved in a constraint or a set of constraints without loss of solutions. Let us consider one observation oi
and a subspace of the parameter space given by a box [p]. Given an observation oi, we denote Vi the set of parameter
vectors that are compatible with that observation, i.e. Vi = {p | −τ ≤ f (oi,p) ≤ +τ}. The set of parameter values inside
this box that are compatible with oi is given by Vi ∩ [p]. A contractor is able to reduce the input box [p] while keeping
all the points in Vi ∩ [p], i.e. without losing any solution. An important contractor used in our optimization code is
the well-known HC4-revise [1, 2], also called forward-backward. This contractor traverses twice the expression tree
corresponding to a given constraint to contract the domains of its variables.

Another contractor is applied to the m boxes obtained after having contracting the box studied using the m
observation constraints. The q-intersection operator relaxes the (generally empty) intersection of the m boxes by the
union of all the intersections obtained with q boxes (q < m). More formally:

Definition 1 Let S be a set of boxes. The q-intersection of S , denoted by ∩qS , is the box of smallest perimeter
that encloses the set of points of Rn belonging to at least q boxes.

The q-intersection of boxes is a difficult problem and has been proven DP-complete in [3] where an exact algorithm
based on the search of q-cliques has been proposed. In this paper, we simply resort to a non optimal q-intersection
operator often used in parameter estimation, called here q-proj, that solves the problem on each dimension indepen-
dently [4]. The overall complexity of q-proj is O(nm log(m)).

Interval Branch and Bound for Parameter Estimation
We have designed an interval B&B algorithm for parameter estimation that computes a model maximizing the con-
sensus of a parameterized model. It appeared that the standard best-first search strategy has difficulties to find a good
solution and that a depth first search strategy gets stuck in a local optimum area. Therefore we have used a mixed
strategy based on best-first search where, at each node, a feasible diving procedure is performed [5].

The main EstimB&B algorithm returns the best solution found (best is the node where the best solution has
been found), with a number qmin of validated inliers, and an interval [qmin, qmax]. Either the precision ∆ob j required
on the number of inliers is obtained, i.e. qmax − qmin ≤ ∆ob j, or qmax − qmin > ∆ob j, which means that “small” boxes
with width inferior to εsol remain open (unexplored) with a number of inliers at most equal to qεsol

max. The EstimB&B
algorithm achieves a best-first search by maintaining a set of open nodes nodeHeap. This set is implemented by a
heap data structure having at its top the node with the largest number of possible inliers (i.e., an upper bound qmax of
the objective function value to maximize). EstimB&B selects iteratively the node having the greatest qmax and calls the
FeasibleDiving function on it.

Feasible Diving

The FeasibleDiving function is called with the model as parameter: the parameters p of the model, i.e. the variables
to be determined using the internal constraints C and the observation constraints Cobs = {−τ ≤ f (oi,p) ≤ +τ}. From
the selected node, FeasibleDiving, described in Algorithm 1, builds a tree in depth-first order and keeps only the
most promising node at each iteration. More precisely, the box in the node is bisected along one dimension and the



FeasibleDiving (node, C, Cobs, best, nodeHeap, εsol, qεsol
max)

while node.box , ∅ and width(node.box) > εsol and not node.isLea f do
(node1, node2)← Bisect (node) // Bisection of node.box
(node1, best, qεsol

max)← Contract&Bound (node1, C, Cobs, εob j, ∆ob j,best,qεsol
max)

(node2, best, qεsol
max)← Contract&Bound (node2, C, Cobs, εob j, ∆ob j,best,qεsol

max)
(nodebetter, nodeworse)← Sort (node1, node2)
if nodeworse.box , ∅ and width(nodeworse.box) > εsol and not isLea f then

nodeHeap← Push(nodeworse, nodeHeap)
node← nodebetter

return (nodeHeap, best, qεsol
max)

Algorithm 1: The Feasible Diving procedure run at each node of our interval B&B algorithm.

two sub-boxes are handled by a Contract&Bound procedure. The sub-box with the largest qmax is handled in the next
step while the other sub-box is pushed into the heap nodeHeap of open nodes. Thus, FeasibleDiving is a greedy
algorithm that does not perform any backtracking.

Contract and Bound

The Contract&Bound function handles every open node. It contracts the node box and tries to prove (guarantee)
that more than best.qmin + ∆ob j observation constraints are satisfied inside the box. Recall that the best node found
so far has at least qmin valid inliers, so that the next best node (if any) is searched for with a cost at least equal to
best.qmin + ∆ob j + 1.

1. The box is first contracted by the constraints C between parameters, if any: first, the HC4 constraint propagation
algorithm is performed. We add calls to a linear programming solver for improving variable interval bounds,
using a linear relaxation of the constraints based on affine arithmetics [6].

2. The q-intersection projection algorithm, using q = best.qmin + ∆ob j+1 is then called on the n parameter direc-
tions. We also perform a q-projection on an additional direction where we hope to obtain small intervals, thus
favoring a failure of the q-intersection. To this end, we linearize and relax every observation constraint, and
project the parallelograms obtained on the direction corresponding to the mean normal vector of the “parallelo-
gram” gradients. Details can be found in [7].

3. An upper bound node.qmax of the number of inliers in the node is given by the minimum over all dimen-
sions of the maximum number of intersected intervals found by the q-projection procedure in a dimension. If
node.qmax < q, then the node box becomes empty and the corresponding branch in the tree will be pruned.

4. To improve the lower bound, one has to find a feasible point in the current box, i.e. a point that satisfies all the
constraints C, if any, and a greater number of observation constraints Cobs than the current solution. When C is
not empty, the search of the solution validating inliers is a difficult task in itself. We have designed a variant of
an algorithm used in IbexOpt (see [8]) that tries to build an inner polytope inside the box where all the points
satisfy the constraints C. If such a polytope is built, a point (vertex) is picked inside it and we compute the
number of inliers at this feasible point for updating the new current solution.

In conclusion, with the implementation of our EstimBB code, we are close to provide a generic tool for parameter
estimation taking into account outliers.

EXPERIMENTS

Our EstimBB code has been implemented in the Interval Based EXplorer (Ibex) [9], a free C++ library devoted to
interval computing. We made preliminary experiments on the shape (plane or circle) detection problem studied in [7],
replacing the search of all solutions with at least q inliers by the optimization problem presented in this paper. These
problems have a parameter space of dimension n = 3 and have no additional (internal) constraints. Second, we tried to
solve the more challenging problem of essential matrix estimation in stereo vision having n = 5 parameters. We tested
our method on the 6 real instances for essential matrix estimation from USAC library [10], named test1 to test6, with
between m = 534 and m = 2245 pairs of 2D points. The test2, ..., test5 instances are solved to optimality within a 1%



precision on the number of inliers w.r.t the total number of correspondences in several hours. The test6 instance seems
more difficult because the percentage of inliers is small, but we succeeded in computing a model to optimality by
solving a partial instance with 320 correspondences. The test1 instance is the most difficult one, since the tolerance is
smaller and one has to go deeper in the search tree to validate the solution. The algorithm did not terminate in 100,000
seconds. The figure below shows the set of inliers found on test5.

CONCLUSION

This paper has presented an exact interval B&B approach implemented in IBEX for parameter estimation taking into
account outliers. The corresponding code is generic. First experiments on different computer vision problems suggest
that the current interval B&B algorithm provides good results in medium dimension, i.e. up to 4 or 5 in number of
parameters (depending on the inlier rate), whereas most exact approaches cannot cope with dimension 3.

REFERENCES

[1] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget, “Revising Hull and Box Consistency,” in Proc.
of International Conference on Logic Programming (ICLP) (1999), pp. 230–244.

[2] F. Messine, “Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution des
problèmes avec contraintes,” Ph.D. thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse 1997.

[3] C. Carbonnel, G. Trombettoni, P. Vismara, and G. Chabert, “Q-Intersection Algorithms for Constrained-
Based Robust Parameter Estimation,” in Proc. of Conference of the Association for the Advancement of
Artificial Intelligence (AAAI) (2014), pp. 2630–2636.

[4] P. Chew and K. Marzullo, “Masking failures of Multidimensional Sensors,” in Proc. of Reliable Distributed
Systems (1991), pp. 32–41.

[5] B. Neveu, G. Trombettoni, and I. Araya, Journal of Global Optimization 64, 289–304 (2016).
[6] J. Ninin, F. Messine, and P. Hansen, 4OR 1–31 (2014).
[7] B. Neveu, M. de la Gorce, and G. Trombettoni, “Improving a Constraint Programming Approach for Param-

eter Estimation,” in 27th IEEE International Conference on Tools with Artificial Intelligence (ICTAI) (2015),
pp. 852–859.

[8] I. Araya, G. Trombettoni, B. Neveu, and G. Chabert, Journal of Global Optimization 60, 145–164 (2014).
[9] G. Chabert and L. Jaulin, Artificial Intelligence 173, 1079–1100 (2009).

[10] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm, IEE Transactions on Pattern Analysis and
Machine Intelligence 35 (2013).


