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ABSTRACT 

The objective of this contribution is to present some new recent developments regarding the 

evaluation of the ultimate bearing capacity of massive three-dimensional reinforced concrete 

structures which cannot be modelled as 1D (beams) or 2D (plates) structural members. The 

approach is based upon the implementation of the lower bound static approach of yield design 

through a discretization of the three-dimensional structure into tetrahedral finite elements, on 

the one hand, the formulation of the corresponding optimization problem in the context of Semi-

definite Programming (SDP) techniques, on the other hand. Another key feature of the method 

lies in the treatment of the concrete-embedded reinforcing bars not as individual elements, but 

by resorting to an extension of the yield design homogenization approach. The whole procedure 

is first validated on the rather simple illustrative problem of a uniformly loaded simply 

supported beam, then applied to the design of a bridge pier cap taken as an example of more 

complex and realistic structure. 

Keywords: reinforced concrete structures, yield design, semi-definite programming, 

homogenization. 
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1. INTRODUCTION 

The yield design [1] or limit analysis [2] approach provides a suitable theoretical as well as 

computational framework for the Ultimate Limit State Design of structures in general and 

reinforced concrete structures in particular. In the situation when the structure is made of an 

assemblage of 1D (beams or arches) or 2D (plates or shells) structural members, its ultimate 

bearing capacity may be evaluated from a previously determined interaction yield criterion 

involving generalized stresses such as axial-membrane forces and bending moments. This 

method, which proves particularly attractive from an engineering point of view, has been quite 

recently used for spatial frame structures [3] and reinforced concrete plates [4] in combination 

with efficient convex optimization procedures. 

On the other hand, assessing the ultimate load bearing capacity of constructions 

incorporating massive three-dimensional reinforced concrete components, which can no more 

be modelled as beams or plates, requires a specific analysis, such as the widely acknowledged 

“strut-and-tie” model (see among many other references [5], [6], [7] or [8]) which, in some 

way, can be related to the lower bound static approach of yield design. With a special attention 

to evaluating the ultimate shear capacity of reinforced concrete deep beams, both the lower and 

upper bound methods of yield design have been implemented in the context of a finite element 

formulation with the help of linear programming optimization techniques [9]. In this study, 

reinforced concrete was described according to a “mixed modelling” approach, in which plain 

concrete was modelled as a two-dimensional continuous medium under plane stress, while the 

reinforcement bars were treated as one dimensional flexible beams embedded in the concrete 

material. 

The generalization to the more realistic situation of linear reinforcing inclusions placed into 

three-dimensional concrete bodies is posing a somewhat serious challenge as regards the 

possibility of treating such a case in a 1D-3D mixed modelling approach. Some attempts to 

circumvent this problem have already been proposed either in the context of the finite element 

formulation [10] or making use of an implicit homogenization method [11] or multiphase model 

[12].  

The present contribution is devoted to applying the previously mentioned homogenization 

model, initially developed for reinforced soils, to the yield design of three-dimensional 

reinforced concrete structures. It is based on the combination of the following elements. 

 Formulation of the plain concrete three-dimensional strength properties by means of a 

tension cut-off Mohr-Coulomb condition, characterized by the uniaxial tensile and 

compressive strengths of the concrete, along with its friction angle. 

 Modelling the strength of each individual reinforcement with its surrounding concrete 

volume as a homogenized anisotropic continuum accounting for both the above 

mentioned plain concrete strength properties and axial strength of the reinforcing 

inclusion. 
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 Finite element formulation of the lower bound static approach of yield design based on 

a discretization of the structure into tetrahedral elements with a piecewise linear 

variation of the stresses. 

 The final optimization procedure is carried out by means of Semi-definite Programming 

(SDP). 

The whole design procedure is first illustrated and validated on the simple example of a 

uniformly loaded deep beam, and the obtained results are compared with those derived from a 

1D modelling of the structure where the local resistance is defined by means of an interaction 

diagram. It is then applied to evaluating the ultimate bearing capacity of a reinforced concrete 

bridge pier cap subjected to concentrated vertical loads. 

2. MODELLING STRENGTH PROPERTIES OF PLAIN AND REINFORCED 

CONCRETE 

2.1. Plain concrete and reinforcing bars 

Following the approach of [2] and [5] or quite recently [4], the unreinforced or plain concrete 

will be modelled as a 3D homogeneous continuous medium, the strength properties of which 

will be described by means of a tension cut-off Mohr-Coulomb yield condition which may be 

formulated as: 

 ( ) sup ; 0c

p M m c M t
F K f f            (1) 

 

Figure 1. Geometrical representation of the tension-cut off Mohr-Coulomb criterion in the 

Mohr-plane 

In the above condition,  and 
M m

  represent the major and minor principal stresses, 

respectively (tensile stresses are counted positive throughout the text),  and 
t c

f f  denote the 

uniaxial tensile and compressive resistances and (1 sin ) / (1 sin )
p

K      where  is the 

internal friction angle which is usually taken equal to 37° (Kp≈4). This criterion is thus defined 

by three strength parameters. It may for instance be represented by means of an intrinsic curve 




c

-f


intrinsic  curve

t
+f
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in the Mohr-plane by as shown in Fig. 1, where the three material parameters defining the 

strength condition (1) are clearly apparent.  

The concrete material is reinforced by one dimensional steel bars or rods, the strength 

condition of which may be expressed in terms of axial force n only, since their resistance to shear 

force v and bending moment m can be neglected: 

0 0
, 0kn n n v m            (2) 

In the above condition, n0 denotes the tensile resistance of each individual reinforcing bar, 

while k is a non-dimensional parameter, ranging from 0 to 1, which accounts for a reduced 

resistance under compression, due to buckling for instance. 

2.2. Reinforced concrete: a homogenized strength condition 

Some significant regions of the reinforced concrete structure (such as deep beams: see for 

instance [2]) may be reinforced by such uniformly distributed bars (case of stirrups or open 

frames). Provided that the spacing between two neighbouring reinforcements is sufficiently 

small as compared with the size of the reinforced zone, the latter may be replaced by a zone 

where the homogenized constituent material obeys a macroscopic strength condition (see [13] 

for composite materials, or [14] for reinforced soils and [9] for reinforced concrete).  

This macroscopic strength condition, which can be derived from using the yield design 

homogenization method [15], may be expressed as follows: 

1 1

0 0

( ) 0
with   ( ) 0  and  -  

c r

rc

cc r

e e
F

F k

  


   

   
  

  

    (3) 

where 1e  is the unit vector parallel to the reinforcing bars, and 
0

  is defined as the tensile 

resistance of these bars per unit transverse area: 

2

0 0
/n s         (4) 

where s is the spacing between the bars, which may also be expressed as: 

2

0
/s s s

y y
A f s f         (5) 

In the above equation, 
s

y
f  denotes the uniaxial strength of the bar constituent material (steel) 

and sA  the bar cross-sectional area, so that  represents the reinforcement volume fraction (see 

Fig. 2(a) where 2 s cs A A  ). 

It is to be noted that the validity of the above macroscopic strength criterion (3) is subject to 

the verification of two important conditions (see [15] for more details): 

 The reinforcing bars are perfectly bonded to the surrounding concrete material, which 

means for instance that no slippage occurs at the bar/concrete interface. 
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 The reinforcement volume fraction remains sufficiently small (<<1), whereas the 

resistance of the reinforcing material is much higher than that of the concrete material 

and notably its tensile strength ( s

y c
f f ). 

 

 

(a)        (b) 

Figure 2. (a) Representative volume of reinforced concrete; (b) macroscopic strength condition 

relative to an oriented facet (case k=0) 

Figure 2(b) illustrates the macroscopic strength condition (3) expressed on an oriented facet 

of the homogenized reinforced concrete in the particular case when k=0 (no compressive 

resistance of the reinforcements). According to this figure, the corresponding strength domain 

in the (,)-plane can be drawn simply as the convex envelope of the plain concrete intrinsic 

failure curve and of the curve derived from that one through a translation of vector cos e  10 . 

Such a geometric representation thus gives a clear evidence of the strength anisotropy of the 

homogenized reinforced concrete in exactly the same way as for fibre composite materials. 

It should be pointed out that, without any reference to the limit analysis or yield design 

homogenization theory, some authors [11] did make use of a strength criterion quite similar to 

(3), that is based on an intuitive additive decomposition of the total stress in reinforced concrete 

zones into stress components relating to the plain concrete and the reinforcements, each one 

complying with independently specified strength conditions. 

2.3. The “mixed modelling” approach to reinforced concrete structures: a serious limitation 

Referring now to the frequently encountered situation where only a small number of 

differently oriented reinforcements are incorporated in the concrete structure (case of 

longitudinal reinforcements in deep beams for instance), the above mentioned homogenization 

method is no more applicable and a so-called “mixed modelling” approach should be advocated. 

According to this approach, the reinforcements are treated as 1D structural elements with a 

strength condition defined by (2) embedded in the concrete material modelled as a 3D 

continuum, the strength of which is specified by (1). 

1e

s
s

plain concrete 
( )cA

steel bar ( )sA









1e

 

10
cos e plain concrete

reinforced concrete
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Unfortunately, this 1D-3D mixed modelling approach comes against a serious limitation 

concerning the establishment of equilibrium equations for such a composite system. Indeed, the 

equilibrium equation at any point of the reinforcing bar may be written as: 

1

1

1

d ( )
+ ( ) = 0

d

N x
p x

x
      (6) 

where p represents the linear density of axial force exerted by the surrounding concrete material 

onto the reinforcing bar (Fig. 3(a)). 

 

(a)    (b) 

Figure 3. Interaction forces between concrete and reinforcement in the context of 1D-

3D mixed modelling 

Now, the impossibility of connecting such a 1D distribution p of interaction forces with the 

three-dimensional stress fields prevailing in the surrounding concrete material may be illustrated 

from the following simple reasoning. Considering a circular cylindrical “control surface” of 

radius  with its axis placed along the reinforcement, as shown in Fig. 3(b), the interaction force 

density p may be obtained from applying along this surface a longitudinal shear stress , the 

average value of which along the circle drawn on this surface at point x1, could be expressed as: 

1

1

( )
( )

2

p x
x


       (7) 

According to the latter equation, the shear stress which should be developed in the concrete 

along the control surface for applying a given value of interaction force density p increases to 

infinity as the radius  tends to zero, so that the stress field in the concrete material would tend 

to infinity along the reinforcement axis. Such a singularity could possibly be taken into account 

in the context of a linear elastic behavior of the concrete, but definitely not as soon as yielding 

and failure of the latter is concerned, since in this case the yield strength condition (1) of the 

concrete would be systematically violated when approaching the 1D reinforcing bar. 

2.4. An extended homogenization-based model 

Of course, the only fully mechanically consistent and rigorous way of circumventing the 

above limitation, would be to model each reinforcing bar as a three-dimensional volume body. 

But, on account of the small diameter of such bars along with the sharp contrast between the 

reinforcing steel and the surrounding concrete in terms of strength properties, this would 





p

N

1
x
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undoubtedly imply prohibitive computational costs, due for instance to the highly refined 

discretization required when employing finite element techniques. 

An alternative approach for the finite element modelling of 1D steel inclusions in 3D concrete 

volumes has been recently proposed by [10]. Likewise, in a more explicit reference to the 

homogenization procedure, three dimensional fem elastoplastic analyses on reinforced concrete 

structural elements have been performed by [12]. Their approach, which will be adopted in this 

contribution, may be described as follows. 

Considering one individual 1D-inclusion embedded in a 3D-concrete block, a cylindrical 

volume of concrete with the inclusion placed along its axis is defined, as shown in Fig. 4(a). The 

intuitive idea is to replace the composite cylindrical volume, thus obtained, by a homogenized 

cylinder, at any point of which the strength condition is defined by Eqs. (3) and (4), where s 

represents the side of the squared cross-section of the cylindrical volume. 

 

Figure 4. Construction of a homogenized reinforced zone around an individual inclusion 

The advantage of such a modelling procedure, is that the characteristic size of the 

homogenized zone (namely s) is significantly larger than the inclusion’s diameter, thus allowing 

for example a much easier finite element discretization of the reinforced concrete structure as a 

3D-3D composite, since a refinement of the mesh around the inclusion is no more required for 

obtaining accurate and reliable predictions. Of course, the choice of s being arbitrary, it will be 

necessary to make sure that the results of the computations performed on the basis of this model, 

remain rather insensitive to the value of s.  

3. NUMERICAL IMPLEMENTATION OF THE LOWER BOUND STATIC 

APPROACH 

3.1. Statement of the yield design problem 

Assuming that the reinforced concrete structure under consideration is subject to one single 

loading parameter Q, the ultimate or failure load value Q+ is defined, in the context of the yield 

design theory, as the maximum value of Q for which one can exhibit any stress field  : 

 statically admissible (S.A.) with Q, i.e. verifying the equilibrium equation at any point of 

the structure: 

div ( ) ( ) 0, x F x x V          (8) 

s

concrete (3D)

inclusion (1D)

s

homogenized
   zone (3D)

s s

concrete (3D)
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where F denotes the body force volume density (material specific weight for example), 

along with the continuity of the stress-vector across possible stress jump surfaces 

 ( ) . ( ) 0,    x n x x          (9) 

as well as the stress boundary conditions associated with the loading Q; 

 while complying with the strength conditions assigned to the plain concrete and reinforced 

concrete zones of the structure, respectively: 

( ( )) 0   and  ( ( )) 0 ,   c c rc rc c rcF x x V F x x V V V V           (10) 

where cV  (respectively rcV ) represents the part of the structure occupied by the plain 

concrete (resp. by the homogenized reinforced concrete). 

3.2. 3D finite element discretization 

Applying the lower bound static approach consists in considering S.A. stress fields depending 

either on a small number of parameters in an analytical approach, or on a large but finite number 

of stress variables in a numerical approach, such as the finite element method. According to the 

latter, the geometrical domain V occupied by the three-dimensional structure is discretized into 

Ne tetrahedral finite element V 

e, such as the one depicted in Fig. 5(a), with a linear variation of 

the stress field inside each element so that the stress at any point inside such an element may be 

classically written as: 

4

1

,  ( ) ( )
ke k

k

x V x N x 


        (11) 

where N 

k, k=1 to 4, are four linear interpolation functions and  
k is the value of the stress tensor 

at the node n°k of the element. It is to be noted that there are as many stress tensors  
k attached 

to any geometrical node of the mesh as there are tetrahedral elements sharing this node as an 

apex. 

 

Figure 5. Four nodded tetrahedral finite element used in the discretization of the 

reinforced concrete structure 

Furthermore, one may come across two situations. 

 The considered element is located in the unreinforced plain concrete zone V 

c of the 

structure, so that the stress state at any node of this element is defined by one single tensor 

which should comply with the strength condition (1). 

1


2


3


4


eV

k




eV


eV


k




n
k




k




eV


eV


n
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 The element is located in the homogenized reinforced concrete zone V 

rc and, as suggested 

by the corresponding homogenized strength condition (3), the stress state is defined by a 

stress tensor and an additional scalar stress variable which must satisfy separate 

independent strength conditions. 

It follows that a total of, either 4x6=25 or 4x7=28 stress variables, is attached to each element 

V 

e of the mesh. 

3.3. Formulation of equilibrium conditions as linear constraints on the stress variables 

On account of (11), the equilibrium equation (8) inside each element may be rewritten as: 

4

1

,  div ( ) grad .
k ke

k

x V x N F  


          (12) 

where it is assumed that the body force density is constant over the element. Since the gradient 

of each interpolation function is constant, Eq. (11) represents a linear constraint on the nodal 

stress variables k of each element. It is worth noting that the linear equilibrium condition (11) 

involves the total stress in the homogenized reinforced concrete and not the “partial” stresses c 

and 
r which appear in the definition (3) of the reinforced concrete strength condition. 

Likewise, Eq. (8) expresses the continuity of the (total) stress vector across any triangular 

facet common to two adjacent elements (see Fig. 5(b)). It also leads to linear constraints of the 

form: 

+
( ). 0 


 

k k
n       (13) 

where n is the unit normal to the triangular facet connecting two such adjacent elements +

eV  and 



eV . Owing to the linear variation of the stress fields and to the convexity of the strength 

conditions, checking the jump condition (13) at the nodal points is sufficient to make sure that 

it is verified at any point of the discontinuity triangular facet. 

It follows that all the conditions that a discretized stress field must satisfy for being statically 

admissible with a load value Q may be formulated in a generic matrix form as: 

  

    

fem
 S.A. with 

with  

T

Q A
Q

B C


  
 

 

    (14) 

where    is a column-vector which collects all the nodal stress variables associated with the 

mesh discretization of the structure, that is the total stresses in the plain concrete zones and the 

partial stresses in the homogenized reinforced parts. 

Consequently, the finite element implementation of the lower bound static approach of yield 

design reduces to the following maximisation problem: 

 
  

    

 

  equilibrium
Max   subject to 

( ) 0    strength criteria

Tlb
B C

Q Q Q A
F





  
    

 

  (15) 
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where  ( Σ ) 0F   represents the conditions expressing the different strength criteria to be 

satisfied. Again, due to the linear variations (11) of the considered stress fields and to the 

convexity of the strength conditions, the latter have only to be verified at the nodal stress points. 

3.4. Formulation as a SDP problem 

Unlike the equilibrium conditions which involve the total stresses only, the strength criteria 

in the homogenized reinforced zones concern the partial stresses as shown by (3). While the 

condition relating to the reinforcement writes in the form of a simple linear constraints (

0 0

r-k    ), the strength condition of the plain concrete defined by (1) involves the maximal 

and minimal principal stress components. The latter thus needs a specific treatment so that the 

optimization problem (15) may be treated as a Semi-definite programming (SDP) optimization 

problem [16] as briefly explained below. 

Semi-definite Programming (SDP) allows to formulate optimization problems in terms of 

constraints on eigenvalues of symmetric matrices. It therefore provides a suitable framework 

for the tension cut-off Mohr-Coulomb criterion (1) which involves the maximal and minimal 

principal stress components (eigenvalues). Thus, the three-dimensional Mohr-Coulomb 

criterion can be enforced by applying the two following linear matrix inequalities (LMI):  

1 0   and   1 0
M m

t t   1     (16) 

in conjunction with the equality constraint: 

0
p M m c

K t t f         (17) 

where 
M

t  and 
m

t  are auxiliary variables. Eliminating 
M

t  from Eq. (17) yields: 

1 11  1   and   1 0
p m p c m

K t K f t         (18) 

The second inequality of (18) can be expressed as:  

1 0  and  0
m

t X X        (19) 

which allows the stress variable to be eliminated using the relationship:  

1
m

t X         (20) 

so that the first inequality of (18) becomes: 

1 1(1 ) 1  1
p m p c

X K t K f        (21) 

or introducing Y as a second auxiliary symmetric matrix variable, the three dimensional Mohr-

Coulomb strength criterion may finally be reformulated as: 

1 1(1 ) 1  1

with  0  and  0

p m p c
X Y K t K f

X Y

    
    (22) 

which lends itself very easily to the numerical treatment by a SDP solver such as [17]. 

                                                           
1 where 0 . . 0 A x A x x     
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Similarly, the Rankine-type cut-off strength criterion which limits the tensile stresses in the 

plain concrete material: 

0 1 0
M t t

f f          (22) 

may be recast into the following constraints: 

1 0  and  0
t

Z f Z         (23) 

where a third auxiliary symmetric matrix variable Z has been introduced. 

4. A FIRST ILLUSTRATIVE TEST EXAMPLE 

4.1. Problem description 

A specific computer code implementing the whole above described numerical procedure, has 

been devised for calculating numerically optimized lower bounds to the ultimate loads of three 

dimensional reinforced concrete structures. A first illustrative application of this code is 

performed on the illustrative example of a beam of length L varying between 0,5 m and 16m and 

rectangular cross-section (H=0.5 m, b=0.2 m), subject to a uniform surface loading q applied 

onto the top of the beam (Fig. 6). The left end (X=0) of the beam is perfectly clamped (velocity 

vector equal to zero: U=0), while the boundary conditions at the right end (X=L) are:  

0,  
x xx y z

T U U        (24) 

which, in the framework of a 1D model of the beam, corresponds to a simple support free to 

move horizontally along the X-axis and rotate about the Y-axis (axial force N and bending 

moment M are set equal to zero). 

 

Figure 6. Reinforced concrete beam of length under uniform loading (case L=4m). 

The beam is made of a homogeneous concrete material, with the following uniaxial tensile 

and compressive strength characteristics: 

0.5 MPa   and   40 MPa
t c

f f      (25) 

X

Y

q

Z
4mL 

Y

Z

0.2mb 

0.5mH 

homogenized
zones

steel rebars ( =0.02m)
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keeping in mind that, referring to a tension cut-off Mohr-Coulomb condition, the value internal 

friction angle  is taken equal to 37°.  

The beam is reinforced by two longitudinal rebars of diameter equal to 2cm, made of a steel 

with a uniaxial strength equal to 
s

y
f =400 MPa. The bars are placed at the bottom part of the 

beam cross section as shown in Fig.5. Two methods will now be employed to evaluate the 

ultimate load q+ of this simple structure. 

4.2. Modelling the structure as a 1D beam 

The structure is first schematized as a 1D beam subjected to a uniform loading of linear 

density qb, so that the statically admissible distribution of axial force and bending moment is of 

the form (Fig. 7): 

20,  ( )= ( ) ( )
2

qb
N M X R L X L X        (26) 

where R is the unknown reaction at the right hand simply supported end (X=L). 

 

Figure 7. Statically admissible bending moment distribution in the structure modelled as a 1D-

beam  

It may be classically shown that the exact limit load of this structure is obtained when the 

corresponding bending moment parabolic distribution is such that (see Fig. 7): 

 0 0
( 0)= , Max ( ),0M X M M X X L M        (26) 

where 0
M 

 (respectively 0
M 

) is the strength of the beam under pure (that is for N=0) positive 

(resp. negative) bending. This leads to the following expression for limit load: 

1D 0 0 0 0 02

2
2 2 ( )q M M M M M

bL

         
 

    (27) 

The actual values of 
0

M 
 may be obtained from the interaction diagram of the reinforced 

concrete beam section, the geometrical and strength characteristics of which are shown in Fig. 

8. More precisely, the interaction domain cG  of the plain concrete section being defined as: 

R

X L

0X 
2( )= ( ) ( )

2

qb
M X R L X L X  

0
M 

0
M 
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2

( )( )
( , )  

2 ( )

for 

c c t

t c

c c t t

H N N N N
N M G M

N N

bHf N N N bHf

 
  



     

    (28) 

the reinforced section interaction domain rcG  is defined as (see [18] and [19] for more details 

concerning the yield design–based procedure used for determining such interaction domains): 

  2

0 0 0
(1, ); 2 2   with  ( / 4)rc c s

y
G G kn n n f            (29) 

 

Figure 8. Interaction domains of plain concrete and reinforced concrete sections in the (N, M)-

plane. 

Both domains have been represented in Fig. 8 for the set of selected values recalled in the 

same figure. The values of the resistance of the reinforced concrete section under pure bending 

correspond to the intersecting points of the boundary line of rcG  with the M-axis: 
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Hence the final expression of the limit load as a function of the beam length L: 

1D 2

5.18
(MPa)q

L

        (31) 

4.3. 3D-modelling of the structure: 

The structure is now treated as a three dimensional parallelepipedic volume. According to the 

method described in section 2.4, each bar with its surrounding volume of concrete material is 

replaced by a homogenized material obeying the macroscopic strength condition (3) with: 
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where s2 is the cross section area of the homogenized volume. 

First, several numerical analyses using the dedicated SDP optimization procedure described 

earlier are performed for the L=4m long reinforced concrete beam with different homogenized 

volume cross sections s2. The purpose of this study is to validate the proposed method, and 

notably the homogenization procedure. The results will then be compared to the 1D beam 

calculation developed in section 4.3. 

As previously explained in section 2.4, the homogenized method consists in replacing each 

individual rebar by a larger surrounding volume with adapted macroscopic strength condition, 

thereby allowing to perform numerical analyses without the computational cost induced by a 

much refined meshing of each rebar. Thus, both bottom longitudinal rebars being replaced by 

such homogenized volumes, three cases with different homogenized volume cross sections, 

namely s2=(b/2)2=0.1x0.1 m2, s2=0.08x0.08 m2 and s2=0.06x0.06 m2 (configuration of Fig. 6) 

have been investigated. 

 

Figure 9. Lower bound estimate of the beam ultimate bearing capacity as a function of the 

mesh size, for three different homogenized volume cross sections (L=4m) 

The results have been reported in Fig. 9 which shows the variations of the lower bound 

estimate for the ultimate load bearing capacity of the reinforced concrete beam (  3D
q

) as a 

function of the mesh size (number of elements), for each of the three cases. The result of the 1D-

beam calculation performed in section 4.2 is also plotted in the same figure in the form of a 

horizontal straight line. 

The following comments can be made. 

 For each of the three configurations, several finite element analyses have been performed 

where the number of finite elements has been increased from a few hundreds to about 
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30 000. Figure 9 clearly shows that the corresponding lower bound estimate is also 

increasing with a stabilization as soon as the mesh size exceeds 10 000 elements.  

 The results presented here clearly assess the validity of the proposed homogenization 

method for treating the case of a reinforcement by few individual inclusions. Indeed, the 

results of the evaluation of the ultimate load bearing capacity for the three cases are almost 

insensitive to the size of the proposed homogenized volume cross sections.  

 Finally, even if it should be kept in mind that the obtained results are lower bound estimates 

for the exact ultimate bearing capacity of the beam, the strengthening effect due to the 

presence of the rebars in the concrete beam is strikingly apparent, since the evaluation of 

the ultimate failure load, equal to 40kPa for the plain concrete beam of length L=4m, is 

increased to more than 300kPa when the reinforcement by two longitudinal bars is taken 

into account. 

 

 

Figure 10. Longitudinal views of the optimized stress field in the plain concrete (top picture), 

reinforced zones (intermediate picture) and entire structure (bottom picture) for L=4m 

Figure 9 provides longitudinal views of the optimized stress field in the case where s2=0.1x0.1 

m2. The top figure shows the distribution of the principal compressive stresses prevailing in the 

plain concrete material, while the intermediate figure represents the principal tensile stresses 

mobilized in the homogenized reinforced zones. Both distributions are superimposed in the 

bottom figure. Calculations were performed on an INTEL XEON CPU E5-2673 @2.3 GHz 

CORE in about 373 seconds (six minutes) for the most refined mesh (23352 tetrahedrae). This 

underlines the decisive advantage of the proposed homogenization method over a direct 

approach where the inclusions should have been very finely discretized in and around the 

inclusions, which may lead to an oversized numerical problem. Moreover, it is worth pointing 
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out that a little less performing lower bound estimate for the ultimate load bearing capacity of 

the structure may be obtained (307kPa vs 315kPa) with a coarser mesh (composed of 12392 

elements), leading to a computational time of 171 seconds. 

 

 L=16 m L=8 m L=4 m L=2 m L=1 m 

 1D
q

 (MPa) 0.0202 0.081 0.323 1.295 5.18 

 3D
q

 (MPa) 0.0195 0.0794 0.3155 1.260 4.22 

 +3.6% +2% +2.3% +2.8% +22.8% 

Table 1. Comparison between  3D
q

 and  1D
q

 for different beam lengths 

In order to compare the results derived from the 1D and 3D modellings of the structure, the 

effect of the length of the beam on its ultimate bearing capacity is now examined, all the other 

characteristics being kept unchanged. Several numerical analyses have been run to this end for 

different beam lengths (with s2=0.01 m2). The corresponding results are presented in Table 1. It 

appears that both evaluations are in excellent agreement for 2mL  , the 3D evaluation being 

slightly lower than the 1D calculation, which seems to be consistent with the fact that the 3D 

approach is a lower bound estimate.  

On the other hand, as could be expected, both estimates are diverging for shorter beams, the 

3D estimate being for instance 22.8% lower than the 1D calculation for L=1m. Of course, this 

discrepancy should be attributed to the fact that the 1D modelling is only applicable to 

sufficiently slender structures and not to “short” or “deep” beams where a limited shear 

resistance of the beam should be taken into account, which is implicitly made in the 3D 

calculation.  

5. A PRACTICAL CASE STUDY: FAILURE DESIGN OF A BRIDGE PIER CAP 

In order to assess the performance of the yield design numerical tool in situations where truly 

massive three dimensional structures are concerned, the following representative design case is 

now examined: a 3x3x1.5 m3 parallelepiped concrete block is considered as a simplified model 

of bridge pier cap. The finite element lower bound static approach is performed on this structure 

subject to four vertical loads representing the action of the overlying bridge deck, as shown in 

Fig. 11. These loadings are applied in the form of a uniform pressure applied on top of small 

rigid square pads of 0.7x 0.7m2. The interaction with the underlying bridge pier is modelled by 

imposing a rigid connection on a 1.5x0.7 m2 rectangular area placed at the centre of the bottom 

surface. 
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Figure 11. Reinforced concrete pier cap subject to bridge deck loading 

The concrete block is made of a homogeneous plain concrete material, with 40MPa
c

f   and. 

0.5MPa
t

f  . It is strengthened by four steel rebars of diameter equal to 3cm, placed just below 

the loading pads as shown in Fig. 11, with a uniaxial strength equal to 400MPas

y
f  . According 

to the above described procedure, each of the four rebars is replaced by a homogenized volume 

of square cross section equal to s2=0.01 m2.  

The whole structure being discretized into 41904 tetrahedral finite elements, an optimal lower 

bound estimate for its ultimate load bearing capacity has been obtained using the SDP 

maximization procedure. Fig. 12 represents the distribution of the principal compressive stresses 

prevailing in the plain concrete material, while the principal tensile stresses mobilized in the 

(homogenized) reinforced zones are shown in Fig. 13. Both distributions have been 

superimposed in Fig. 14 which displays a perspective and a front views. Calculations were 

performed on the same computational server in approximately 1782 seconds (half an hour). 

 

Figure 12. Perspective view of the optimized stress field in the concrete (compressions) 

steel rebarssteel rebars

loading pads

connection 
with 

bridge pier
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 Figure 13. Optimized stress field in the homogenized zones (tractions)  

 

 

 

Figure 14. Perspective and front views of the optimized stress field in the whole pier cap 
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The thus obtained lower bound estimate for the ultimate bearing capacity of the reinforced 

concrete structure is equal to 4.69 MPa applied on each of the four loading pads. By way of 

comparison, the lower bound evaluation of the ultimate bearing capacity of the same non-

reinforced concrete structure is equal to 3.18MPa. This means that the presence of the 

reinforcements increases the global resistance of the pier cap by as much as 47%. 

The proposed model of three-dimensional reinforced concrete structures advocated in this 

contribution, as well as the feasibility of the related numerical approach in the context of the 

finite element method, have thus been successfully tested here on a representative example of 

massive reinforced concrete structure. The front view of Fig. 14 in particular, gives a clear 

intuition of the optimized stress field equilibrating the applied loading, exhibiting compressive 

stresses (struts) in the concrete material and tensile stresses in the homogenized reinforced zones 

(ties).  

6. CONCLUSION 

A specifically dedicated finite element computer code has been set up aimed at producing 

rigorous lower bound (i.e. conservative) estimates for the ultimate load bearing capacity of three-

dimensional reinforced concrete structures in the context of the yield design approach. It relies 

upon two recent decisive breakthroughs: the numerical formulation of the corresponding 

optimization problem using efficient SDP optimization techniques, on the one hand, the adoption 

of a homogenization-inspired model for describing the mechanical behaviour of individual 

reinforcing inclusions embedded in a surrounding three-dimensional concrete matrix, on the 

other hand. The procedure may be further extended on two important points. 

 The development of the same kind of numerical method and related computer tool in the 

framework of the yield design kinematic approach, which will provide upper bound 

estimates. Comparing the latter with the already determined lower bound estimates, will 

considerably help improve the accuracy and reliability of the design procedure.  

 The adoption of a multiphase model, which may be perceived as an extension of the 

homogenization method [15], making it possible to take a specific interaction failure 

condition between the reinforcements and the concrete material, into account.  
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