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Abstract

We provide probabilistic forecasts of photovoltaic
(PV) production, for several PV plants located in
France up to 6 days of lead time, with a 30-
min timestep. First, we derive multiple forecasts
from numerical weather predictions (ECMWF and
Météo France), including ensemble forecasts. Second,
our parameter-free online learning technique gener-
ates a weighted combination of the production fore-
casts for each PV plant. The weights are computed
sequentially before each forecast using only past in-
formation. Our strategy is to minimize the Contin-
uous Ranked Probability Score (CRPS). We show
that our technique provides forecast improvements
for both deterministic and probabilistic evaluation
tools.

Introduction

Improved photovoltaic power integration needs bet-
ter power forecasts. Forecasters may pursue efforts to
improve meteorological models, weather-based power
models or statistical post-processing methods. For
our part, we focus on the following case: a forecaster,
willing to provide probabilistic PV power forecasts,
retrieves multiple meteorological forecasts (possibly
from various sources). In this general setting, nu-
merous state-of-the-art methods can be tested and
combined.

Meteorological forecasts can either be deterministic

single forecasts or an ensemble of forecasts, usually
at coarser resolution. Inman et al. (2013) provide a
review of PV forecasting methods with deterministic
forecasts. Ensemble forecasting and more generally
probabilistic forecasting has been widely covered in
the meteorological community (Gneiting and Katz-
fuss, 2014). Only recently, ensemble-based forecast-
ing techniques are tested for PV (Zamo et al., 2014),
while these techniques are more common for wind
and wind power forecasting (Ren et al., 2015).

A recent benchmark of deterministic and prob-
abilistic PV forecasts is analyzed in Sperati et al.
(2015), along with classical diagnostic tools. Prob-
abilistic forecasts rely on the estimation of quan-
tiles of the predicted probability density function
(PDF). Quantile regression (Almeida et al., 2015) and
analogs (Alessandrini et al., 2015; Huang and Perry,
2015) are amongst the most popular techniques for
quantile estimation in PV. These techniques do not
require an ensemble of forecasts as they can rely only
on the historical variability of the forecasts and pro-
duction data. The main drawback of most of the
previously cited methods is that they use a single
method and not a combination of several methods.

A forecaster having multiple forecasts hopefully
wishes to combine them. In our case, we combine de-
terministic forecasts, quantile forecasts and ensemble
forecasts, which is seldom the case. We combine these
different types of forecasts to take advantage of their
diversity. On the one hand, ensemble members de-
scribe several meteorological situations. On the other
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hand, quantile forecasts are built from the errors of
a deterministic forecast, which describes a single me-
teorological situation with a finer resolution than the
ensemble forecasts. Quantile forecasts estimate the
inability of the forecaster to provide a perfect deter-
ministic forecast.

The forecasts combination can be carried out in
an optimal way. A batch process would not pro-
duce an estimation based on all available data but
only on a limited learning data set. A batch pro-
cess can be updated but it will only mimic an online
learning technique. On the contrary, online learn-
ing techniques provide rules for combining forecasts,
see the monograph Cesa-Bianchi and Lugosi (2006).
The combination rules stemming from online learn-
ing depend only on the available past information
at each forecast step and come with theoretical per-
formance guarantee under essentially no assumptions
(concerning prior weights, underlying stochastic pro-
cess or distributions). The theoretical guarantee of
the online learning algorithm can be seen as a long
term performance guarantee without stationarity or
ergodicity assumptions. Online learning techniques
have been tested for several applications: electricity
consumption, ozone concentration, wind and geopo-
tential fields, and solar irradiance (Stoltz, 2010; Mal-
let et al., 2009; Mallet, 2010; Devaine et al., 2013;
Baudin, 2015; Thorey et al., 2015).

This paper presents application results with our in-
novative approach (Thorey et al., 2016), whose pur-
pose is to combine multiple forecasters in a linear
opinion pool (Genest and McConway, 1990; Geweke
and Amisano, 2011). The originality of our technique
is to use combination rules deriving from online learn-
ing techniques in order to minimize the CRPS of the
weighted empirical distribution function. We stress
here the fact that our method provides theoretical
guarantee and that it does not rely on distribution as-
sumptions. Besides, the algorithm has a low compu-
tational cost and is parameter-free. Our framework
is inspired from the work of Gaillard et al. (2016),
which focuses on quantile scoring functions.

Minimizing the CRPS is a common strategy in the
meteorological literature to obtain calibrated proba-
bilistic forecasts. However, standard techniques do
not offer theoretical guarantees of robustness and

usually resort to strong assumptions on the distri-
butions. For example, Bayesian model averaging
(BMA) techniques provide a mixture of paramet-
ric distributions, usually a Gaussian sum (Raftery
et al., 2005) or gamma distributions sum for wind
and precipitation applications (Sloughter et al., 2010,
2007). Non-homogeneous regression fits the parame-
ters of a parameterized distribution using characteris-
tics of the ensemble of forecasts (Gneiting et al., 2005;
Wilks, 2009; Thorarinsdottir and Gneiting, 2010).
For instance, a Gaussian distribution is fitted using
a linear model between the mean of the distribution
and the mean of the forecasts. Besides, likelihood
maximization with the logarithm loss is not an ap-
propriate tool in our setting since it fails to produce
satisfactory scores for a discrete probability distribu-
tion. A discussion on local scores such as the loga-
rithm loss is addressed by Bröcker and Smith (2007b).

The main contributions of this manuscript are
twofold:

• We show probabilistic forecasts performance on
a large data set comprising 219 PV power
plants with deterministic, quantile and deter-
ministic forecasts from two meteorological cen-
ters (ECMWF and Météo France). We evalu-
ate PV forecasts that are used operationally at
a country-scale.

• Our statistical postprocessing technique creates
a weighted empirical distribution by CRPS min-
imization with theoretical guarantees under es-
sentially no assumptions.

In Section 1, we introduce the production data sets
and the forecasts from ECMWF and Météo France.
We detail our method to generate deterministic,
quantile and ensemble PV forecasts from ensemble
and deterministic weather forecasts. We finish this
section by describing linear opinion pools, or in other
words, by describing how we build a probabilistic
forecast from multiple pointwise forecasts. The eval-
uation tools are described in Section 2, with a focus
on the CRPS. Our statistical post-processing method
is explained in Section 3. We detail how the weights
of the linear opinion pool are updated. Numerical
results and discussions are developed in Section 4.
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The deterministic and probabilistic predictive skills
of the present forecasts are computed. In particular,
we highlight the benefits of using our online learning
algorithm compared to simply using uniform weights.

1 Methods

1.1 Production and meteorological
data

The production data cover 219 PV power plants
in metropolitan France with 21 consecutive months
(January 2012 to October 2013). The total power of
the plants is referred to as France production. We
wish to provide production forecasts for each power
plant and for France production. The data are shown
as load factor, i.e. scaled by the installed capacity.
France production forecasts are the weighted sums
of the plant forecasts w.r.t. the installed capacity of
each plant.

Forecast data are summarized in Table 1 and 2. We
use data from two meteorological centers (ECMWF
and Météo France), both deterministic forecasts and
ensembles of forecasts: HRES and ENS for ECMWF,
and ARPEGE and PEARP for Météo France
(Courtier et al., 1991; Descamps et al., 2015; Palmer
et al., 2009), up to a lead time of 6 days. Note that
the deterministic forecasts are not the unperturbed
members of the ensembles of forecasts but different
forecasts, with better resolution.

We are interested in predicting the 30-min average
power output of the plants. We only show results
for the following hours of the day 06:00, 09:00, 12:00,
15:00, and 18:00 UTC in order to save computation
time and to avoid the issue of temporal interpolation
of our forecast data. Ensemble forecasts are only so-
lar irradiance forecasts while deterministic forecasts
also include total cloud cover Tcc and 2-m temper-
ature T2m. The ensemble PEARP is available for
longer lead times but only with a time step of 6 (and
not 3) hours. Consequently, for our application we
restricted the use of PEARP up to 2 days.

1.2 Conversion of meteorological fore-
casts to production forecasts

Our regression technique is inspired from Bacher
et al. (2009) and Lorenz et al. (2009). This regres-
sion technique has been successfully applied in the
benchmark of Sperati et al. (2015), where the tech-
nique ranked first in the deterministic PV forecasting
competition.

The training set ranges from early 2012 to Febru-
ary 2013 (nearly 400 days). The testing set with the
remaining days of 2013 is about 240-day long. For
a given weather forecast, the following technique is
applied for each time of the day and for each power
plant independently.

First, clear sky indices τP and τI are generated
from the production P and the solar forecasts I:

τP =
P

Pcc
and τI =

I

Icc
, (1)

where clear sky production Pcc and clear sky solar
radiation Icc are the production and solar radiation
in clear sky conditions. The clear sky profiles Pcc and
Icc are respectively estimated from the production P
and the solar forecasts I thanks to quantile regression
introduced below.

Quantile regression uses a piecewise linear asym-
metric loss function QSα(x, y) called the quantile
score (or pinball loss) of level α (Koenker and Hal-
lock, 2001):

QSα(x, y) = α(y − x)+ + (1− α)(x− y)+ , (2)

where (·)+ = max(·, 0). The expectation (over y) of
QSα(x, y) is minimized if x correctly estimates the
quantile of level α of y.

The clear sky profiles Pcc and Icc are based on
quantile regressions with only trigonometric polyno-
mials of time as inputs, see Lorenz et al. (2009). For
Pcc, we have

Pcc =

4∑
j=1

aj sin(jλs) + a′j cos(jλs) , (3)

where λ is the wavenumber corresponding to a year
and s is the number of time elapsed since the begin-
ning of the year. The quantile regression determines
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D D + 1 D + 2 D + 3 D + 4 D + 5

PEARP PEARP x x x x
Det Det Det Det x x
ENS ENS ENS ENS ENS ENS

Table 1: Forecast availability with lead time. PEARP is the Météo France ensemble, Det defines the
deterministic forecasts Arpège and HRES, and ENS is the ECMWF ensemble.

Label Nature Origin Timestep Resolution Base time Number of forecasts

HRES deterministic ECMWF 3 h 0.13◦ 0 h 1
ARPEGE deterministic Météo France 1 h 0.10◦ 0 h 1

ENS ensemble ECMWF 3 h 0.25◦ 0 h 50
PEARP ensemble Météo France 3 h 0.20◦ 18 h 34

Table 2: Forecast weather data. The indicated resolutions may change for further lead times than those of
the present article.

the coefficients aj and a′j for a level of quantile close
to 90%. A similar procedure is applied to build Icc.

1.2.1 Deterministic PV forecasts

The main idea of the statistical modelling is to use
both meteorological and temporal information to pro-
vides estimates of the production index τP . The
model can be seen as a sum of weather-related terms
and trigonometric polynomials of time as in Equa-
tion 3. The whole model is decomposed into several
parts with: (1) a weather-related model, (2) an anal-
ysis of the residuals with trigonometric polynomials
of time and (3) a multiplicative bias correction.

The first part of the statistical analysis is a lin-
ear regression between the production index τP and
the meteorological variables (the clear sky index τI ,
the total cloud cover Tcc, and the temperature T2m).
Non-linear dependencies are taken into account by
introducing several terms such as the squared clear
sky index τ2I and cross terms between variables
τI(T2m−T 2m). The quantity T2m−T 2m is the devi-
ation of the temperature T2m from its local seasonal
average value T 2m. The linear regression estimates
the coefficients bi to produce

τ̂P = b0+b1τI+b2τ
2
I +b3Tcc+b4τI(T2m−T 2m) . (4)

A secondary statistical model is then fitted on the

residuals τ̂P − τP . The objective of this secondary
model is to reduce the seasonal biases and other re-
maining errors of the first model. We use the elapsed
time s and the production forecasts τ̂P as inputs to
build

̂̂τP = c0τ̂P +

4∑
j=1

cj sin(jλs) + c′j cos(jλs) . (5)

The model parameters of the first two steps are
set with the forecasts with lead times less than 24 h.
The motivation behind is that the forecasts with
short lead times are presumably the most accurate
forecasts to fit the main parameters. Still, forecast-
ing long lead times may necessitate slight corrections
compared to short lead times, hence we introduce a
third step, which takes into account the lead time of
the forecasts. The third step is a multiplicative cor-

rection γ applied to ̂̂τP , such that γ̂̂τP /τP is equal to

1 on average. In this third step, both γ and ̂̂τP are
lead time dependent.

The statistical regression scheme is slightly differ-
ent for ensemble and deterministic forecasts. For en-
semble forecasts, the input variable of the linear re-
gression is simply the solar irradiance of the unper-
turbed member without other weather variables. The
same conversion model is used for all the members of
a given ensemble.
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1.2.2 Quantile PV forecasts

For each deterministic production forecast, we build
19 quantile forecasts (of order 5 to 95) for a total
of 38 additional forecasts. They are referred to as
deterministic quantiles as opposed to the ensemble
members. The idea is to train PV quantile forecasts
based on the value of the deterministic PV forecast,
see (Nielsen et al., 2006). We follow the idea that we
should first precisely estimate the mean of the dis-
tribution and only then estimate the quantiles. The
quantile regressions are carried out independently for
each lead time.

We apply quantile regressions on the residuals of
the deterministic forecast obtained at the end of Sec-
tion 1.2.1. The inputs are the deterministic fore-
cast and trigonometric polynomials of s, similarly to
Equation 5.

Concerning France production deterministic quan-
tiles, they are not set to a weighted sum of quantiles
of the plants, but they are determined from the de-
terministic forecast of France production. In other
words, the deterministic forecasts of the plants are
summed to generate France production forecast, and
this forecast is used to generate quantile forecasts for
France production.

At this point, the forecaster has a total of
50 + 34 + 2× 19 + 2 = 124 forecasts up to the lead
time of 48 hours, 90 forecasts up to the lead time of
96 hours, and 50 forecasts up to the lead time of 138
hours.

1.3 Linear opinion pools

Using a discrete Cumulative Distribution Function
(CDF) based on several forecasts allows us to model
any CDF without distribution assumption.

Let the xm be M forecasts (or members) and the
um be M weights given to the forecasts. The fore-
caster’s CDF

G =
∑
m

umHm (6)

is designed as a weighted combination of unit step
functions, where Hm(x) = H(x−xm) equals 0 before
xm and 1 otherwise. The mth step of G is centered on
xm and its height equals the weight um. The weights

G̃

G

um
ũm

xm x0

1

Figure 1: Illustration of weighted CDFs. The CDFs
G and G̃ are built with the same locations xm. How-
ever the weights um and ũm given to a member are
respectively different for G and G̃.

um are non-negative and sum to one (u ∈ PM the
simplex of RM ). This weighted CDF is also known
as model mixture or linear opinion pool.

The impact of the weights um are illustrated in
Figure 1 and 2. Two CDFs G and G̃ using the same
locations xm are shown in Figure 1. The CDF G
is built with uniform weights um = 1/M , while the

weights ũm of G̃ are not uniform. We show in Fig-
ure 2 an illustration of probabilistic forecasts in two
different cases: with equal weights for all members
and with possibly different weights given by our on-
line learning algorithm. A visual inspection indicates
that the online learning algorithm provides a better
estimation of the median and a larger spread of the
distribution. We emphasize that methods involving
weighted empirical distribution functions necessitate
that the forecasts xm are sufficiently dispersed. Since
ensemble forecasts are usually under-dispersed, we do
not expect such methods to provide satisfactory re-
sults on ensemble forecasts from a single ensemble
without postprocessing. For our part, we use two en-
sembles of forecasts and quantile forecasts in order to
improve the spread of the weighted forecast.

2 Evaluation

In the following we describe classical diagnostic tools
used in Section 4, see for example the monograph of
Jolliffe and Stephenson (2012) for further references.

We begin by describing the CRPS as it is at the
heart of our learning method.

5



5 10 15 20

0.
2

0.
5

0.
8

Equal weights

Time

P
ro

du
ct

io
n

5 10 15 20

0.
2

0.
5

0.
8

Our weighted forecast

Time

P
ro

du
ct

io
n

Figure 2: Time series of France production forecasts
scaled by the installed capacity (12 hours of lead time,
for several consecutive days). Top: equal weights for
all members, (b): our forecast with online learning
of the weights. Real production is in red and the
median of the forecasted distribution is in white.

2.1 The CRPS

The CRPS is a classical scoring function in meteorol-
ogy (Hersbach, 2000; Candille and Talagrand, 2005).
The CRPS is the generalization over all thresholds
of the Brier score (Brier, 1950). Let G be the cumu-
lative distribution function of a forecaster describing
the i.i.d. random variables X and X′, and y be the
observation revealed to the forecaster. The CRPS is
defined as

CRPS(G, y) =

∫
(G−Hy)

2
= E(|X−y|)−1

2
E(|X−X′|) ,

(7)
where Hy(x) = H(x − y) is the CDF assigned to y,
the unit step function H centered on y. The CRPS
reduces to the absolute error for deterministic fore-
casts.

Assuming that y is a random variable, described by
the CDF F, the averaged quantity Ey(CRPS(G, y))
(on the observation) is minimized only for F = G.
This property makes the CRPS a strictly proper scor-
ing rule (Gneiting and Raftery, 2007), and as such it
explains why the CRPS is a classical evaluation tool
for probabilistic forecasts.

We highlight the fact the CRPS can also be written
as a sum of quantile scores (Gneiting and Ranjan,
2011):

CRPS(G, y) = 2

∫ 1

0

QSα(G−1(α), y)dα . (8)

The strategies of minimizing the CRPS or minimizing
several quantile losses are therefore closely related.

For a CDF step function, the corresponding CRPS
is computed as:

CRPS

(
M∑
m=1

umHm, y

)
=

M∑
m=1

um|xm − y|

− 1

2

M∑
m,k=1

umuk|xm − xk| .

(9)

which is also concisely noted `(u) in Section 3.
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2.2 Other diagnostic tools

The scores are all presented only for the test pe-
riod, usually averaged over time. Besides the CRPS,
we also show results for the celebrated RMSE and
MAE for which our forecast is the weighted average∑M
m=1 umxm. The RMSE of the predictions ŷ with

respect to the observations y is given by

RMSE =

√√√√ 1

T

T∑
t=1

(ŷt − yt)2 , (10)

and for the MAE:

MAE =
1

T

T∑
t=1

|ŷt − yt| . (11)

We use daily scores to show the deterioration of
the scores with the increasing lead time. To keep the
range of the daily score consistent, the daily score
is weighted by the average production of the related
hour of the day ȳh. For a score Sh depending on the
lead time h, the daily score

S(d) =

∑
h

Sh × ȳh∑
h

ȳh
(12)

is computed with summation over the available lead
times h corresponding to the same daily lead time.

Skill scores are useful to compare prediction perfor-
mance. In this paper, the reference prediction chosen
for skill scores is our weighted forecast. Skill scores
for a given score S are written

Sskillpred =
Sref − Spred

Sref
, (13)

so that our forecast shows better scores when the skill
scores of the other forecasts are negative.

3 Online learning with the
CRPS

3.1 Background

3.1.1 Regret bounds

An online learning algorithm determines the weights
um,t using only the available past information. In
other words, such algorithm is an update rule indi-
cating the value of the weights um,t and relying only
on the values of the past forecasts and observations
xm,t′ and yt′ with t′ < t as described in Section 3.2.

The regret of the algorithm

T∑
t=1

`t(ut)− inf
u∈PM

T∑
t=1

`t(u) (14)

is an indication of the predictive skill of the weights
um,t for a given set of forecasts and observations. In
our case, the notation `t refers to the CRPS as in
Equation 9 with a highlighted dependency on the
weight. The regret compares the loss of the algo-
rithm generating the weights um,t (left term) with
the loss of the best combination with weights con-
stant in time (right term). The forecast with best
weights constant in time can be known only at the
end of the experiment and is called the oracle. By
definition, the oracle has a better score than individ-
ual forecasts (MAE of each forecast), and than any
subset ensemble with uniform weights.

Online learning algorithms come with a theoretical
guarantee on the long term performance based on a
bound on the regret such as:

T∑
t=1

`t(ut)− inf
u∈PM

T∑
t=1

`t(u) ≤ o(T ) . (15)

In the sense of the theoretical guarantee 15, the al-
gorithm competes against the best combination with
weights constant in time and also with any subset
ensemble with uniform weights.

Note that other definitions of regret bounds exist.
They may include a supremum taken over all possible
values of xm,t and yt in the left term of Equation 15
so that the regret is maximized. This case considers
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the worst scenario of forecasts and observations for
the algorithm.

3.1.2 Linearized losses

It is common practice in online learning to use lin-
earized losses, by computing the loss gradients w.r.t.
the weights. For the CRPS, the loss gradient ˜̀m,t of
the mth forecaster can be written as

˜̀
m,t =

∂`t
∂um

(ut) = |xm,t − yt| −
M∑
k=1

uk,t|xm,t − xk,t|

+ yt −
M∑
k=1

uk,txk,t . (16)

The last two terms are identical for all forecasters
and appear due to terms 1−

∑M
m=1 um hidden in the

expression of the CRPS, see Appendix B of Thorey
et al. (2016). The loss gradient has two main terms:
the distance of xm,t to yt and the weighted distance of
xm,t to the ensemble members. A very good member
is therefore close to the observation and far from the
other members. A neutral member is equally distant
to the observation and to the other members.

The interest of the loss linearization can be seen in
terms of regret bounds, as we now detail (see also De-
vaine et al. (2013)). An algorithm formulated for lin-

ear losses
∑M
m=1 um

˜̀
m comes with theoretical guar-

antee against the best member. By applying this
algorithm on the gradient losses of any convex dif-
ferentiable loss, we obtain a theoretical guarantee on
the nonlinear loss against the best fixed combination
of members.

Indeed, the convexity and the differentiability of `t
gives

`t(ut)− `t(u) ≤ (ut − u)>∇`t(ut) = u>t
˜̀
t − u> ˜̀t .

(17)
for any two vectors ut,u ∈ PM . Summing over time,

we get the following regret bound inequalities:

T∑
t=1

`t(ut)− inf
u∈P

T∑
t=1

`t(u) = sup
u∈P

(
T∑
t=1

`t(ut)− `t(u)

)
(18)

≤ sup
u∈P

(
T∑
t=1

u>t
˜̀
t − u> ˜̀t) (19)

=

T∑
t=1

u>t
˜̀
t − min

expert k

T∑
t=1

˜̀
k,t . (20)

As a consequence, a theoretical guarantee for the non-
linear losses `t(u) is obtained. In other words, know-
ing a regret bound for expression 20 provides a regret
bound for expression 18.

3.2 Example of general algorithm

Initialization: u1;

For each time index t = 1, 2, ..., T

1. get the vector of predictions data xt,

2. compute the forecaster’s choice Gt with xt
and ut,

3. get the verification yt and compute ut+1,
based on the update rule.

The initial weight vector u1 is arbitrarily set, e.g., to
[1/M, . . . , 1/M ]>.

3.3 ML-Poly

In this article we use a learning algorithm from Gail-
lard et al. (2014) called ML-Poly for Polynomially
weighted averages with multiple learning rates. The
algorithm ML-Poly, described in Table 3, has no pa-
rameters and is not computationally costly. The al-
gorithm relies on terms u>t

˜̀
t− ˜̀m,t that compare the

performance of each member to the performance of
the weighted ensemble.

The algorithm gives higher weights to the mem-
bers performing better than the weighted ensemble
with member-dependent learning rates. The regret
of the mth member Rm,t quantifies the regret for
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update the regret of each member Rm,t = Rm,t−1 + u>t
˜̀
t − ˜̀m,t

update the learning rate of each member ηm,t = 1/
(

1 +
∑t
t′=1(u>t′

˜̀
t′ − ˜̀m,t′)2)

compute the weights um,t+1 = ηm,t(Rm,t)+ / η>t (Rt)+

Table 3: ML-Poly algorithm, at time t after yt is given. The vectors ηt and Rt have M coordinates,
respectively ηm,t and Rm,t. The functions (·)+ are applied to a vector by applying it component-wise.

not having given higher weights to a forecaster. The
learning rate ηm,t checks whether the mth member’s
performance is in average close to the performance
of the weighted forecast and can be seen as a confi-
dence term. The members with more confidence can
see their weights vary more quickly. The ideas be-
hind ML-Poly are on the one hand an adaptation of
the algorithm Prod of Cesa-Bianchi et al. (2005) to
multiple learning rates, and on the other hand the
introduction of the polynomial potential described in
Cesa-Bianchi and Lugosi (2003) and giving the terms
(Rm,t)+.

The regret bound of ML-Poly is expressed against
the best member for the linearized losses. For all
sequences of losses ˜̀m,t ∈ [0, 1], the cumulated loss of
ML-Poly is bounded:

T∑
t=1

u>t
˜̀
t ≤ min

1≤m≤M

{
T∑
t=1

˜̀
m,t

+

√√√√M(1 + ln(1 + T ))

(
1 +

T∑
t=1

(u>t
˜̀
t − ˜̀m,t)2)

 .

(21)

As opposed to the bound of Equation 15, the
bound of ML-Poly is of second order due to the term∑T
t=1(u>t

˜̀
t − ˜̀m,t)2. The worst case scenario gives

a bound O(
√
MT lnT ), indicating that even in the

worst case, the weighted forecast will perform at least
as well as the best forecast. In the case of i.i.d. se-
quences of losses, the regret bound is practically con-
stant. A detailed analysis of second-order bounds can
be found in (Gaillard et al., 2014). Besides, other al-
gorithms showing second order bounds are described
in Koolen and Van Erven (2015); Luo and Schapire
(2015); Wintenberger (2017).

4 Application

4.1 Experiment setup

Local production data may be unfortunately unavail-
able for given days and plants. In such cases we re-
moved the related data. However we did not modify
France production capacity factor to account for local
unavailability, because in our opinion, a challenging
task for online learning technique is to reduce biases
which may be caused by local null production.

The algorithm is run independently for each lead
time and production site (including France produc-
tion). We run the algorithm as if production data
is available at the end of each day. For long lead
times where several observations arrive between the
delivery of a forecast and the reception of the corre-
sponding observation, we use shifted weights in order
to use the latest available observation. For example
with the shorthand notation ulead time, day and with
a lead time of 36 h, the weights u36 h,d were delivered
at the beginning of d − 1 to forecast y12:00,d. After
y12:00,d−1 is known, the weights u36 h,d+1 are com-
puted. The key point is that the weight update uses
u36 h,d instead of u36 h,d−1 to check the combination
performance against y12:00,d−1 to generate u36 h,d+1.

The production forecasts from PEARP and ENS
are sorted by rank in order to associate clearly a
weight with an ensemble member. As a result, all the
members belong to one of the four sorted subensem-
bles, except for the two deterministic forecasts.

We define a climatological reference for diagnos-
tic purposes, called climatology forecast. For time
t, we use 2 months of production data centered on
t to estimate a so-called climatological mean and 19
quantiles of climatological production. The clima-
tological mean is used for deterministic evaluations
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(bias, RMSE, MAE) and the quantiles are used for
the CRPS. This method produces a rather ’skilled’
reference because the climatology is not only evalu-
ated on the training period but on a rolling period.

We define the raw forecast as the forecast with uni-
form weights. We use this forecast to assess the gain
brought by our online learning algorithm.

The results are shown for PV production forecasts
only, and not meteorological variables.

4.2 Results

In this section we only show the results for the indi-
vidual plants. The results obtained for France pro-
duction are quite similar to those obtained for the
plants and are shown in Appendix A.

4.2.1 Scores and skill scores

First we show the classical scores RMSE, MAE,
CRPS and bias in Figure 3 on a daily average, see
Equation 12. The confidence intervals indicate the
variability of the scores obtained for the plants. The
scores are shown for our weighted forecast as well as
the raw forecast, the ECMWF deterministic forecast
and the climatology forecast. Our weighted forecast
gets the best scores up to a lead time of 4 days. Note
that our forecast has a quite low bias. For days 5
and 6 the ENS members are the only members avail-
able in our study, hence a change of slope in the daily
scores. Even for a lead time of 6 days, the climato-
logical forecasts is the worst forecast. Therefore nu-
merical weather predictions may be used to forecast
plants productions for a lead time of several days at
the 30-min timestep. It is noticeable that our regres-
sion scheme minimizes the CRPS and also achieves
improvements on the other scores (RMSE, MAE and
bias). We tried to identify situations where our al-
gorithm provides a particular improvement over the
raw ensemble, but we did not find discriminatory cri-
teria. For example, the installed capacity of the plant
or the CRPS of the raw ensemble are not explanatory
statistics of the CRPS skill scores of the raw ensem-
ble.

The CRPS skill scores of 5 ensembles (with uniform
weights) are shown in Figure 4. The skill scores are
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Figure 3: RMSE, MAE, CRPS and bias for the daily
scores, for all sites. The results are shown for 3 fore-
casts: our weighted forecast, the raw forecast (all
members with uniform weights), the deterministic
forecast of the ECMWF (and its quantiles for the
CRPS). The climatology scores are the following :
bias = −0.001, CRPS = 0.089, MAE = 0.139, RMSE
= 0.167. The confidence intervals are derived from
the scores of all sites.
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Equation 13. Our weighted forecast is the reference
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assessed against our weighted forecast. The 5 ensem-
bles are the 4 subensembles of our complete ensem-
ble and the complete ensemble as well. Our weighted
forecast performs better than any of the 5 ensembles.
The best ensemble with uniform weights is (in aver-
age) the complete ensemble. This may be due to the
variety of the forecasts in the complete ensemble. Al-
though the quantile ensemble from HRES (quantile
det ECMWF) performs well before 24 hours of lead
time, it is beaten by the complete ensemble after-
wards and its skill decreases with time. The skill of
the ECMWF ensemble (ENS) increases notably with
time, from the worst skill for day 1 to a satisfactory
skill for day 4.

4.2.2 Diagnostic tools

Improvements are also shown for several other diag-
nostic tools but only for a lead time of 36 h (12:00,
D+1) for the sake of brevity. Better results are ob-
tained for shorter lead times and conversely worst
results are obtained for longer lead times. By better
we mean improvement of our weighted forecast over
the raw ensemble.
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Figure 5: Spread skill diagrams for 36 h of lead times
for all sites.

The spread-skill diagram checks whether the
spread of an ensemble (binned into categories) is con-
sistent with the error of the ensemble mean. The
squared spread

∑
um(xm − u>x)2 and the square

error (u>x − y)2 are averaged in each bin and their
rooted square are plotted against each other. The
spread and the error should be ideally equal (Fortin
et al., 2014). On the graph, the curves should match
the first diagonal. The spread-skill diagram of the
ensembles of our study is shown on Figure 5. We
see that our weighted forecasts are closer to the first
diagonal than any other subensemble with uniform
weights. Our weighted forecasts for plants are still
under-dispersive, while the correction is better in the
case of France production as shown in Appendix A.
The weights provided by the online learning algo-
rithm are larger for the outer members of the en-
semble, and especially the lowest members. Conse-
quently the spread of the weighted ensemble is larger
than the spread of the raw ensemble and the posi-
tive bias of the raw ensemble is mitigated. Besides,
the ECMWF ensemble shows the lowest spread and
the ensemble PEARP presents very large and very
small spreads. However, when the ensemble PEARP
shows a small spread, the error is quite larger than
the spread.
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Figure 6: Rank histograms for 36 h of lead times for
all sites; (a) the raw ensemble; (b) our weighted fore-
cast. The dotted line illustrates the ideal case of a
flat rank histogram.

The rank histogram (Anderson, 1996; Talagrand
et al., 1999; Hamill and Colucci, 1997) or Probability
Integral Transform (PIT) is built with the values of
the CDFs of the forecaster reached by the verifica-
tions along an experiment. The ideal rank histogram
is flat. The rank histogram of our weighted forecast
and the raw ensemble are shown in Figure 6. The
rank histogram of our weighted forecast is closer to
the ideal rank histogram than the rank diagram of the
raw ensemble. The raw ensemble is under-dispersive,
since it presents a U-shape. This is consistent with
the results shown on Figure 5.

For a given binary event, the reliability diagram
checks whether the observed frequency and the fore-
casted frequency of the event match (Atger, 2004;
Bröcker and Smith, 2007a). The forecasted proba-
bilities of the event are binned into categories. The
observed frequency of the event for each category is
the share of occurence of the event. The ideal reli-
ability diagram shows a curve along the first diago-
nal. We also show the number of occurences of the
event in each binned category. We use the following
event “the production level is lower than the average
production”, where we use the climatological produc-
tion defined above as local average production. We
show the reliability diagrams of our weighted fore-
cast and the raw ensemble in Figure 7. We see that
our weighted forecast is very well calibrated for event
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Figure 7: Reliability diagrams for lead times 36 hours
for all sites; black circle: the raw ensemble; magenta
triangles: our weighted forecast.

with low probability, but tends to overpredict the oc-
curence of the event when the event is highly likely.

Conclusion

We have applied the algorithm ML-Poly for the min-
imization of the CRPS, in order to provide proba-
bilistic forecasts. The algorithm does not depend on
any parameter or assumptions on distributions such
as Gaussianity, and comes with theoretical guarantee
of performance. The regret bound ensures our fore-
cast to perform at least as well as the best forecast
in the ensemble.

Our case study investigated the PV production of
several power plants in France and the total produc-
tion of the plants. We have shown that our weighted
forecast improves on the raw ensemble, which is the
best ensemble with uniform weights. Interestingly,
we show that CRPS minimization brings improve-
ment on classical scores for the ensemble mean and
probabilistic diagnostic tools. Indeed, the forecast-
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ing capability measured by classical scores (RMSE,
MAE, CRPS and bias) are improved by our online
learning algorithm up to a lead time of 4 days. Be-
sides, the online learning algorithm provides a spread
correction as shown on the spread-skill diagrams and
on the rank histograms. The results obtained for
France production forecasts and plants forecasts are
quite similar.

Future work should investigate the generation of
specialized experts on meteorological regimes. For
example, an expert specialized in clear sky produc-
tion could improve the forecasting capability of the
ensemble. The quantiles are already specialized, but
the ensemble members from ENS and PEARP are
converted to production using the same model as for
the control member. The investigation of weights
prior may also be of interest. The update rule ML-
Poly does not use the value of the upcoming fore-
casts xm,t for computation of the weights um,t, while
weights prior may take this additional information
into account.
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Appendix A Results for France
production

In this Appendix, we show the results for France pro-
duction, while the results for the individual sites are
shown in Section 4. The results of France produc-
tion forecasts and plants forecasts are roughly simi-
lar. Our online learning algorithm provides improve-
ments over the raw ensemble up to a lead time of a
few days. Because it is easier to forecast the power
output of the total production, the forecast quality
is better than for individual sites. This statement is
verified for all diagnostic tools shown below.

We show in Figure 8 the average bias, CRPS, MAE
and RMSE for France production. We see the scores
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Figure 8: RMSE, MAE, CRPS and bias for the daily
scores of France production. The results are shown
for 3 forecasts: our weighted forecast, the raw fore-
cast (all members with uniform weights), the deter-
ministic forecast of the ECMWF (and its quantiles
for the CRPS). The climatology scores are the follow-
ing : bias = −0.001, CRPS = 0.055, MAE = 0.081,
RMSE = 0.101.

of the sites are more than twice as large as the score of
France production, but for the bias. Our online learn-
ing algorithm provides improvement for bias, CRPS,
MAE and RMSE up to a lead time of 4 days.

The CRPS skill scores are shown in Figure 9. Once
again, the score trends are mostly equivalent to those
obtained for the sites. The quantile ensemble from
HRES (quantile det ECMWF) has good scores for
short lead times and the raw ensemble is the best en-
semble with uniform weights after 24 h of lead time.
Our online learning algorithm provides an improve-
ment of roughly 10% over the raw ensemble for the
first 24 h of lead time. This improvement decreases
with time quickly than for the sites. It is remark-
able that the CRPS skill score of the quantile en-
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Figure 9: CRPS Skill score.

semble from Arpège (“quantile det Arpège”) shows
much better results for the plants than for France
production. Indeed the skill score of “quantile det
Arpège” is around -15% for the plants and is stable,
while it is at least below -24% for France produc-
tion. For days 5 and 6, the weights brought by our
algorithm do not vary much from the uniform dis-
tribution. Consequently, the skill scores are close to
one.

The following probabilistic diagnostic tools are
only for 09:00, 12:00, and 15:00 of day 2 (lead
times 33, 36, 39 hours). In Figure 10, we compare
the rank histogram for the raw ensemble and our
weighted forecast. The raw ensemble is largely under-
dispersive with a positive bias (over-estimation). Our
online learning algorithm manages to reduce the
under-dispersion of the raw ensemble. This state-
ment is verified on the spread skill diagram in Fig-
ure 11. We see that the spread and errors of our
weighted forecasts match approximately, while the
other ensembles (with uniform weights) are under-
dispersive with respect to their errors.

A correction of the forecast reliability is illustrated
in Figure 12. The event “the production level is lower
than the average production” is used (same as for the
sites). A visual inspection shows that the raw ensem-
ble tends to underpredict the occurence of low pro-
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Figure 10: Rank histograms for lead times 33, 36, 39
hours; (a) the raw ensemble; (b) our weighted fore-
cast. The dotted line illustrates the ideal case of a
flat rank histogram.

duction for a forecasted frequency between 0.3 and
0.7, when the event is likely to occur. Our weighted
forecast does not show this tendency and is symmet-
rical with respect to the first diagonal although not
perfectly aligned.
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Figure 11: Spread skill for lead times 33, 36, 39 hours.
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ensemble; magenta triangles: our weighted forecast.
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