



# Impacts of digestion protocols on chemical and natural fibers

Robin Treilles<sup>a</sup>, A. Cayla<sup>b,c</sup>, J. Gasperi<sup>a</sup>, B. Strich<sup>c</sup>, P. Ausset<sup>d</sup> and B. Tassina

> <sup>a</sup> University of Paris-Est, LEESU, France <sup>b</sup> University of Lille Nord de France, Lille, France <sup>c</sup> ENSAIT, GEMTEX, Roubaix, France <sup>d</sup> University of Paris-Est Créteil, LISA, France robin.treilles@enpc.fr

#### Introduction

**Digestion protocols** are used **to dissolve organic matter** in environmental samples. In recent works, we observe three important points:

**1. Fibers** correspond to **the greater fraction** of microplastics in water samples.

|  |                           | Rain Waters  | Washing<br>Machine<br>Effluents | Surface<br>Waters |  |
|--|---------------------------|--------------|---------------------------------|-------------------|--|
|  | Fibers<br>(Item/Liter)    | 20 - 40      | 9,000 - 35,000                  | 0.03 - 0.05       |  |
|  | Fragments<br>(Item/Liter) | Not observed | < 2                             | 0.001 - 0.003     |  |

Table from ASTEE Presentation, Tassin et al., 2018



- 2. Quality Assurance/Quality Control (QA/QC) for digestion protocols are more and more developed for fragments but not for fibers.
- 3. Impacts of digestion protocols on fibers?

#### Which fibers?

#### The most commonly used fibers (Raw fibers)





## The selected digestion protocols

Four different digestion protocols have been selected:

- KOH 10%, 40°C, 24h (Dehaut et al., 2016)
- KOH 10%, 60°C, 24h (Karami et al., 2017)
- H<sub>2</sub>O<sub>2</sub> 30%, 50°C, 48h (Stolte et al., 2015)
- NaClO 9%, ambient temperature, one night (Collard et al., 2015)



After digestion

and filtration



#### **Methods**

Fibers Caracterisation before and after digestion

Morphological aspects

② Mechanical Properties Thermal and Chemical Properties

- Mass variation
- Microscope observation:
  - Optical
  - Scanning Electron Microscope

- Linear mass density
- Tenacity = Breaking strain
- Elongation at break

- Differential Scannning Calorimetry (DSC)
- Infrared Spectroscopy (FTIR)

## Results: Morphological study



Flax, Microscope x 40, before and after NaClO digestion

## Results: Morphological study



After digestion

KOH 10% 60°C

24 hours



PET, Microscope x 40, before and after KOH 60°C digestion

## Results: Scanning Electron Microscope on PET











10 μm

## Results: Scanning Electron Microscope on PET













## Results: Thermal and Chemical Properties



Blue curve: before KOH 10 % 60°C digestion

Red curve : after KOH 10% 60°C digestion

## Results: Thermal and Chemical Properties



Blue curve : before KOH 10 % 60° digestion

Red curve: after KOH 10% 60° digestion

#### Conclusion for chemical fibers



#### Conclusion for natural fibers





#### Number of criteria > 3

|                 | PET | PA 6.6 | Acrylic | Viscose | Wool | Flax | Cotton |
|-----------------|-----|--------|---------|---------|------|------|--------|
| <b>KOH 40°C</b> | 0   | 1      | 0       | 0       | 5    | 0    | 0      |
| <b>KOH 60°C</b> | 5   | 1      | 0       | 0       | 5    | 1    | 0      |
| NaClO           | 0   | 1      | 0       | 0       | 5    | 1    | 0      |
| H2O2            | 0   | 1      | 0       | 2       | 5    | 0    | 0      |

#### Conclusion



#### Conclusion

KOH 40°C digestion seems more relevant for 6 types of fibers.

T > 60°C → Not recommended

Which
Digestion? Which
Fibers ?!

Global Conclusion

- More observations with the SEM
- Fenton's reagent ?Enzymatic digestion ?
- What will happen with environmental fibers?

Outlook?

# Thank you for your attention!



Questions?