
HAL Id: hal-01872433
https://enpc.hal.science/hal-01872433

Submitted on 12 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feasibility and Availability based Heuristics for ACO
algorithms solving Binary CSP

Nicolás Rojas-Morales, María-Cristina Riff, Bertrand Neveu

To cite this version:
Nicolás Rojas-Morales, María-Cristina Riff, Bertrand Neveu. Feasibility and Availability based Heuris-
tics for ACO algorithms solving Binary CSP. IEEE Congress on Evolutionary Computation, Jul 2018,
Rio de Janeiro, Brazil. �hal-01872433�

https://enpc.hal.science/hal-01872433
https://hal.archives-ouvertes.fr

Feasibility and Availability based Heuristics for
ACO algorithms solving Binary CSP

Nicolás Rojas-Morales
Universidad Técnica

Federico Santa Marı́a
Valparaı́so, Chile

nicolasrojas@acm.org

Marı́a-Cristina Riff
Universidad Técnica

Federico Santa Marı́a
Valparaı́so, Chile

maria.cristina.riff@gmail.com

Bertrand Neveu
LIGM, Ecole des Ponts

Paristech
Paris, France

bertrand.neveu@enpc.fr

Abstract—A Constraint Satisfaction Problem is composed by
a set of variables, their related domains and a set of constraints
among the variables that must be satisfied. These are known as
hard problems to be solved. Many algorithms have been proposed
to solve these problems. Metaheuristics and in particular ant-
based algorithms have been used to solve difficult instances.
In this paper, we propose new heuristics to be included in an
ant-based algorithm in order to improve its performance when
tackling hard constraint satisfaction problems. These heuristics
are focused on the availability of consistent variable values and
to restrict the ants collaborative information to the feasibility.
To evaluate these heuristics we used the well-known Ant Solver
algorithm and tested with problem instances from the transition
phase. Results show that using our heuristics the Ants algorithm
increases the number of problems that it is able to solve. Finally,
a statistical analysis is presented to compare these approaches.

Index Terms—Heuristics, Ant Colony Optimization, Constraint
Satisfaction Problems

I. INTRODUCTION

A Constraint Satisfaction Problem (CSP) is a triple
(X,D,C) where X is the set of variables X = {X1, . . . , Xn},
their related domains D = {D1, . . . , Dn} and C is a set of
constraints among variables. The goal is to find a complete
instantiation that satisfies all the constraints. Several real-
world, industrial and research problems can be represented as
a CSP [1]. Many algorithms and meta-heuristics have been
proposed to tackle scheduling, planning, energy optimization,
routing optimization problems during the last decades [2].
Due to the high complexity that these problems can reach, the
meta-heuristic community continues proposing new strategies
to solve CSPs more successfully.

In this paper we are interested in ant-based algorithms for
solving binary CSPs. Ant Colony Optimization (ACO) [3]
is a meta-heuristic that represents the analogy with the
organization and communication of colonies of real ants.
Ants deposit a chemical substance named pheromone to
collaborate and communicate to the colony a path from their
nest to a food source. In ACO, these artificial ants walk
through a graph G = (N,L) where nodes N are represented

First author is supported by CONICYT-PCHA/National Doctoral
Scholarship/2015-21150696. Second author is supported by FONDECYT
Project No. 1151456 and partially supported by Centro Cientı́fico Tecnologico
de Valparaı́so (CCTVal) No. FB0821

by solution components that are connected by arcs in L.
In general, pheromone is deposited in paths that are most
promising to be visited by the colony. To decide which node
will be visited next, pheromone information and heuristic
knowledge are considered. Heuristic knowledge measures
candidate nodes considering specific information about the
problem being tackled. There exist ant-based algorithms
in literature proposed for solving CSP [4]–[8]. In general,
these approaches differ in the representation and pheromone
management. On the other hand, the heuristic knowledge is
mostly defined to measure the effect of candidate assignments
in terms of the number of conflicts.

The focus of this paper is to introduce heuristics that
can improve the search process of ant-based algorithms
for solving CSPs. In this work we propose heuristics
that discriminate between different candidate assignments,
considering information about the feasibility and the
availability of variable values. The feasibility is considered
in terms of minimizing the number of conflicts and the
availability is related to choosing conflicts “easy” to be
repaired (in constraints with few forbidden pairs of values).

The idea is to give priority to assignments that can maintain
the feasibility throughout the construction process of a partial
instantiation. To evaluate these heuristics we used the well-
known Ant Solver (AS) [9], an ant-based algorithm proposed
for solving Constraint Satisfaction Problems. Our approach
will modify the heuristic knowledge and the pheromone
management of Ant Solver. Section III introduces details of
Ant Solver and Section IV explains our heuristics and their
inclusion in AS. Moreover, experiments considering binary
CSP instances from the transition phase region were carried
out to evaluate these new heuristics. Results, boxplots and
statistical analysis are presented in Section V.

The main contributions of this work are:
• New heuristics based on the feasibility and availability of

values during the construction process of solutions and,
• Evaluate the inclusion of these heuristics in a well-known

ant-based algorithm for solving CSP.
It is important to mention that our objective is not to

propose the best algorithm for CSP. The idea is to evaluate
the inclusion of two heuristics that consider information about
the feasibility and the availability of variable values in an ant-
based algorithm.

First, the next section presents details of some proposed
ant-based algorithms for solving CSPs.

II. RELATED WORK

In this section, we present different ant-based algorithms
proposed to solve CSPs. The idea is to compare the main
components of our approach with the already existing algo-
rithms.

ACON is an ant-based algorithm with a transition rule and
a pheromone management that considers information from
low quality solutions [10]. Here, an alternative pheromone
matrix is used to obtain information about the worst quality
complete instantiations of each interation. This information is
used in a transition rule to decrease the attraction to arcs that
are related with these unpromising candidates. ACON also
considers a typical pheromone matrix where best ant deposits
pheromone in each iteration. On the other hand, heuristic
knowledge represents the effect of a candidate assignment in
terms of its produced conflicts. Experiments were made using
random binary CSP instances generated with model A and
N Queens instances considering different number of queens
ranging from 4 to 700. Here, ACON solved all the N Queen
instances, but only solved CSP instances with the lowest κ
values (near to 0.70− 0.80).

A particular pheromone management was proposed in [11]
for the ACOU algorithm. In ACOU, newly explored arcs
are reinforced during the pheromone update. The idea is to
force the algorithm to increase the exploration during the
search process. Also, the ant that constructs the best quality
solution will deposit pheromone in each iteration. Is not
reported how heuristic knowledge is considered in ACOU.
To evaluate the performance of ACOU, model A randomly
generated CSP instances are also used. Here, ACOU only
solved instances with the lowest κ values (near to 0.70−0.80).

Some works have reported some implementation problems
with the graph-based representation for Constraint Satisfaction
Problems. N-Queen ACO [12] was proposed for solving the
n queens problem only for values of n less than 8. Here,
authors reported that the size of the used graph-based
representation produced resource consuming problems. In
other case, as it is reported in [9], specialized algorithms
can solve the N -Queens problem than Ant Solver, by using
global constraints. More specifically, in problems where
global constraints should be considered.

A different graph-based representation for CSP is proposed
in [13]. Each node groups different variables that are related
by some particular constraint. This strategy produces a
reduction of the number of nodes and arcs for CSP problems.
To manage the pheromone it is necessary to select which

pheromone values will represent arcs in this new structure.
For this, an Oblivion Rate is defined to discard pheromones
with worst values. This strategy was included in an ant-based
algorithm (similar to Ant Solver [9] but without a local search
procedure). To evaluate this strategy, N-Queens instances
were used considering different number of queens ranging
from 25 to 200. Results show that the proposed model was
close to obtain optimal solutions for these instances.

With the objective of improving the quality of the solutions
found by Ant Solver, Opposite-Inspired Learning strategies
were proposed in [14]. Authors proposed to divide the
search process of Ant Solver into two steps: a First Step to
obtain information about assignations related to poor quality
solutions and a Second Step to solve the problem of interest
using this knowledge. Binary CSP instances were used to
evaluate the inclusion of two strategies. Results showed that
the inclusion of opposite information allowed Ant Solver to
reach better quality solutions.

In summary, the main differences among these approaches
are related to how the pheromone is managed. On the other
hand, it is important to notice that the main structure of
these algorithms is similar and also, heuristic knowledge is
typically defined to measure the effect of each assignment in
terms of the number of conflicts. The novelty of our approach
is related to how the heuristic knowledge is defined and how
the pheromone is deposited only on feasible arcs.

In the following section we present the baseline algorithm
considered in this work called Ant Solver (AS). Ant Solver
contains a local search procedure based on min-conflicts that
improves considerably its performance. However, some works
on the literature compare their approaches with Ant Solver
without including its local search procedure. In this work, to
perform fair comparisons, we consider the complete design of
Ant Solver. Moreover, to the best of authors knowledge, Ant
Solver is the only ant-based available code for solving CSP’s.1

III. ANT SOLVER

This section introduces Ant Solver (AS) [9], a well-known
MAX −MIN Ant System [15] algorithm proposed to solve
CSPs. Ant Solver searches for a solution that minimizes the
number of unsatisfied constraints. Algorithm 1 shows the
structure of Ant Solver. At each step, each ant k constructs a
complete instantiation for the CSP (line 5). Unlike classical ant
algorithms, when applied to CSP, the construction of a solution
considers two decisions at each assignment: the selection
of the next variable, according to some given criterion, and
the selection of the value, made probabilistically according
to the transition rule. The pheromone is deposited on a
binary graph whose nodes 〈Xi, v〉 represent the assignment
of value v to variable Xi and the edges between two nodes
(〈Xi, v〉, 〈Xj , w〉) represent those simultaneous assignments
of values.

1http://www.aco-metaheuristic.org/aco-code/public-software.html

Algorithm 1 Ant Solver
Input: Define parameters values
Output: Overall best solution reached

1: Pre-processing(nBest,ε)
2: InitializePheromoneTrails()
3: while F (IC) > 0 or maxChecks not reached do
4: for k = 1 → nbAnts do
5: IkC ← ConstructCompleteInstantiation()
6: Post-processing(IkC);
7: end for
8: UpdatePheromoneTrails(ILBest

C);
9: end while

10: return IGBest
C

Equation 1 shows the transition rule used by Ant Solver.
Here, it does not only depend on local relations between the
candidate node and the last visited node, but also on a global
relation between the candidate node and the whole set of
visited nodes Ip. Hence, the pheromone factor of node 〈Xj , v〉
depends on pheromone deposited on all edges between 〈Xj , v〉
and the nodes in Ip.

pIp(〈Xj , v〉) =
[τIp(〈Xj , v〉)]α ∗ [ηIp(〈Xj , v〉)]β∑

w∈D(Xj)
[τIp(〈Xj , w〉)]α ∗ [ηIp(〈Xj , w〉)]β

(1)
The heuristic knowledge in Ant Solver is defined to measure

the number of possible new violated constraints for each
candidate assignment. This factor also depends on the whole
set of currently visited nodes in Ip:

ηIp(〈Xj , v〉) =
1

1 + F (〈Xj , v〉 ∪ Ip)− F (Ip)
(2)

where F is the evaluation function of the algorithm that
counts the number of conflicts of a partial or complete instanti-
ation. Ants that find the best quality solutions in each iteration
are allowed to deposit pheromone. Pheromone is deposited on
each pair of assignments in a complete instantiation (line 8).
Equation (3) shows the amount of pheromone (∆τ) deposited
on an edge (i, j) belonging to the best quality complete
instantiation of an iteration (ILBestC).

∆τ (ILBestC , i, j) =
1

F (ILBest
C)

(3)

Then, the global pheromone updating rule is defined as:

τnewij = (1− ρ) ∗ τoldij + ∆τ (ILBestC , i, j) (4)

where τnewij is the updated pheromone value for edge
(i, j), τoldij is the current pheromone value for edge (i, j)
and ρ is the decreasing rate used for pheromone evaporation.
Ant Solver includes pre- and post- processing steps that
use a min-conflicts based local search procedure. The pre-
processing phase repeatedly performs a local search to collect
information that will be used to initialize pheromone trails
(lines 1-2). The post-processing phase performs a local search

TABLE I
EXAMPLE OF POSSIBLE ASSIGNMENTS, CONSIDERING DIFFERENT VALUES

FOR VARIABLE Xj

Assignment Conflict with #Conflicts # Incompatible values
〈Xj , w〉 - 0 -
〈Xj , y〉 〈Xr, a〉 1 12
〈Xj , z〉 〈Xs, b〉 1 20

after each ant has constructed a complete instantiation (line 6).

Finally, Ant Solver has seven parameters: α, β, ρ, τmax,
nbAnts, nbBest and ε. α and β determine, respectively, the
weight of the pheromone and the weight of the heuristic
knowledge in the computation of transition probabilities, ρ rep-
resents the level of pheromone evaporation, τmax determines
the maximum amount of pheromone allowed in pheromone
matrix, nbAnts corresponds to the number of ants used, ε
determines the quality improvement rate for the pre-processing
step and nbBest corresponds to the number of best assign-
ments selected during the pre-processing phase.

IV. OUR APPROACH

In general, heuristic knowledge in ant-based algorithms
for Constraint Satisfaction Problems is defined as presented
in (2). The consequences of making a variable assignment
are measured only in terms of the number of unsatisfied
constraints. In some cases, this function can deliver poor
information and lead the algorithm to low quality complete
instantiations.

We will prefer instantiations easier to be repaired, i.e.
where conflicts appear in constraints with a low conflict rate.
Without loss of generality, we will assume in the rest of the
paper, that the variables have the same domain size, and that
the constraint difficulty to be repaired can be measured by
the number of pairs of values in conflict.

Let Xj be the next variable to be instantiated in a partial
instantiation IP by Ant Solver and IP = {〈Xr, a〉, 〈Xs, b〉}.
The next possible values to be assigned are w, y and z.
Table I shows for each possible assignment: the assignments
in IP with which the candidate assignment is in conflict, the
number of conflicts produced and the number of pairs of
values in conflict.

The assignment 〈Xj , w〉 does not have conflicts with IP .
As no conflict can be produced, the heuristic knowledge in
Ant Solver will be maximized by choosing this assignment.
On the other hand, assigning values y or z to Xj will produce
one conflict with 〈Xr, a〉 or 〈Xs, b〉, respectively. In this case,
the heuristic knowledge in (2) cannot discriminate between
these two candidate assignments. If value z is assigned to
Xj and if this complete instantiation has the highest quality
value of the iteration, all edges in the complete instantiation
containing 〈Xj , z〉 will be marked with pheromone. Then, in
next iterations, ants in the colony will consider these edges as

promising although they are related with possible conflicts.

We propose two heuristics that consider this local informa-
tion about the feasibility and availability of variable values
during the construction process. Let U(〈Xj , w〉, 〈Xr, a〉) the
number of pairs of values in conflict between two variables
Xj and Xr. As shown in Table I, U(〈Xj , w〉, 〈Xr, a〉) = 12
and U(〈Xj , w〉, 〈Xs, b〉) = 20. Notice that if no conflict exists
between 〈Xj , w〉 and 〈Xr, a〉 the value is zero. We define a
function E that considers the number of incompatible pairs of
values between a candidate assignment and all assignments in
a partial instantiation:

E(〈Xj , w〉, IP) =
∑

〈Xr,a〉∈IP

U(〈Xj , w〉, 〈Xr, a〉) (5)

where 〈Xj , w〉 is the candidate assignment, 〈Xr, a〉 is
an assignment in IP that has a conflict with this candidate
assignment. It is important to remark that the amount
U(〈Xj , w〉, 〈Xr, a〉) will contribute in the summation if there
exist a conflict between 〈Xj , w〉 and 〈Xr, a〉.

We propose to include this information in the heuristic
knowledge and in the pheromone management of an ant-
based algorithm. The idea is to guide the construction process
to feasible candidate solutions that can also be easier to be
repaired by a local search procedure. For this, the heuristic
knowledge and pheromone management of Ant Solver were
replaced to evaluate these ideas. In the following we present
the details of the implementation.

A. Focused Ant Solver

We will present in this part, how to implement these ideas
in an ant-based algorithm for solving Constraint Satisfaction
Problems. For this, we selected the well-known Ant Solver
(AS) [9]. As Ant Solver has a local search component, it
is expected that the complete instantiations constructed will
be easier to be repaired considering the information about
availability and feasibility of variable values. We propose to
use this information in the main components of AS: heuristic
knowledge and pheromone management.

1) Heuristic Knowledge: We propose to replace the heuris-
tic knowledge of Ant Solver by:

η(〈Xj , w〉) = ηIp(〈Xj , w〉) +
1

(1 + E(〈Xj , w〉, IP))2
(6)

where 〈Xj , w〉 is a candidate assignment, ηIp(〈Xj , w〉)
is the heuristic knowledge in (2) and E(〈Xj , w〉, IP) is the
function defined in (5). The objective is to give priority to
assignments that have a low number of conflicts and also,
conflicts with a low number of incompatible pairs of values.
In order to better discriminate between scenarios with same
number of conflicts the (1 + E(〈Xj , w〉, IP)) term is squared.

2) Pheromone Management: About the pheromone
management, we want to mark solutions that have a low
number of conflicts but also that can be easier to be repaired
during the search process. For this reason, pheromone will
be deposited on the complete instantiation IC that has the
lowest number of conflicts and also the lowest pairs of values
in conflict. Moreover, to guide the construction process to
prefer feasible edges, pheromone will be deposited only in
feasible edges of IC .

To calculate the number of pairs of values in conflict in
a complete instantiation, E function is redefined considering
each pair of variables in conflict:

E(IC) =
∑

(〈Xj ,w〉,〈Xr,a〉)∈IC

U(〈Xj , w〉, 〈Xr, a〉) (7)

where IC is a complete instantiation, Xj and Xr are two
variables in conflict because the simultaneous instantiation
(〈Xj , w〉, 〈Xr, a〉) is considered in IC . Equation 3 is replaced
by:

∆τ (IEC , (〈Xj , w〉, 〈Xr, a〉)) =
1

F (IEC)
(8)

where IEC is the complete instantiation that has the lowest E
function value during the current iteration, (〈Xj , w〉, 〈Xr, a〉)
is a non conflict pair of assignments and F (IEC) is the quality
of IEC .

These two new heuristics were included in Ant Solver. We
named this new approach Focused Ant Solver (FAS) and in
the following section we present an experimental evaluation
and comparison of both approaches.2

V. EXPERIMENTS

This section presents the evaluation of our approach and a
comparison with the selected baseline algorithm Ant Solver.
For this, we considered a set of 100 binary CSP instances
from the transition phase, where the most difficult instances
are found [16]. In these experiments the stopping criterion is
defined as 4× 109 conflict checks. We defined this amount of
resources considering the average conflict checks consumed
by the pre- and post-processing phases of Ant Solver. The
hardware platform adopted for all these experiments was a
Power Edge R630 server with 2 Intel(R) Xeon(R) CPU E5-
2680 v3 @ 2.50GHz, 128 GB of RAM under Ubuntu x64
16.10 distribution.

A. Instances

For our experiments, we have considered random binary
CSPs. Random binary CSPs can be generated considering four
parameters 〈n,m, p1, p2〉:
• n defines the number of variables,
• m corresponds to the number of possible values in the

domain of each variable,

2The code of FAS can be requested in http://ecco.informaticae.org

TABLE II
κ VALUES FOR THE SELECTED p2 VALUES

p2 κ
0.22 0.828
0.23 0.871
0.24 0.915
0.25 0.959
0.26 1.003
0.27 1.049
0.28 1.095
0.29 1.141
0.30 1.189
0.31 1.237

• p1 ∈ [0, 1] represents the connectivity, i. e. it determines
the number of constraints and

• p2 ∈ [0, 1] corresponds to the tightness of the constraints,
i. e. the probability that a pair of values is incompatible.

The CSP instances for our experiments were generated
using model A. Models differ in how the constraint graph is
generated and how incompatible values are chosen. For more
details about this method refer to [16].

For our experiments we generated hard to solve instances
belonging to the phase transition region. To predict the phase
transition, a constrainedness measure (κ) [17] can be calcu-
lated as it follows:

κ(n,m, p1, p2) =
n− 1

2
∗ p1 ∗ logm(

1

1− p2
) (9)

where κ ∈ [0,∞[. When κ ≈ 0, problems are under-
constrained and soluble and when κ ≈ ∞, problems are over-
constrained and insoluble. However, when κ ≈ 1 problems
are between solubility and insolubility and is difficult to find
a solution or to prove there are none. For our experiments
we considered n = 100 variables, m = 8 domain sizes,
p1 = 0.14 and p2 ranging from 0.22 to 0.31. Ten instances
were generated for each category of p2. Table II shows the
values of κ for the different values of p2. Finally, in order to
assure that each instance is solvable, we have added a random
generated solution to each one.

B. Parameter Tuning

Parameter values for Ant Solver and Focused Ants were
defined using a tuner algorithm called Evolutionary Cal-
ibrator (EVOCA) [18]. As we already mentioned, Ant
Solver performs a pre-processing step to initialize the
pheromone matrix. During this step some instances from
p2 = [0.22, 0.23, 0.29, 0.30, 0.31] categories can be solved. In
order to correctly evaluate parameter configurations, instances
only from p2 = [0.24, 0.25, 0.26] categories were used during
the tuning process. Table III shows the obtained values by the
tuning process.

C. Results

As we already mentioned, 100 instances were considered
for these experiments. For each instance, 20 independent runs

TABLE III
PARAMETER VALUES OBTAINED BY EVOCA

Algorithm nbAnts α β ρ τmax

Ant Solver 9 15.0 4.5 0.0001 17.0000
Focused Ants 46 15.5 14.4 0.0005 26.3931

TABLE IV
SUCCESS RATE OBTAINED BY AS, AS-T AND FAS CONSIDERING

DIFFERENT p2 CATEGORIES WITH (100, 8, 0.14, p2)

p2 AS AS-T FAS
0.22 100,0 100,0 100,0
0.23 63,5 84,0 93,5
0.24 35,5 59,5 73,5
0.25 13,0 47,5 65,5
0.26 36,0 64,0 65,0
0.27 50,0 58,0 65,5
0.28 80,0 93,5 99,0
0.29 99,5 100,0 100,0
0.30 97,5 99,0 98,0
0.31 100,0 100,0 100,0

were executed. To show the effect of the parameter tuning
process, we will compare Ant Solver (AS) with the parameter
values proposed in [9]. These parameter values are α = 2,
β = 8, τmax = 4, nbAnts = 8 and ρ = 0.99. Moreover, we
considered Ant Solver tuned (AS-T) and Focused Ant Solver
tuned (FAS) as it was already described. To compare these
algorithms we defined a success rate (SR) as:

SR = 100 ∗ SuccessRuns
TotalRuns

(10)

where SuccessRuns is the number of independent runs
where a complete instantiation without conflicts was obtained
and TotalRuns is the total number of independent runs
executed. Table IV shows the success rates obtained by each
algorithm in all the categories. Results in bold show that
an algorithm obtains the highest success rate for a category.
When a tie occurs, no success rate is highlighted. First, results
show the performance improvement obtained by using the
parameter values obtained by EVOCA for Ant Solver. This
can be seen in 8 of the 10 categories (with p2 value ranging
from 0.23 to 0.30). As a result of this improvement, in the
following sections we only will compare FAS with AS-T.
Considering AS-T and FAS algorithms, results show that FAS
outperforms AS-T in five categories (with p2 values of 0.23,
0.24, 0.25, 0.27 and 0.28) considering an improvement in the
success rate ranging from 5 and 18 percent. Also, AS-T and
FAS obtain similar results in the remaining categories.

Table V shows the average execution time in seconds per
category, considering the 10 instances and the 20 independent
runs. Lower average execution times were obtained in five
categories (with p2 value ranging from 0.23 to 0.27). The time
difference in these categories is between 12 and 22 seconds.

Finally, the three algorithms solved all the instances in

TABLE V
AVERAGE EXECUTION TIME IN SECONDS AMONG THE 20 INDEPENDENT

RUNS AND THE 10 INSTANCES PER CATEGORY (p2)

p2 AS-T FAS
0.22 3.468 2.881
0.23 35.082 21.188
0.24 53.327 36.798
0.25 66.843 44.443
0.26 53.622 36.364
0.27 48.468 35.723
0.28 21.572 15.890
0.29 3.344 3.189
0.30 4.508 4.541
0.31 0.311 0.340

AS−T FAS

0
2

4
6

8
1
0

Category p2_0.25

#
C

o
n
fl
ic

ts

Fig. 1. Boxplot for each algorithm considering the number of conflicts
obtained in each independent run in Category 0.25

categories 0.22 and 0.31, considering all the independent
runs. This situation confirms that the pre-processing phase
can solve most of the problems of these categories.

In general, these results show that the inclusion of these two
heuristics produces an improvement of the performance of Ant
Solver, in terms of the quality of the solutions obtained. For
a further comparison between these algorithms, boxplots and
a statistical analysis are presented in the following sections.

D. Boxplots

To analyze the distributional characteristics of the quality of
the obtained solutions by both algorithms, we present boxplots
of some categories. As in some categories the performance
of both algorithms is similar, we only present boxplots for
categories where p2 is: 0.25, 0.26 and 0.27.

Fig.1 shows boxplots for p2 = 0.25 category. Here, both
boxes are short and both upper whiskers scores 2 conflicts.

AS−T FAS

0
2

4
6

8
1
0

Category p2_0.26

#
C

o
n
fl
ic

ts
Fig. 2. Boxplot for each algorithm considering the number of conflicts
obtained in each independent run in Category 0.26

AS−T FAS

0
2

4
6

8
1
0

Category p2_0.28

#
C

o
n
fl
ic

ts

Fig. 3. Boxplot for each algorithm considering the number of conflicts
obtained in each independent run in Category 0.28

Moreover, the median of AS-T is near to 1 conflict and the
median of FAS is in 0.

Fig.2 shows boxplots for p2 = 0.26 category. In this
category, the box of Ant Solver algorithm is taller than FAS’s
box. The upper quartile of AS-T scores 2 conflicts and its
upper whisker scores 5 conflicts. About FAS box, the upper
quartile scores 1 conflict and its upper whisker scores 2

TABLE VI
WILCOXON TEST RESULTS. FOR THE COMPARISON THE NUMBER OF

POSITIVE RANKS (PR), NEGATIVE RANKS (NR), TIES, TOTAL
COMPARISONS AND P-VALUE ARE SHOWED.

Comparison PR NR Ties Total p-value
AS-T - FAS 218 90 1692 2000 0.00

conflicts. Finally, both algorithms have the same median of
0 conflicts.

Fig.3 shows boxplots for p2 = 0.28 category. Here, for both
algorithms, same median and same size of each box can be
seen.

E. Statistical Analysis

We have used the pair-wise Wilcoxon non-parametric
test [19] to compare the performance of AS-T and FAS. For
this, we used the results obtained in all the independent runs
obtained by each algorithm on every instance. The hypotheses
considered in this test are:
• H0: Algorithm X found same quality solutions than

Algorithm Y
• H1: Algorithm X found different quality solutions than

Algorithm Y
Table VI shows the results of the test. As the solving

process of CSP instances tries to find an instantiation
minimizing the number of unsatisfied constraints it is a
minimization process. The number of positive (resp. negative)
ranks show the cases when FAS outperforms AS-T (resp.
AS-T outperforms FAS).

Considering a confidence level of 95%, these results show
that the search process of AS-T is improved using the proposed
heuristics. Moreover, results shows that AS-T and FAS are
statistically different algorithms. All these computations were
done using the statistical software package PSPP .3

VI. CONCLUSIONS AND FUTURE WORK

We have proposed two heuristics for ant-based algorithms
designed for solving Constraint Satisfaction Problems. These
heuristics are based on the feasibility and availability of
variable values. The objective is to discriminate between
assignments that can lead the construction process to feasible
complete instantiations. This information was included in
the heuristic knowledge and in the pheromone management
of Ant Solver, a well-known ant-based algorithm proposed
for solving CSPs. Moreover, pheromone was deposited only
in feasible arcs of complete instantiations with the idea of
reinforce only paths that could be useful to visit in future
iterations.

Results show that the inclusion of these heuristics in Ant
Solver improves its search process, allowing the algorithm
to obtain non conflict complete instantiations in more cases.
As the value of κ tends towards one, the gap between AS-T

3Available in http://www.gnu.org/software/pspp/

and FAS decreases. However, there is still an improvement
in most categories. Boxplots were also presented to detail
how the obtained solutions are distributed. Finally, statistical
analysis showed that these algorithms are statistically different
and also, that Focused Ant Solver outperforms Ant Solver.

As in this work we only considered CSP problem instances
with same size domains, for future work we are also
interested in evaluate these heuristics in solving problem
instances with different size domains. Also, we are interested
in implementing and evaluating these heuristics in other
combinatorial problems to improve the search process of
meta-heuristics.

On the other hand, we are interested in including an
Opposite-Inspired Learning strategy into Focused Ant Solver
to improve its search process [20].

ACKNOWLEDGMENT

We want to thank Christine Solnon for providing us with
the code of Ant Solver [9].

REFERENCES

[1] V. Kumar, “Algorithms for constraint-satisfaction problems: A survey,”
AI magazine, vol. 13, no. 1, p. 32, 1992.

[2] A. E. Eiben and Z. Ruttkay, “Constraint satisfaction problems,” 1997.
[3] M. Dorigo, “Optimization, learning and natural algorithms,” Ph. D.

Thesis, Politecnico di Milano, Italy, 1992.
[4] A. Roli, C. Blum, and M. Dorigo, “Aco for maximal constraint satis-

faction problems,” 2001.
[5] L. Schoofs and B. Naudts, “Ant colonies are good at solving constraint

satisfaction problems,” in Proceedings of the 2000 Congress on Evo-
lutionary Computation. CEC00 (Cat. No.00TH8512), vol. 2, 2000, pp.
1190–1195.

[6] M. Afshar, “Partially constrained ant colony optimization algorithm for
the solution of constrained optimization problems: Application to storm
water network design,” Advances in Water Resources, vol. 30, no. 4, pp.
954 – 965, 2007.

[7] G.-F. Deng and W.-T. Lin, “Ant colony optimization-based algorithm
for airline crew scheduling problem,” Expert Systems with Applications,
vol. 38, no. 5, pp. 5787 – 5793, 2011.

[8] M. Khichane, P. Albert, and C. Solnon, “An ACO-Based Reactive
Framework for Ant Colony Optimization: First Experiments on Con-
straint Satisfaction Problems,” in Learning and Intelligent Optimization,
T. Stützle, Ed. Springer Berlin Heidelberg, 2009, pp. 119–133.

[9] C. Solnon, “Ants can solve constraint satisfaction problems,” IEEE
Trans. Evolutionary Computation, vol. 6, no. 4, pp. 347–357, 2002.

[10] K. Ye, C. Zhang, J. Ning, and X. Liu, “Ant-colony algorithm with
a strengthened negative-feedback mechanism for constraint-satisfaction
problems,” Information Sciences, vol. 406, pp. 29–41, 2017.

[11] Q. Zhang and C. Zhang, “An improved ant colony optimization algo-
rithm with strengthened pheromone updating mechanism for constraint
satisfaction problem,” Neural Computing and Applications, 2017.

[12] S. Khan, M. Bilal, M. Sharif, M. Sajid, and R. Baig, “Solution of N-
Queen problem using ACO,” in Multitopic Conference, 2009. INMIC
2009. IEEE 13th International. IEEE, 2009, pp. 1–5.

[13] A. González-Pardo and D. Camacho, “A new CSP graph-based represen-
tation for ant colony optimization,” in Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2013, Cancun, Mexico, June 20-23,
2013. IEEE, 2013, pp. 689–696.

[14] N. Rojas-Morales, M.-C. Riff, and E. Montero, “Ants can learn from the
opposite,” in Proceedings of the Genetic and Evolutionary Computation
Conference 2016, ser. GECCO ’16. ACM, 2016, pp. 389–396.

[15] T. Stützle and H. Hoos, “MAX–MIN Ant System,” Future Generation
Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.

[16] I. P. Gent, E. Macintyre, P. Prosser, B. M. Smith, and T. Walsh, “Random
constraint satisfaction: Flaws and structure,” Constraints, vol. 6, no. 4,
pp. 345–372, 2001.

[17] E. MacIntyre, P. Prosser, B. Smith, and T. Walsh, “Random constraint
satisfaction: Theory meets practice,” in Principles and Practice of
Constraint Programming - CP98, 4th International Conference, Pisa,
Italy, October 26-30, 1998, Proceedings, ser. Lecture Notes in Computer
Science, M. Maher and J.-P. Puget, Eds., vol. 1520. Springer, 1998,
pp. 325–339.

[18] E. Montero and M.-C. Riff, “A new algorithm for reducing metaheuristic

design effort,” in Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2013, Cancun, Mexico, June 20-23, 2013. IEEE,
2013, pp. 3283–3290.

[19] T. Bartz-Beielstein and M. Preuss, “Experimental research in evolution-
ary computation,” in Genetic and Evolutionary Computation Conference,
GECCO 2007, Proceedings, London, England, UK, July 7-11, 2007,
Companion Material, D. Thierens, Ed. ACM, 2007, pp. 3001–3020.

[20] N. Rojas-Morales, M.-C. Riff, and E. Montero, “A survey and clas-
sification of opposition-based metaheuristics,” Computers & Industrial
Engineering, vol. 110, pp. 424–435, 2017.

