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Consequences of submarine landslides include both their direct impact on offshore infrastructure, such as subsea electric cables and gas/oil pipelines, and their indirect impact via the generated tsunami. The simulation of submarine landslides and their consequences threat to a nearby pipeline and indirect threat by generating tsunami being estimated as well.

has been a long-standing challenge majorly due to the strong coupling among sliding sediments, seawater and infrastructure as well as the induced extreme material deformation during the complete process. In this paper, we propose a unified finite element formulation for solid and fluid dynamics based on a generalised Hellinger-Reissner variational principle so that the coupling of fluid and solid to be achieved naturally in a monolithic fashion. In order to tackle extreme deformation problems, the resulting formulation is implemented within the framework of the particle finite element method. The correctness and robustness of the proposed unified formulation for single-phase problems (e.g. fluid dynamics problems involving Newtonian/Non-Newtonian flows and solid dynamics problems) as well as for multi-phase problems (e.g. two-phase flows) are verified against benchmarks. Comparisons are carried out against numerical and analytical solutions or experimental data that are available in literatures. Last but not least, the possibility of the proposed approach for modelling submarine landslides and their consequences is demonstrated via a numerical experiment of an underwater slope stability problem. It is shown that the failure and postfailure process of the underwater slope can be predicted in a single simulation with its direct 1. Introduction Submarine landslides are geological phenomena that pose not only a direct threat to offshore infrastructure but also an indirect threat to coastal communities through the generation of tsunamis. Typical examples are the 1998 New Guinea submarine landslide off Papua [START_REF] Tappin | The Sissano, Papua New Guinea tsunami of July 1998 -offshore evidence on the source mechanism[END_REF] that caused a tsunami resulting in 2200 deaths and the submarine landslide off Taiwan [START_REF] Carter | Insights into Submarine Geohazards from Breaks in Subsea Telecommunication Cables[END_REF] in 2006 that broke seven out of nine undersea cables leading to a major disruption of the internet connection and general commerce between Thailand, Malaysia, Vietnam, South Korea, China and Singapore. In the past decade, submarine landslides have been receiving increasing attention which, to a large extent, due to a boom in offshore infrastructures such as submarine gas and oil pipelines, offshore wind farm and electricity grid infrastructure, deep-water oil and gas platforms etc.

The timely forecast of a potential submarine landslide, as well as a realistic estimation of its post-failure behaviour and consequences, is undoubtedly of great significance for minimising the degree of destruction. Conventional geotechnical approaches, such as the limit equilibrium method, the limit analysis method and the displacement-based finite element method that are widely used for slope stability analysis normally stop at the point when failure is triggered and do not provide information regarding the post-failure process. To forecast a submarine landslide and estimate its potential impacts, ideally the complete process of submarine landslides ranging from its failure initiation through migration to its final deposition is produced via a single simulation seamlessly. This task however is formidable due to the complex coupling mechanism involved in the process as well as the solid-fluid transitional behaviour of the evoked submarine soil mass. In a submarine landslide, the sediment behaves like a solid before the slide is initiated (Figure 1(a)) and after the sliding mass eventually comes to rest at a new location (Figure 1(c)), but mimics a fluid during the sliding process (Figure 1(b)). When the post-failure stage is concerned, the sliding sediment is commonly simulated based on the framework of fluid mechanics, due to its fluid-like behaviour. In the simulation, the sediment is treated as a non-Newtonian flow while the seawater as a Newtonian flow, both solved according to either Navier-Stokes equations [START_REF] Capone | SPH modelling of water waves generated by submarine landslides[END_REF][START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF] or simplified governing equations such as the shallow water theory [START_REF] Heinrich | Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event[END_REF][START_REF] Didenkulova | Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth[END_REF]. Despite of the prevalence of this solution strategy (particularly for modelling submarine landslide generated tsunami), it fails to capture the solid-like features of subsea sediments and thus does not perform well for the stability analysis of underwater slopes or for the analysis of their progressive failure behaviour. Recent efforts made in this regard include [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF][START_REF] Dey | Modeling of large-deformation behaviour of marine sensitive clays and its application to submarine slope stability analysis[END_REF][START_REF] Dey | Numerical modelling of submarine landslides with sensitive clay layers[END_REF] in which simulations were carried out in the framework of solid (or soil) mechanics.

Owing to the low permeability, material clays in these works were represented by the Tresca or Von-Mises constitutive model implying an undrained condition. The progressive development of plastic shear deformation in marine clays was reproduced via the reduction of undrained shear strength with accumulated plastic displacement or strain. Influence of seawater on the submarine landslides in [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF][START_REF] Dey | Modeling of large-deformation behaviour of marine sensitive clays and its application to submarine slope stability analysis[END_REF][START_REF] Dey | Numerical modelling of submarine landslides with sensitive clay layers[END_REF] was considered by using the submerged density of the sediment. Such an approximation is only reasonable when the sliding proceeds in a quasi-static process. Otherwise, the hydraulic effects from the seawater have to be taken into account. A representative example rests with the phenomena in submarine landslides that a layer of water intrudes under the sediment results in a lubrication effect and a decrease in the resistance between the sediment and the seabed [START_REF] Mcadoo | Submarine landslide geomorphology, US continental slope[END_REF][START_REF] Blasio | Hydroplaning and submarine debris flows[END_REF]. This mechanism, termed as hydroplaning, is deemed a reason for unexpectedly long travel distance of submarine landslide, and its prediction obviously necessitates a fully coupled analysis of the seawatersoil interaction. Apart from that, the rheological feature of the sediment was ignored in [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF][START_REF] Dey | Modeling of large-deformation behaviour of marine sensitive clays and its application to submarine slope stability analysis[END_REF][START_REF] Dey | Numerical modelling of submarine landslides with sensitive clay layers[END_REF].

A remarkable contribution in this regard lies in [START_REF] Gauer | The last phase of the Storegga Slide: simulation of retrogressive slide dynamics and comparison with slide-scar morphology[END_REF] where the Storegga Slide was simulated using a two-phase flow model. The interaction between the seawater and the sediment was coupled in the framework of Computational Fluid Dynamics (CFD) that a Newtonian flow model was applied for representing seawater and a non-Newtonian flow model for the rheological behaviour of sediments. The solid behaviour of the sediment was somewhat accounted for through deducing the threshold yield stress with plastic strains. Indeed, the seawater-soil (or fluid-solid) coupled analysis is a challenge in the simulation of submarine landslides. According to the solution scheme, the numerical approaches for a fluid-solid interaction problem may be broadly categorised into the monolithic approach and the partitioned approach. The monolithic approach attempts to remould the entire problem (e.g. fluids and solids) into a single system equation that can be resolved via a unified algorithm [START_REF] Franci | Unified Lagrangian formulation for solid and fluid mechanics and FSI problems[END_REF][START_REF] Langer | Robust and efficient monolithic fluid-structure-interaction solvers[END_REF]. The fluid and the solid in such a manner thus are coupled implicitly with the interfacial conditions being fulfilled naturally within the solution procedure. Although better accuracy for multidisciplinary problems can be achieved via this coupling strategy, unifying multidisciplinary problems is never a trivial task and requires more expertise. For the submarine landslides concerned, the difficulty of unification will be further enhanced since more sophisticated soil models are required aiming to capture the complex behaviour of sediments. The partitioned approach [START_REF] Degroote | Partitioned Simulation of Fluid-Structure Interaction[END_REF][START_REF]Analysis of some partitioned algorithms for fluid-structure interaction[END_REF], on the other hand, solves the fluid dynamics and the solid mechanics separately. Communications in between is achieved through explicit enforcement of interfacial conditions to each solution with convergence being expected via iteration loops. An apparent advantage of the partitioned approach is its capability of handling multidisciplinary problems of complicated physics; nevertheless, tracking the varying interface dividing the fluid and solid domains, which is not known a priori, is burdensome.

In this paper, we provide a computational framework that is capable of modelling submarine landslides and their consequences. The framework unifies the finite element formulations for both the fluid (seawater) and the solid (sediments and offshore infrastructure) dynamics and thus their coupling can be achieved naturally in a monolithic manner. Utilisation of complex constitutive soil models is also possible in this framework. The final monolithically coupled formulation is then merged into the Particle Finite Element Method to tackle issues resulting from extreme deformation such as mesh distortion and free-surface evolution. The proposed approach is verified against numerous benchmarks and its possibility for modelling the entire process of a submarine landslide from failure triggering through transportation to deposition in a single seamless simulation is demonstrated. Its capability in the evaluation of the direct impact of a submarine landslide on offshore infrastructure such as gas pipelines and the indirect impact via generating a tsunami is also shown.

The paper is organized as follows. Section 2 presents the standard formulation for the secondorder cone programming (SOCP) problem that the finite element formulation for solids/fluids will be remoulded into. The procedures for the reformulation of the discretised governing equations for fluids and solids into an optimisation problem are then presented in Sections 3 and 4, respectively. Section 5 details the scheme for coupling the solid and the fluid using the mixed finite element and and Section 6 briefly introduces the particle finite element method.

Numerical examples are given in Section 7 for demonstrating the correctness and robustness of the proposed approach before conclusions are drawn in Section 8.

Second-order Cone Programming

Second-order cone programming (SOCP), also referred as conic quadratic optimisation, is a generalisation of linear and quadratic programming that allows the variables to be constrained inside second-order cones. When there are no linear inequality constraints, a standard SOCP program involves an optimisation problem of the form , , ,
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Numerous problems have so far been remoulded as a SOCP problem. Typical examples include computational limit analysis of solids and plates [START_REF] Le | Upper and lower bound limit analysis of plates using FEM and second-order cone programming[END_REF][START_REF] Makrodimopoulos | Upper bound limit analysis using simplex strain elements and second-order cone programming[END_REF][START_REF] Yu | A 3D upper bound limit analysis using radial point interpolation meshless method and second-order cone programming[END_REF], static/dynamic analysis of elastoplastic/elastoviscoplastic frames and solids [START_REF] Krabbenhøft | Formulation and solution of some plasticity problems as conic programs[END_REF][START_REF] Yonekura | Second-order cone programming with warm start for elastoplastic analysis with von Mises yield criterion[END_REF][START_REF] Zhang | Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity[END_REF], deformation and consolidation analysis of porous media [START_REF] Zhang | Second-order cone programming formulation for consolidation analysis of saturated porous media[END_REF], particle dynamic simulations (e.g. discrete element method or granular contact dynamics) [START_REF] Lim | A contact dynamics approach to the Granular Element Method[END_REF][START_REF] Krabbenhoft | Computational plasticity algorithm for particle dynamics simulations[END_REF][START_REF] Krabbenhoft | Granular contact dynamics with particle elasticity[END_REF], and fracture in brittle rocks [START_REF] Meng | A discrete numerical method for brittle rocks using mathematical programming[END_REF] and jointed rock [START_REF] Meng | Discrete modelling jointed rock slopes using mathematical programming methods[END_REF] among others. This implies that problems in different fields may be resolved efficiently using a single solver, which is particularly favourable when parallel computing is in need.

Comparing to the contributions in solid regime, less efforts have been devoted to the reformulation of fluid dynamics problems except in [START_REF] Bleyer | Efficient numerical computations of yield stress fluid flows using second-order cone programming[END_REF] where steady yield flows were analysis in SOCP.

Mathematical programming formulation of Newtonian/Non-Newtonian fluids

This section aims to reformulate the governing equations of Newtonian or Non-Newtonian fluids, after time distretisation, into a standard optimisation problem. Unlike in [START_REF] Bleyer | Efficient numerical computations of yield stress fluid flows using second-order cone programming[END_REF] that a steady flow was considered, the dynamic non-steady Newtonian/Non-Newtonian flows are concerned. Additionally, a generalised Hellinger-Reissner variational principle rather than the minimum principle is adopted in this paper so that the optimisation problem raised for fluid dynamics possess the same design variables as those for solid dynamics for the sake of convenience for their monolithic coupling.

Governing equations

We herein first consider the Bingham flow which is a typical non-Newtonian model. In case of incompressibility, the governing equations for a Bingham flow (with Einstein's notations) are as follows according to [START_REF] Bleyer | Efficient numerical computations of yield stress fluid flows using second-order cone programming[END_REF]:
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where ij  is the stress tensor, ij  is the strain rate tensor, i b is the volume body force,  is the density of the fluid, i u is the displacement with a superposed dot representing differentiation with respect to time,
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is the deviatoric stress tensor. Equations in [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF] is the constitutive model for a Bingham flow distinguishing a rigid region from a yield one where μ is a constant viscosity efficiency, 0  is the threshold stress for yielding and
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. It is obvious that the above governing equations degrade to those for a standard Newtonian flow when 0 0   .

In order to recast the formulation using the Hellinger-Reissner variational principle, the constitutive equations are rewritten as a more general form (similar to those in solid mechanics)
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where  is the rate of the non-negative plastic multiplier, F in this case is the Von Mises yield function (e.g.
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To prove the equivalence between the set of constraints ( 8)-( 10) and the constitutive model in [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF], condition ( 9) is first expressed as 0 ()
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via the substitution of the following relations
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For the von Mises criterion, the incompressible condition 0 kk   always holds and meanwhile Eq. ( 8) may be rewritten as 2μ ( )
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The deviatoric part of ij  is proportional to the rate of shear strain tensor ij  , namely
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. Thus, Eq. ( 15) can then be expressed as
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Substituting Eq. ( 16) into Eq. ( 14) renders
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which is the second constraint in [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF]. When ( )
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in this case), constraints in [START_REF] Mcadoo | Submarine landslide geomorphology, US continental slope[END_REF] indicate a null plastic strain, that is also the total strain in this case, which is in line with the first constraint in [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF]. Thus the set of equations ( 8)-( 10) is equivalent to the constitutive model in [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF]. Using vector-matrix notations, the governing equations for a Bingham flow can now be expressed in a more
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supplemented by boundary conditions

u on  uu (22) 
T t on   N σ t [START_REF] Zhang | Second-order cone programming formulation for consolidation analysis of saturated porous media[END_REF] where u and t are the prescribed displacements and external tractions, N consists of components of the outward normal to the boundary t  and T  is the transposed gradient operator. Notably, the incompressible condition in Eq. ( 5) does not need to be included explicitly since the utilisation of Von Mises model implies null volumetric change.

Time discretisation

Since a direct-time integration approach will be used for dynamic analysis, the governing equations ( 18)-( 23) have to be discretised before the equivalent variational principle is proposed. Using the standard  -method, the momentum conservation equation ( 18) and the natural boundary condition ( 23) is discretized in time as:
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where v are velocities, refer to the known and new, unknown states, and

n+1 n = t t t  
is the time step.

Rearranging the above equations leads to
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The essential boundary condition is
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The constitutive equations of the Bingham model can also be discretised by introducing a parameter
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In summary, the governing equations for incremental analysis of Bingham flows consist of conditions in ( 27), [START_REF] Bleyer | Efficient numerical computations of yield stress fluid flows using second-order cone programming[END_REF], and ( 31)- [START_REF] Oñate | The Particle Finite Element Method -An Overview[END_REF]. The velocity at the end of each incremental analysis can be updated according to Eq. ( 28) explicitly. The Newtonian flow is recovered by setting the threshold stress 0 0   .

Generalised Hellinger-Reissner variational principle

A generalized Hellinger-Reissner (HR) variational principle is established in this section for the increment analysis of the reformulated Bingham flow problem. In HR principle, both displacements and stresses are master fields, which is in contrast to the principle of minimum potential energy in which displacements are the only master filed. More specifically, the generalised HR variational principle is in the form of a min-max program:
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where u , σ , τ , and r (a set of new variables representing the dynamic force) are master fields. To prove the equivalence between the principle [START_REF] Zhang | Particle finite element analysis of large deformation and granular flow problems[END_REF] and the relevant discretised governing equations, the inequality constraint in [START_REF] Idelsohn | Multi-fluid flows with the Particle Finite Element Method[END_REF] is first transferred into a equality one as
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by introducing a positively-restricted variable n+1 s where  is a arbitrarily small positive constant. This transformation is typical when resolving a optimisation problem in mathematical programming.

The Lagrangian associated with the optimisation problem [START_REF] Cremonesi | A Lagrangian finite element approach for the analysis of fluid-structure interaction problems[END_REF] [START_REF] Zhu | Improved fractional step method for simulating fluid-structure interaction using the PFEM[END_REF] whose variation with respect to the optimisation variables gives:
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Because of the non-negative nature of   , the last two KKT conditions (e.g. ( 44) and ( 45)) associated with the optimisation problem recover the yield condition and the complementarity condition shown in (34) when 0    . The rest of the KKT conditions (e.g. Eqs. ( 40)-( 43)) are apparently the discretised governing equations presented in section 3.2 (e.g. Eqs. ( 27), ( 29), ( 32) and ( 33)). Thus, the min-max optimisation problem [START_REF] Edelsbrunner | Three-dimensional alpha shapes[END_REF] is equivalent to the discretised governing equations for the Bingham flow or those for Newtonian flow when the threshold stress 0  in the yield criterion of ( 35) is null. ( ) 0; 0

F F         τ ετ τ (49) 
which, along with the momentum balance equation ( 18) and the boundary conditions ( 22) and ( 23), compose the complete governing equations for the relevant dynamic analysis. Again, the constitutive equations are similar to those for Bingham flows except that, according to [START_REF] Zhang | Numerical simulation of a flow-like landslide using the particle finite element method[END_REF], the rate of the total strain rate ε is divided into an elastic part e ε , that is related to the stress via the Hooke's law [START_REF] Cremonesi | A basal slip model for Lagrangian finite element simulations of 3D landslides[END_REF] with £ being elastic compliance matrix, and a viscoplastic part vp ε calculated using the rule of plastic flow [START_REF] Salazar | Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model[END_REF]. This is in contrast to the case in section 3 that any strain induced refers to unrecoverable 'plastic strain'. Thus the min-max problem [START_REF] Edelsbrunner | Three-dimensional alpha shapes[END_REF] only needs to further include the elastic part for incremental elastoviscoplastic analysis of a solid which is
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The associated Lagrangian, after the transition of the inequality constraint into an equality one as carried out in the last section, is expressed as

T n+1 n+1 n+1 n+1 1 ( , , , , , ) d 2 s 
f s            u σ τ r σ σ L L ( 51 
)
whose variation with respect to n+1 σ and n+1 τ gives
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Substitution of Eq. ( 53) into (52) results in the addition decomposition of the total strain rate for example Eq. ( 47). The variation of s L with respect to other variables (e.g. u , n+1 r ,   , and n+1 s ) results in Eqs. ( 40), ( 43)- [START_REF] Monforte | Numerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM)[END_REF], which verifies the equivalence between the optimisation problem (50) and the discretised governing equations for dynamic analysis of an elastoviscoplastic solid.

Material hardening/softening behaviour can also be accounted for in the principle according to [START_REF] Zhang | Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity[END_REF]. Suppose that a yield criterion function with strain hardening/softening is in the form of ( , ) 0 F   τ where () vp H   ε is a set of internal variables relating to the viscoplastic strain. The associated principle according to [START_REF] Zhang | Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity[END_REF] thus is
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)
where the underlined terms are newly introduced due to the hardening/softening and t H is constitutive modulus that reads
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)
The inclusion of material hardening/softening in the principle have been detailed in [START_REF] Zhang | Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity[END_REF] and thus is not further discussed in this paper.

In brief, variational principle (54) thus is a general optimisation problem for elastoviscoplastic analysis which degrades to principle (35 Moreover, principle [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF] degrades to cover the rate-independent elastoplastic dynamic analysis by erasing the terms related to viscosity that is 
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)
and to cover the elastoplastic static analysis [START_REF] Krabbenhøft | Formulation and solution of some plasticity problems as conic programs[END_REF] by further erasing the dynamic terms that is
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The upper bound limit analysis [START_REF] Krabbenhøft | Formulation and solution of some plasticity problems as conic programs[END_REF][START_REF] Makrodimopoulos | Upper bound limit analysis using simplex strain elements and second-order cone programming[END_REF] is also recovered by deducting the elastic part and hardening/softening part, which is 
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where  is a new introduced variable representing the factor of the imposed traction force.

Notably, all the above problems refer to total stress analysis. This is because the marine clay is commonly simulated in undrained conditions [START_REF] Wang | A dynamic large deformation finite element method based on mesh regeneration[END_REF][START_REF] Dey | Numerical modelling of submarine landslides with sensitive clay layers[END_REF] according to its low permeability.

Nevertheless, the analysis of saturated porous media can also be casted into the same form which has been discussed in [START_REF] Zhang | Second-order cone programming formulation for consolidation analysis of saturated porous media[END_REF] where the effective stress and pore water pressure instead of the total stress should be the master fields.

Monolithic coupling and solution tehchnique

The min-max problem ( 54) is first discretised using the standard finite element shape function owing to its generalised feature, and then the coupling between the fluid and the solid is discussed. As both the displacement-like and stress-like fields are master fields in the generalised HR variational principle, they have to be interpolated by shape functions independently such as 
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The minimisation part of principle (60) with respect to the incremental displacement u can be resolved analytically resulting in a maximisation problem which can also be expressed as a minimisation problem with an opposite sign ,,,, )
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The finite element discretised principle for Newtonian/Non-Newtotnian flow can also be derived following the same way which is 
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The principles ( 62) and ( 63) can be solved for solids and fluids, respectively, or the coupling can be achieved by just solving the principle (62). In this study, the later strategy is adopted for the sake of convenience. More specifically, a mixed isoparametric triangular element shown in Figure 2 is used for the approximation for both the solid and the fluid.

The location of the internal interpolation points are have been reformulated successfully. We refer readers to [START_REF] Zhang | Second-order cone programming formulation for consolidation analysis of saturated porous media[END_REF][START_REF] Krabbenhoft | Computational Cam clay plasticity using second-order cone programming[END_REF][START_REF] Makrodimopoulos | Remarks on some properties of conic yield restrictions in limit analysis[END_REF] for more details. The resulting SOCP problem in this work is then resolved using the advanced interior-point method available at the high-performance optimisation engine MOSEK [START_REF] Andersen | On implementing a primal-dual interior-point method for conic quadratic optimization[END_REF].

The particle finite element method (PFEM)

Since both seawater and subsea sediments undergo a large of geometry in submarine landslide, the above solution algorithm is implemented in the Particle Finite Element Method (PFEM) [START_REF] Oñate | The Particle Finite Element Method -An Overview[END_REF] to tackle issues such as mesh distortions and free-surface evolution resulting from large deformation. The PFEM makes use of the standard Lagrangian finite element approach to solve the discretised governing equations on meshes. At the time point that meshes have a certain degree of distortion, mesh topologies are erased leaving behind mesh nodes treated as free particles. A new computational domain is then identified using the socalled α-shape method [START_REF] Edelsbrunner | Three-dimensional alpha shapes[END_REF] on the basis of the position of free particles followed by the remeshing of the identified domain. State variables are then mapped from old meshes to new meshes followed by a new incremental finite element analysis. More details about the utilised PFEM strategy refers to [START_REF] Zhang | Particle finite element analysis of large deformation and granular flow problems[END_REF]. To date, the PFEM has tackled numerous challenging problems such as the modelling of multi-phase flows [START_REF] Idelsohn | Multi-fluid flows with the Particle Finite Element Method[END_REF], fluid-structure interactions [START_REF] Cremonesi | A Lagrangian finite element approach for the analysis of fluid-structure interaction problems[END_REF][START_REF] Zhu | Improved fractional step method for simulating fluid-structure interaction using the PFEM[END_REF], granular flows [START_REF] Zhang | Particle finite element analysis of the granular column collapse problem[END_REF][START_REF] Zhang | Quasi-static collapse of twodimensional granular columns: insight from continuum modelling[END_REF][START_REF] Dávalos | On the numerical modeling of granular material flows via the Particle Finite Element Method (PFEM)[END_REF][START_REF] Zhang | Smoothed Particle Finite-Element Method for Large-Deformation Problems in Geomechanics[END_REF], flow of fresh cement suspensions [START_REF] Cremonesi | Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach[END_REF], penetration problems [START_REF] Zhang | Smoothed Particle Finite-Element Method for Large-Deformation Problems in Geomechanics[END_REF][START_REF] Monforte | Numerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM)[END_REF][START_REF] Zhang | Particle finite element analysis of large deformation and granular flow problems[END_REF], landslides [START_REF] Zhang | Numerical simulation of a flow-like landslide using the particle finite element method[END_REF][START_REF] Cremonesi | A basal slip model for Lagrangian finite element simulations of 3D landslides[END_REF] and the generated waves [START_REF] Salazar | Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model[END_REF], among others.

Numerical Examples

The correctness and robustness of the proposed unified solid/fluid finite element formulation (62) is verified via simulating numerous benchmarks. First, single-phase problems such as the water dam break, the annular viscometer problem, and the collapse of aluminum bars are simulated in order to verify it for modelling Newtonian flows, Non-Newtonian flows, and solid dynamics, respectively. Comparisons of our simulation results against experimental data, analytical solutions, and also results using other numerical approaches available in literatures are carried out. The efficiency of the proposed monolithic coupling for simulating multi-phase problems is then tested against an experimental test concerning the underwater granular collapse and the induced waves. Last but not least, the possibility of the approach for modelling submarine landslides and their consequences is shown by considering a model test in which the failure and the post-failure processes of an underwater slope are predicted via a single simulation with both the direct impact on infrastructure such as pipelines and the indirect impact via the generated-tsunami being estimated. In all simulations, small enough mesh sizes and time steps are used to obtain converged solutions. The configurations of the dam-break wave at four different time instants are plotted in Figure 4 with the distribution of water pressure being shown. Simulation results from [START_REF] Shao | Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[END_REF] and [START_REF] Nomeritae | Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes[END_REF], in which the Smooth Particle Hydrodynamics approach was used, are also illustrated for comparison purposes in Figure 4. It is shown that the results agree with each other very well which verifies the proposed unified formulation for Newtonian flows. Circles (o) represent the free surface obtained in [START_REF] Shao | Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[END_REF], and crosses (+) refer to that obtained in [START_REF] Nomeritae | Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes[END_REF].

It is notable that the simulation does not suffers the issue of volumetric locking because of the used mixed elements that the displacement field is interpolated using quadratic shape functions and the stress field is approximated linearly.

Non-Newtonian flow

The Bingham flow in an annular viscometer is concerned for verifying the validity of the unified formulation for modelling Non-Newtonian flows in this section. The annular viscometer is made of two coaxial cylinders as shown in Figure 5. The out cylinder is fixed whereas the inner cylinder rotates in a constant angular velocity  . Supposing the fluid is stick to the apparatus boundaries, analytical solutions are available which depend on the rheological properties of the fluid. For the considered Bingham fluid, a transition radius t R exists that distinguishes the sheared fluids that are close to the inner cylinder from those located in an un-yield/rigid zone. According to [START_REF] Bird | Dynamics of polymetric liquids[END_REF], the transition radius t R is the solution of
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and, in the sheared zone, the tangential velocity of the fluid is The third example for the single-phase problem is an experiment test of a collapse problem conducted in [START_REF] Bui | Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[END_REF] which is similar to the water break problem. The column of the size 200×100 mm however was composed of small aluminium bars of diameters 1 and 1.5 mm and length 50 mm. This example was used to verify the SPH approach for simulating elastoplastic problems in plane strain conditions in geomechanics in [START_REF] Bui | Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[END_REF].
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In our simulations, the Mohr-Coulomb model is used to represent the material with parameters being the same as those from [START_REF] Bui | Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[END_REF]: Young's Modulus . The viscosity of the material is neglected in this case.

Simulations are carried out using a time step In our simulation, the sand mass is approximated as a non-Newtonian fluid (e.g. Bingham flow) according to [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF]. The material parameters used in our simulations are also in line with those in [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF]. The density of water is 1000 kg/m 3 . Its viscosity and yield stress of water are null. The mean density of saturated sands is 1985 kg/m 3 and the threshold stress is 200

Pa. The viscosity is null according to [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF]. The characteristic mesh size used is h = 0.015 m and the time step is Figure 10 shows the snapshots of configurations of the sliding sand as well as the induced water wave at time instances of t = 0.4 s and 0.8 s, in which the corresponding shapes of deformed sand mass from the simulations in [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF] are also shown for comparison. As shown, our simulated results agree well with those computed results from [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF]. Moreover, Figure 11 shows the quantitative comparison between the elevations of the free surface among our present simulation results, the computed results and the experimental data provided in [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF] at those two time instances. Again, our simulations results coincide with the computed results from [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF], both of which are close to the experimental data [START_REF] Rzadkiewicz | Numerical Simulation of Submarine Landslides and Their Hydraulic Effects[END_REF]. Such agreements verify the monolithic coupling of the proposed unified formulation for multi-phase problems. The slope was stable owing to the heading load which is then removed representing toe erosion. The factor of safety of the resulting slope is 0.90 implying unstability. The problem is simulated using the proposed approach. The characteristic mesh size is 0.02 m leading to a total of 19,452 meshes (39,303 mesh nodes) for discretising the domains of marine clays and seawater. The time step used in the simulation is Notably, marine clay is normally sensitive which means its undrained strengths decreases from a peak value up c to a residual one ur c when the clay undergoes plastic deformation (see Figure 14). It is reported in [START_REF] Dey | Modeling of large-deformation behaviour of marine sensitive clays and its application to submarine slope stability analysis[END_REF] that the sensitivity of marine clays, defined as S  ). The reference equivalent deviatoric plastic strain  , which controls the rate of the decrease of the undrained strain is set to be 0.6.

The complete process of the submarine landslides from the simulation is illustrated in Figure b4)). This feature is very typical for slope failure in sensitive clays and is usually termed retrogressively progressive failure [START_REF] Locat | Progressive failures in eastern Canadian and Scandinavian sensitive clays[END_REF]. Eventually, the landslide reaches its final deposition as shown in Figure 15(a5) and (b5). The failure of the underwater slope in this case generates a clear tsunami in the process (Figure 15). The effect of sensitivity of marine clays on the failure of a submarine slope is also investigated by using different St. Figure 16 shows the final deposition of the landslides from the simulation with St equal to 1, 2, 3, and 4, respectively. As shown, the slope is more prone to fail when the sensitivity is large. Additionally, the sliding mass involved in each retrogressive collapse is much easier to be further decomposed when sensitivity is higher. 

Conclusions

This paper recasts the finite element formulation for fluid dynamics and solid mechanics into a unified elastoviscoplastic formulation. This is achieved by employing the generalised Hellinger-Reissner variational principle. The governing equations for both the fluid dynamics and the solid mechanics are reformulated into a standard optimisation problem, namely a min-max program, which then can be transformed into a second-order cone programming problem and solved via advanced modern optimisation algorithm. In such a way, the coupling between the solid and the fluid can be completed in a monolithic fashion which is particularly importance for modelling submarine landslides. The resulting formulation is implemented in the framework of the particle finite element method so that extreme deformation problems can be simulated without any mesh distortion issue. A number of benchmarks of both singlephase problems, involving Newtonian/Non-newtonian flows or solids, and multi-phase problems, such as the model test on submarine landslide generated tsunamis, are simulated using the proposed approach. Comparisons between the simulation results with available data and analytical solutions are conducted where great agreements have been attained which verifies the proposed method. Last but not least, a model test is considered to illustrate the possibility of the proposed approach for modelling the consequences of submarine landslides including their direct threat to offshore infrastructure such as pipelines and their indirect threat via generating tsunamis. Sensitivity of the marine clays is also considered in this example with its effect on the failure of underwater slope being shown.
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 1 Figure 1 Submarine landslides and their consequences.
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 12 are parameters taking values in [0, 1], the subscripts n and n+1
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 4 Mathematical programming formulation of solid dynamicsSince the governing equations for the non-Newtonian flow are expressed in a general form, the extension of the relevant optimisation problem to the one for an elastoviscoplastic solid is forthright. The governing equations for the dynamics of an elastoviscoplastic solid are the same as those for fluid dynamics expect for the differences in the constitutive equations. The constitutive equations for an elastoviscoplastic solid are

  analysis of Newtonian/Non-Newtonian flows when the parts relevant to the elasticity and material hardening/softening are erased. When the Von Mises yield criterion is used, the above problem is for analysing the standard Bingham flow. While the threshold stress is null, it recovers the Newtonian flow.

  , r , û , and κ are vectors containing the values of the corresponding field variables at interpolation points, N is a matrix consisting of shape functions, and T u u BN. By substituting Eq. (59), the principle (e.g. (54)) discretised in space reads
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  being the area coordinates. The master fields for both the solid and the fluid are the same; however, when the element represents a fluid, the elastic compliance matrix C and the constitutive modulus matrix H at the integration points in principle (62) is set to be null and consequently the discretised principle (63) for a fluid is recovered. By doing so, the coupling of the fluid and the solid is achieved naturally in a monolithic fashion.
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 2 Figure 2 The mixed triangular element used in the simulation
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 1711 Newtonian flowThe first example concerned is the water dam break. The dam is initially 10 cm wide and 20 cm high as shown in Figure3, and the water of density  = 1×10 3 kg/m 3 is incompressible.The gravitational acceleration is g=-9.8 m/s 2 . The lift up of the gate leads to the spreading of the water dam. As it is modelled as a Newtonian flow, the Von-Mises model is used with the cohesion (or called threshold stress in the field of fluid dynamics) being null. The domain is discretised using 3,879 triangular elements with typical element size h = 0.4 cm (e.g. the length of element edges). The parameters for time discretisation are[START_REF] Gauer | The last phase of the Storegga Slide: simulation of retrogressive slide dynamics and comparison with slide-scar morphology[END_REF] 1 

Figure 3

 3 Figure 3 Schematic illustration of water dam break.

Figure 4

 4 Figure 4 Configurations of the dam-break wave with the distribution of water pressure (unit: kPa) at time instances (a) t = 0.05 s, (b) t=0.10 s;, (c) t=0.15 s, and (d) t=0.18 s, respectively.
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 5 Figure 5 A schematic illustration of an annular viscometer.
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 6 Figure 6 Distribution of the tangential speed at the steady state (Unit: m/s).
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 7 Figure 7 Curves of the tangential speed against the radial position.
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 6 Figure6shows the distribution of the speed at the steady state from our simulations. As

Figure 8

 8 Figure 8 Snapshots of profiles at different time instances. The sliding surface and the profile surface are experimental data from [53].
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 9 Figure 9 A schematic illustration of the experimental test for underwater granular flows (Unite of length: m).

Figure 10

 10 Figure 10 Snapshots of configurations of the sand mass and the induced water wave at time instance (a) t = 0.4 s and (b) t = 0.8 s. Circles are computed results from [54].

Figure 11 2 .

 112 Figure 11 Comparison of the elevations of the free surface at times (a) t = 0.4 s and (b) t = 0.8 s.

Figure 12

 12 Figure 12 Schematic illustration of an underwater slope near a subsea pipeline (Unit of length: meter).

  simulation proceeds until the final deposit is obtained. As shown in Figure13, the failure of the slope is triggered due to the removing of the heading load. The mass in the front slides along a failure surface but at a relatively low speed in this case (Figure13(a1)). After a very limited deformation, the slope turns to be stable at a new position (Figure13(a2)). Figure13(b1) and (b2) indicate the corresponding layers of seawater and marine clays for comparison. Throughout the process, no obvious tsunami is generated.

Figure 13 Figure 14

 1314 Figure 13 Snapshots of the collapse process of the submarine landslide at different time instances from simulations without strain softening. Colors on the left figures are proportional to velocity (m/s) and figures on the right show the layers of the materials with blue and red colors representing seawater and marine clays, respectively. (Unit of speed: m/s)

  Herein the problem is re-analysed with the strain-softening feature being taken into account. The peak undrained strength is up 6 kPa

15 .

 15 The distribution of the sliding speed is shown in Figure15(a) in which the white curves are the interface between the seawater and the clay drawn according to Figure 15(b) where particles (mesh nodes) representing different materials are plotted. The same to the previous case, the removing of the heading load triggers the failure of the slope as shown in Figure 15(a1) in which a shear band is expected along the failure surface. The clay evoked slides along the failure surface and towards the pipeline (Figure 15(a2) and (b2)). At 6.0 s t  , the pipeline is impacted by the sliding mass (Figure 15(a3) and (b3)). When the evoked mass is far enough from the newly generated back scarp of the slope, a second failure occurs as shown in (Figure 15(a4) and (

Figure 15 Figure 16

 1516 Figure 15 Snapshots of the collapse process of the submarine landslide at different time instances from simulations with strain softening (St=4). Colors on the left figures are proportional to velocity (m/s) and figures on the right show the layers of the materials with blue and red colors representing seawater and marine clays, respectively.(Unit of speed: m/s)
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