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Abstract

This contribution addresses the formulation of a generalized continuum model called multi-
phase model aimed at describing more accurately the mechanical behavior of fiber-reinforced
materials. Improving on the classical macroscopic description of heterogeneous materials by
an effective homogeneous Cauchy medium, such models rely on the superposition of several
continua (or phases) possessing their own kinematics at the macroscopic level and being
in mutual interaction (in the same spirit of deformable porous media). Up to now, they
have only been formulated based on phenomenological assumptions and the identification
of the corresponding constitutive parameters remained unclear. The aim of this paper is
three-fold. First, a homogenization procedure is described, enabling to derive constitutive
parameters from the resolution of a generalized auxiliary problem on a classical heteroge-
neous microstructure. Second, analytical and numerical derivation of these properties is
performed in various cases. Finally, illustrative applications on boundary-value problems
assess the validity of the homogenization procedure and illustrate the relevance of such gen-
eralized models which are able to capture scale effects and to model crack bridging and
delaminated configurations at the macroscopic level. It is also shown to encompass results
of shear-lag models for analyzing stress transfers in fiber/matrix composites.

Keywords: fiber-reinforced materials, homogenization, generalized continuum, scale
effects, crack bridging

1. Introduction

Fiber-reinforced materials, consisting of short or long linear inclusions embedded in a
surrounding matrix, offer extremely interesting mechanical performances compared to more
conventional materials. Optimal properties are achieved through careful design of many
parameters such as fiber volume fraction, elastic modulus contrast, fiber orientation, fiber
aspect ratio, ductility or brittleness of each phase, quality of the interface, and many more.
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Obviously, this offers a large range of mechanical behaviors which must be well understood
for each particular industrial application. Fiber-reinforced materials are now present across
many scales, ranging for instance from carbon nanotubes to fiber-reinforced concretes or
even piled-raft foundations in civil engineering structures. Besides, environmental aspects
also drive the development of bio-composites (natural fibers or bio-derived matrix) and
many biological materials such as bones or nacre are based on a complex heterogeneous and
hierarchical structure from which interesting insights can be gained.

For engineering applications, the composite properties are generally described in an effec-
tive macroscopic way. Homogenization theory is a formidable tool to perform this up-scaling
procedure [13, 47] and has been used to establish classical results for the specific case of re-
inforced solids [36, 37, 39]. In this classical framework, the macroscopic effective behavior is
that of a standard Cauchy continuum associated with a macroscopic stiffness tensor Chom.
An important result of a two-scale asymptotic expansion with respect to the scale factor
ε is that the lowest-order displacement u0 is a rigid-body motion at the microscopic scale,
depending upon the macroscopic space variable only. The effective constitutive relation then
involves the macroscopic stiffness Chom obtained as the solution of an auxiliary (or corrector)
problem defined on the heterogeneous unit cell or RVE.

However, this simple picture fails to describe many situations, as pointed out for instance
in [48] and associated references. First, the previous homogenized behavior pertains to the
limit case in which ε→ 0. In practice, heterogeneous structures correspond to fixed but non-
zero values of ε and therefore exhibit so-called scale effects when ε is not sufficiently small
i.e. when scale separation is moderate. Second, a well-known difficulty in deriving higher-
order models able to capture such scale effects is related to what happens near the boundary
of the heterogeneous structure. The presence of heterogeneities creates the appearance of
boundary layers [31, 48] which do not affect the zero-order terms far from the boundary
but have a non-negligible impact on higher-order terms. Thirdly, the previous asymptotic
expansion assumes no other ”small” parameter than the scale factor ε, in particular, it does
assume that heterogeneous moduli do not scale with ε. In the presence of large contrasts
of stiffness properties, e.g. C1 = O(ε2)C2 for a biphasic material as considered in [19],
the zero-order asymptotic behavior differs from the classical one. In this case, u0 is not a
rigid-body motion in the whole unit cell anymore but only in the rigid phase, the remaining
part exhibiting a relative displacement which depends on the microscopic variable. The
resulting effective behavior then becomes that of a two-phase medium in which the relative
displacement satisfies a Darcy-like law. In the limit case of regions with completely debonded
phases, the effective behavior has also been shown to be one of a two-phase medium including
two independent macroscopic displacement fields corresponding to the individual motion of
the matrix and of the debonded fibers [14]. Finally, slenderness of heterogeneities also
introduce an additional small parameter for which higher-order terms may contribute to
the macroscopic behavior [19]. Unfortunately, the problematics of poor scale separation1,
boundary layer effects, large stiffness contrasts, weak interfaces and geometrical slenderness

1If the microscopic scale is in general well separated with respect to the structural scale in fiber-reinforced
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are all frequently encountered in fiber-reinforced materials.
Treatment of such situations may rely on different strategies such as multi-scale compu-

tations or investigation of higher-order terms in the previous asymptotic expansions leading
to generalized continua [17]. One main interest of the latter is to introduce a length-scale
dependence at the macroscopic level in order to capture scale or size effects characterizing
the specific heterogeneous microstructure. Generalized continua can involve either addi-
tional degrees of freedom (Cosserat, micromorphic, stress-gradient, etc.) or higher-order
derivatives (strain gradient or constrained micromorphic models) [2, 34]. The wide range
of possible theory makes it extremely difficult to assess their precise individual domain of
validity or relevant field of application. Since all theories introduce, at least indirectly, an
internal length scale, different size effects can be obtained. Regarding the specific case of
fiber-reinforced materials, this aspect can be quite complex to assess as evidenced by the
simple example considered in [27, 28] of a multilayered 2D domain exhibiting stiffening size
effects (i.e. when the structure scale L decreases for a fixed microstructure length s) when
loaded in shear and softening size effects when loaded in tension/compression in the trans-
verse direction. As a result, since strain gradient theories are known to lead to stiffening
size effects whereas other models (e.g. stress gradient) lead to softening size effects [54],
choosing a specific generalized continuum model for fiber-reinforced media is not obvious
and depends on the precise application.

Mathematical asymptotic analyses have been conducted in the specific case of a linear
inclusion embedded in a matrix, either in a (scalar) conductivity framework [10, 22, 24]
or for three-dimensional elasticity [11, 23, 46]. The main result of these works is that,
depending on the precise scaling of the fiber/inclusion material contrast (conductivity or
elastic modulus) and of the fiber volume fraction with respect to the scale factor ε, different
types of homogenized behaviors can be obtained. In particular, in the case of elastic fiber-
reinforced composites2, these models can be:

• a standard single-phase Cauchy continuum

• a single-phase continuum including second-gradient effects (due to the bending of the
fibers)

• a two-phase continuum without bending effects with one displacement variable for
each phase (fiber and matrix)

• a two-phase continuum including bending effects

Similar results involving effective two-phase continua have also been obtained in the con-
text of porous media with double porosity [3] or for an elastic porous solid filled with a

composites, it may not be the case when considering their behavior around small defects or cracks for
instance. Besides, scale separation may sometimes be poor in civil engineering reinforced structures such as
piled-raft foundations.

2For scalar conductivity problems, no second-gradient effect but only single or two-phase continua can
be obtained as mentioned in [46].
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low-viscosity fluid [48]. Experimental evidences of such generalized behaviors in a dynamic
setting can be found for instance in [20, 38]. These results provide an explanation of the
different scale effects mentioned earlier for the multilayered domain. The shear-loading
situation induces bending of the fibers, the energy of which has a non negligible contribu-
tion for slender and stiff inclusions and which can be described by a continuum involving
second-gradient effects. Conversely, the softening size effect triggers a relative displacement
between the fiber and the matrix near the lateral free boundary which can be accounted by
a generalized continuum considering two separate displacements for each phase.

Adopting a multi-component or a multi-phase modeling of a continuum system has al-
ready been proposed in the context of the theory of mixtures, see for instance [4, 7] for a
review. Such a point of view can apply to fluid mixtures, solid and fluid for poroelastic media
[21, 26] or two solids for heterogeneous materials such as laminated composites [7, 9, 42].
Following the same idea in the case of fiber-reinforced materials, so-called multiphase models
have been developed initially in [52, 53] without bending effects and in [29] with bending
effects by postulating a specific constitutive equation for the matrix and the fiber phase. Ex-
tensions of these models have then concerned elastoplasticity, damage and dynamic effects,
see [27] for a recent review. Similar models have also been obtained in [19, 50] based on
asymptotic expansion methods. Finally, let us mention that in the dynamic case, particular
dispersion relations and memory effects due to time non-locality are obtained [20, 45, 50].

In this work, we advocate the use of multiphase models to account for all these previously
mentioned difficult aspects related to scale effects in fiber-reinforced composites. One key
feature of such models is that when all phases possess the same kinematics the standard
Cauchy continuum model is retrieved. It will be seen that this happens when the scale factor
ε goes to zero. Another important additional feature is that second-order effects may be
considered, for instance when one phase is described by a Cosserat continuum instead of a
Cauchy continuum, to include shear and bending deformation of the reinforcements. This
aspect will not be considered in the present manuscript and will constitute an important
future perspective. As a result, only mutually interacting Cauchy phases will be considered,
enabling to account only for higher-order effects induced by scale separation and boundary
layers. However, one must keep in mind that the capabilities of these models go far beyond
that.

In all the previously mentioned works on mixture theory or multiphase models, consti-
tutive relations were often postulated or analytically derived in specific situations only. In
particular, it was often assumed that the stress of one phase depends upon the strain of
this particular phase only [7, 9, 27, 52], an unnecessary hypothesis from which we will later
depart. Further development of these models, although extremely simple in their implemen-
tation, has been therefore hindered by a lack of rationalized up-scaling schemes, even in a
linear elastic setting. In this work, we aim at deriving a general micromechanical homog-
enization procedure linking a heterogeneous standard Cauchy medium at the microscopic
scale to a multiphase continuum model at the macroscopic scale. Although illustrated here
only for laminated or infinitely long fiber-reinforced media, this procedure can be applied
to any microstructure (short-fiber reinforced composites for instance) and will serve as a
rational basis for deriving more complex (non-linear in particular) effective behaviors in the
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Figure 1: Fiber-reinforced material (N = 1 reinforcing phase) represented by a multiphase continuum
with a two-phase kinematics (U1,U2) at any material point, interaction is described through the relative
displacement V = U2 −U1 between both phases.

future. Section 2 will thus first recall the governing equations of the multiphase model in a
linear elastic setting and the homogenized procedure for deriving its effective properties will
be presented in section 3. Explicit derivation of these effective properties will be discussed
in section 4. The other main goal of this paper is to illustrate the modeling capabilities of
such models and validate the previous homogenization procedure on some boundary-value
problems, involving scale effects near free boundaries or modeling of crack bridging and par-
tial fiber/matrix delamination. This will be the purpose of section 5. A link with shear-lag
models will also be discussed in Appendix C.

Notations : Throughout this paper, the following notations will be used. Italic plain
symbols correspond to scalar quantities. Vectors and second-order tensors are denoted by
italic boldface symbols, e.g. u for the displacement and ε for the strain. Fourth-order
tensors are denoted by blackboard bold letters, e.g. C for the elasticity tensor. Double dot
product between tensors is given by a : b = aijbji and the transpose operator is denoted

by (?)
T
. The symmetric gradient operator is denoted by ∇s and the divergence operator by

div. When different spatial variables are present (e.g. x,y) a subscript will indicate upon
which variable a differential operator acts, e.g. ∇s

x or divy. Average of a quantity over a

domain A will be noted as 〈?〉 =
1

|A|
∫
A(?)dΩ whereas partial averages over a subset Ai ⊆ A

will be noted as 〈?〉i =
1

|Ai|
∫
Ai(?)dΩ.

2. Governing equations of the multiphase model

As mentioned in the introduction, different authors proposed similar models in various
frameworks, we will first start from the formulation proposed initially in [52, 53] excluding
bending effects. It aims at treating the case of a composite material made of a matrix
reinforced by N arrays of differently oriented linear inclusions, each family characterized by
a unit vector ei with i = 2, . . . , N + 1. The set of virtual motions consists of N + 1 virtual
velocity vectors: U 1 for the matrix and U i with i = 2, . . . , N + 1 for each inclusion family
(Figure 1). Assuming that each inclusion family behaves in tension/compression only and
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postulating an appropriate form of the internal, external and inertial forces virtual work,
the use of the virtual work principle enables to obtain the following equilibrium equations
(quasi-static case):

divσ1 + ρ1F +
N+1∑
i=2

I i = 0 (1)

div(σiei ⊗ ei) + ρiF − I i = 0 ∀i = 2, . . . , N + 1 (2)

where:

• σ1 is the partial stress in the matrix phase and σi the uniaxial partial stress in direction
ei in each reinforcement family

• ρ1F (resp. ρiF ) is an external body force exerted on the corresponding phase

• I i is an interaction force density exerted by phase i on the other phases (note that the
interaction force exerted by all reinforcements on the matrix phase is equal to

∑N+1
i=2 I

i

due to the action/reaction principle)

These equilibrium equations are to be completed by the following traction boundary condi-
tions:

σ1 · n = t1 on ∂ΩT (3)

σi(ei · n)ei = ti on ∂ΩT ∀i = 2, . . . , N + 1 (4)

on some part ∂ΩT of the domain boundary of exterior unit normal n. It is important
to highlight that the classical equilibrium and boundary conditions of a standard Cauchy
medium are retrieved when summing the contribution of each phases:

div Σ + ρF = 0 (5)

Σ · n = t on ∂ΩT (6)

where we introduced the total mass density ρ, the total traction t and the total stress Σ:

ρ =
N+1∑
j=1

ρj (7)

t =
N+1∑
j=1

tj (8)

Σ = σ1 +
N+1∑
i=2

σiei ⊗ ei (9)
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The previous equilibrium equations correspond to the following deformation work den-
sity:

wdef = σ1 : ε1 +
N+1∑
i=2

(
(σiei ⊗ ei) : εi + I i · (U i −U 1)

)
(10)

where εj = ∇sU j for j = 1, . . . , N+1 is the linearized strain tensor of each phase kinematics.
In the previous expression, it clearly appears that these quantities are work-conjugate to
the partial stresses of each phase whereas the work-conjugate quantity of the interaction
force I i is the relative displacement V i = U i −U 1 between the reinforcement phase i and
the matrix phase. Again, it is important to mention that in the case when each phase has
the same kinematics U = U 1 = U i, the deformation work density reduces to its classical
expression wdef = Σ : ε with ε = ε1 = εi for all i = 2, . . . , N + 1.

Postulating the existence of a convex free energy density ψ function of the phase strains εj

and of the relative displacements V i between phase i and phase 1, the constitutive equations
of the multiphase model are derived from:

σ1 =
∂ψ

∂ε1
(ε1, εi,V i) (11)

σi =
∂ψ

∂εi
(ε1, εi,V i) (12)

I i =
∂ψ

∂V i (ε
1, εi,V i) (13)

where εi = ei · εi · ei.

A few works have further postulated that the free energy density ψ can be decomposed
into individual contributions of each phases, depending only upon the corresponding phase
strain, and into a contribution due to the interaction between phases depending upon the
relative displacements only:

ψ(ε1, εi,V i) = ψ1
e(ε

1) +
N+1∑
i=2

(
ψie(ε

i) + ψiI(V
i)
)

(14)

For instance, the following phenomenological linear elastic behavior is considered in
[27, 52]:

ψ1
e(ε

1) =
1

2
ε1 : C1 : ε1 ⇒ σ1 = C1 : ε1 (15)

ψie(ε
i) =

1

2
αi(ε

i)2 ⇒ σi = αiε
i (16)

ψiI(V
i) =

1

2
V i · ciI · V i ⇒ I i = ciI · V i (17)

where C1 is the matrix phase elasticity tensor, αi = φiEi is the axial stiffness density per
unit transverse area of the fiber family i with φi being its volume fraction, Ei its Young
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modulus and ciI is an interaction stiffness tensor between phase i and phase 1. Although the
previous constitutive equations seem reasonable, their specific form have not been justified
from a micromechanical approach. In particular, the precise value of the interaction stiffness
remains unclear and needed to be identified through fitting the multiphase model solutions
with finite-element simulations [28].

The multiphase model which has just been recalled has been initially developed in order
to model the reinforcement of a given material by thin one-dimensional inclusions, the
constitutive material of which is also much stiffer than the surrounding matrix in general. It
will be shown in section 4.2 that the previous constitutive equations can indeed be justified
in this very specific case.

In the present work, we will consider a more general formulation of the multiphase model,
encompassing the previous one, in which the partial stress in the reinforcement phases will
not be restricted to be uniaxial but will admit a general three-dimensional tensorial form
(see [12] for a formulation using 2D stresses for modeling flexible membranes). The set of
governing equations are given here in the case of only n = N + 1 = 2 phases:

• Generalized stresses: partial stress σj in both phases and interaction force I (exerted
by phase 2 over phase 1)

• Equilibrium equations:

divσ1 + ρ1F + I = 0 (18)

divσ2 + ρ2F − I = 0 (19)

• Traction boundary conditions:

σ1 · n = t1 on ∂ΩT (20)

σ2 · n = t2 on ∂ΩT (21)

• Kinematics: displacement vector U j in both phases

• Generalized strains: infinitesimal strain in each phase εj = ∇sU j and relative dis-
placement between both phases V = U 2 −U 1

• Deformation work density:

wdef = σ1 : ε1 + σ2 : ε2 + I · V (22)

• Constitutive equations based on a convex free energy density ψ:

σ1 =
∂ψ

∂ε1
(ε1, ε2,V ) (23)

σ2 =
∂ψ

∂ε2
(ε1, ε2,V ) (24)

I =
∂ψ

∂V
(ε1, ε2,V ) (25)
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In this context, the obtained governing equations share the same structure of those
describing multiphase porous media [25, 26]. In particular, using a suitable averaging pro-
cedure, the balance equations of each phase at the macroscopic level can be obtained from
quantities expressed at the microscopic level as follows:

divx φf〈σ(y,x)〉f + ρfF (x) + f int(x) = 0 (26a)

divx φs〈σ(y,x)〉s + ρsF (x)− f int(x) = 0 (26b)

with f int(x) =
1

|ω|

∫
Γf/s

σ(y,x) · nf dS (26c)

where x (resp. y) represents the macroscopic (resp. microscopic) space variable, ω is an
elementary representative volume located at x, Γf/s represents the fluid/solid interface,
φf , φs are their relative volume fraction and nf denotes the outer unit normal of the fluid
elementary volume. The generalized forces of the multiphase model therefore have a firm
microscopic interpretation since the partial stresses σi can, indeed, be interpreted as the
phase average stress of constituent i whereas the multiphase interaction force I can be
interpreted as the resulting contact force f int over the common interface exerted by phase 2
(solid) over phase 1 (fluid).

3. A generalized homogenization procedure for deriving multiphase continuum
models

In this section, we present a generalized homogenization procedure aimed at deriving the
material parameters characterizing the multiphase model. We will restrict here to the linear
elastic setting and to the case of a biphasic material although the procedure can be easily
generalized to nonlinear constitutive behaviors and n-phase materials. We will first build an
auxiliary problem from a stress-based approach using the minimum complementary energy
principle. However, this point-of-view is not well suited to a finite-element implementation
and the associated displacement-based problem will also be derived. Effective constitutive
equations are then obtained using standard micromechanics arguments and a formal two-
scale asymptotic expansion linking microscopic and macroscopic quantities is provided.

3.1. An auxiliary problem using the minimum complementary energy principle

Let us consider the unit cell A of a periodic heterogeneous biphasic material, its re-
striction to phase i is noted Ai. Both phases are assumed to obey a linear elastic behavior
(with phasewise-uniform stiffness tensor Ci) and to be perfectly bonded along their common
interface Γ.

We recall that the derivation of standard effective stiffness properties Chom can be per-
formed from the resolution of the following auxiliary problem with periodic boundary con-
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ditions: Find (u,σ) such that

divσ = 0 in A (27a)

σ(y) = Ci : ε(y) in Ai (27b)

ε(y) = ∇sU(y) = E +∇su(y) in A (27c)

U (y) = E · y + u(y) in A (27d)

σ · n A-antiperiodic (27e)

u(y) A-periodic (27f)

where E is the given macroscopic strain and in which the first equation is to be understood
in the sense of distributions (i.e. with σ · n continuous).

The solution to the previous problem can be equivalently obtained by minimizing the
complementary energy of the unit cell as follows:

Ψ∗(Σ) = min
σ

1

|A|

∫
A

1

2
σ : C−1(y) : σ dΩ

s.t. divσ = 0 in A
σ · n A-antiperiodic
〈σ〉 = Σ

(28)

where Σ is a controlled loading parameter of dimension 6. Optimality conditions of this
constrained optimization problem can indeed be shown to yield equations (27), the macro-
scopic strain E appearing, in particular, as the Lagrange multiplier associated with the
last constraint. Due to the problem linearity, the corresponding optimal objective func-
tion is the macroscopic complementary energy and admits the following quadratic form:

Ψ∗(Σ) =
1

2
Σ : (Chom)−1 : Σ.

As regards the multiphase model effective properties, we propose the following general-
ization of the previous optimization problem. Instead of controlling only the average stress
Σ, we will control independently the partial stress in each phase using a loading parame-
ter of dimension 12 characterized by Σ1 and Σ2. In addition, we will also independently
control the average traction exerted by phase 2 on phase 1 over the interface Γ using a
three-dimensional parameter I. However, if σ(y) is divergence-free at the local scale, then
I must necessary be zero due to the divergence theorem. As a result, a fictitious body force
needs to be introduced in both phases in order to control the average traction. This body
force is chosen as:

b(y) = ζ(y)I where ζ(y) =

{
−1/φ1 in phase 1

1/φ2 in phase 2
(29)

It has the important property of being self-equilibrated in average, that is 〈b〉 = 0. The
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proposed problem therefore reads as:

Ψ∗(Σ1,Σ2, I) = min
σ

1

|A|

∫
A

1

2
σ : C−1(y) : σ dΩ

s.t. divσ + ζ(y)I = 0 in A
σ · n A-antiperiodic
φ1〈σ〉1 = Σ1

φ2〈σ〉2 = Σ2

(30)

Using the divergence theorem on both phases and the antiperiodicity on the unit cell bound-
ary, the local equilibrium equation necessarily induces that:

I =
1

|A|

∫
Γ

σ(y) · n1→2 dS (31)

so that the constraint linking I to the average traction (31) does not need to be included
explicitly in the previous list of constraints. As before, the optimal objective function corre-
sponds to the 15-dimensional macroscopic complementary energy of the multiphase model.
Owing to the linearity of (30), it can already be anticipated that it will depend quadratically
upon its parameters (Σ1,Σ2, I).

Although we do not pretend to give a rigorous justification of this auxiliary problem,
this choice is motivated by the fact that the controlled macroscopic loading parameters are
precisely the generalized stresses of the multiphase model. In addition, due to the partial
balance equations of each phase (26) (ignoring macroscopic body forces), the chosen link
with microscopic quantities is such that the multiphase model equilibrium equations will
be necessarily satisfied at the macroscopic level. More details regarding this matter will be
discussed in section 3.6.

3.2. Associated displacement-based problem

Although (30) is a well-posed problem, its stress-based form is not well-suited to a finite-
element implementation. A displacement-based formulation can be derived on the basis of
the corresponding optimality conditions. Introducing the following Lagrangian:

L(σ,u,v,Ei) =
1

|A|

∫
A

1

2
σ : C−1(y) : σ dΩ +

1

|A|

∫
A

(divσ + ζ(y)I) · u dΩ (32)

+
1

|A|

∫
∂A+

(t+ + t−) · v dS +
2∑
i=1

(Σi − φi〈σ〉i) : Ei

where the Lagrange multipliers associated with the constraints of (30) are respectively u,
which is defined on the whole unit cell A, v, defined on half of the unit cell boundary ∂A+,
and Ei which are constant tensors. In the Lagrangian, the antiperiodicity constraint has
been written by defining t+(y+) = σ · n(y+) with y+ ∈ ∂A+ and t−(y+) = σ · n(y−)
where y− ∈ ∂A− is the corresponding point with respect to y+ on the opposite boundary.
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The previous Lagrangian depends implicitly on the fixed parameters Σi and I. Using the
divergence theorem and after rearranging some terms, the Lagrangian can also be expressed
as:

L(σ,u,v,Ei) =
1

|A|

∫
A

(
1

2
σ : C−1(y) : σ − σ : (∇su+ χ1E

1 + χ2E
2)

)
dΩ (33)

+
1

|A|

(∫
∂A+

(t+ + t−) · v dS +

∫
∂A

(σ · n) · u dS

)
+

2∑
i=1

Σi : Ei + I · (〈u〉2 − 〈u〉1)

where χi are the characteristic functions of phase i.
The primal-dual solution (σ,u,v,Ei) to the optimization problem (30) is given by the

following saddle-point problem:

L(σ,u,v,Ei) = max
u′,v′,Ei′

L(σ,u′,v′,Ei′) = max
u′,v′,Ei′

min
σ′
L(σ′,u′,v′,Ei′) (34)

= min
σ′

max
u′,v′,Ei′

L(σ′,u′,v′,Ei′) = min
σ′
L(σ′,u,v,Ei)

Its optimality conditions with respect to σ are thus given by:

C−1(y) : σ − (∇su+ χ1E
1 + χ2E

2) = 0 in A (35)

u(y+) = u(y−) on ∂A (36)

which therefore results in the following boundary-value auxiliary problem: Find (u,σ) such
that

divσ + ζ(y)I = 0 in A (37a)

σ(y) = Ci : (Ei +∇su) in Ai (37b)

σ · n A-antiperiodic (37c)

u(y) A-periodic (37d)

In this problem, the controlled loading parameters are therefore (E1,E2, I). Compared to
the standard auxiliary problem (27), (37) admits a similar form but differs by the presence
of the self-equilibrated body forces and the local strain in each phase being given by εel =
Ei + ∇su instead of ε = E + ∇su. Although there is no mention of any macroscopic
displacement U(y), it can however be rewritten as:

divσ + ζ(y)I = 0 in A (38a)

σ(y) = Ci : (ε(y)− (E −Ei)) in Ai (38b)

U(y) = E · y + u(y) in A (38c)

σ · n A-antiperiodic (38d)

u(y) A-periodic (38e)

12



Figure 2: Auxiliary problem defined on the unit cell consisting of a macroscopic strain E, self-equilibrated
eigenstrains ηi and body forces ζ(y)I.

with E = φ1E
1 +φ2E

2 and where ηi = E−Ei can be seen as an eigenstrain of zero average
over the unit cell: 〈η〉 = 0. Hence, instead of controlling problem (37) with E1 and E2,
one can equivalently control problem (38) with the macroscopic strain E and some self-
equilibrated eigenstrain ∆E = φ1η

1 = −φ2η
2 = φ1φ2(E2 −E1) as independent parameters

(Figure 2). If E1 = E2 (or ∆E = 0) and I = 0, one obviously recovers (27).
Let us point out that, when Ei = 0, the previous problems are reminiscent of those

considered for deriving macroscopic permeabilities when homogenizing a Stokes flow at the
pore scale towards Darcy equation at the macroscopic scale [5, 15, 16, 18]. In such a situa-
tion, the forcing term of the auxiliary problem is a uniform pressure gradient acting upon
the fluid phase while the solid phase is assumed to rigid. In order to extend the definition
of stresses into the solid phase, an equilibrated opposite body force is also considered inside
the solid part. Our considered auxiliary problem is thus very similar, at least formally, with
the difference that both phases can deform in response to this self-equilibrated body force.

Finally, homogenization procedures for generalized continua usually require establishing
a macro-homogeneity condition related to a generalized Hill-Mandel lemma. In our case,
the presence of fictitious body forces somehow complicates the analysis since they appear
as external forces in the potential energy of the unit cell which is to be related with the
macroscopic virtual work of deformation. At this macroscopic scale, these body forces do
not appear as external forces but as generalized internal forces. Upon defining the set SA(I)
of statically admissible stress fields and the set KA of kinematically admissible periodic
fluctuations as follows:

SA(I) =

σ s.t.

∣∣∣∣∣∣
divσ + ζ(y)I = 0 in A
σ · n continuous in A
σ · n antiperiodic on ∂A

 (39)
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KA = {u continuous, piecewise differentiable in A and periodic on ∂A} (40)

and considering any stress field σ′ ∈ SA(I) and any periodic fluctuation u′ ∈ KA, one
easily shows that:

〈σ′ : ε′el〉 = 〈σ′ : (E? +∇su′)〉 = φ1〈σ′〉1 : E1 + φ2〈σ′〉2 : E2 + I · [[u′]] (41)

= Σ′
1

: E1 + Σ′
2

: E2 + I · V ′

where ε′el = ε′ − E + E?, E? = χ1E
1 + χ2E

2 and [[?]] = 〈?〉2 − 〈?〉1. This extended Hill-
Mandel lemma shows that the average work of deformation of σ′ in the local ”elastic” strain
ε′el is equal to the macroscopic work of deformation of the multiphase model characterized

by the partial stresses Σ′
i

= φi〈σ′〉i, dual to the generalized strains Ei, and the interaction
force I, dual to the average relative displacement V = 〈u′〉2 − 〈u′〉1.

Using the set (E,∆E) of strain parameters, the previous expression can also be rewritten
as:

〈σ′ : ε′el〉 = 〈σ′〉 : E + (〈σ′〉2 − 〈σ′〉1) : ∆E + I · [[u′]] (42)

= Σ′ : E + ∆Σ′ : ∆E + I · V ′

in which Σ′ can be interpreted as the classical macroscopic stress, associated with the macro-
scopic strain E, and the average stress mismatch ∆Σ′ = 〈σ′〉2−〈σ′〉1 = [[σ′]] between phase
2 and phase 1, associated with ∆E. Again, setting ∆E and I to zero, the classical homog-
enization framework is recovered.

The extended Hill-Mandel lemma (41) also provides bounding theorems since σ′ : ε′ ≤
ψ(ε′) +ψ∗(σ′) for any (σ′, ε′) with ψ and ψ∗ being the local strain energy and stress energy
densities. Hence, ∀(σ′,u′) ∈ SA(I)×KA:

〈σ′ : ε′el〉 = Σ′
1

: E1 + Σ′
2

: E2 + I · V ′ ≤ 〈ψ(E? +∇su′)〉+ 〈ψ∗(σ′)〉 (43)

in which the equality is attained for the solution pair (u,σ) of problem (37).

3.3. Resolution of the auxiliary problem

In this subsection, we consider the auxiliary problem (37) controlled by (E1,E2, I).
The solution can be defined up to a rigid body motion on the unit cell. To avoid this
indeterminacy, we will look for displacement solutions of zero average on the unit cell.
Owing to its linear character, the solution is a linear combination of the different loading
parameters:

u(y) = a˜1(y) : E1 + a˜2(y) : E2 + d(y) · I (44)

where a˜1,a˜2,d are displacement concentration tensors relative to the periodic fluctuation
u, respectively corresponding to the solution of elementary auxiliary problems in which
(E1 ∈ {ei ⊗ ej for i, j ∈ {1, 2, 3}},E2 = 0, I = 0), (E1 = 0,E2 ∈ {ei ⊗ ej for i, j ∈
{1, 2, 3}}, I = 0) and (E1 = 0,E2 = 0, I ∈ {ei for i ∈ {1, 2, 3}}). The local elastic
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εel(y) and total ε(y) strains are then also expressed as linear combinations of the loading
parameters:

E?(y) +∇su(y) = εel(y) = A1(y) : E1 + A2(y) : E2 +D˜ (y) · I (45)

E +∇su(y) = ε(y) = Â1(y) : E1 + Â2(y) : E2 +D˜ (y) · I (46)

where:

Ai(y) = χi(y)I + ∇̂a˜i(y) i = 1, 2 (47)

Âi(y) = φiI + ∇̂a˜i(y) i = 1, 2 (48)

D˜ (y) = ∇̂d(y) (49)

I is the 4th-order identity tensor and ∇̂ is such that (∇̂X˜)ijkl = (Xikl,j + Xjkl,i)/2 for any

3rd-order tensor X˜ and (∇̂Y )ijk = (Yik,j + Yjk,i)/2 for any 2nd-order tensor Y . Note that

tensors Ai(y), Âi(y) are closely related to the eigenstrain influence functions introduced in
[33]. Let us also remark that if E1 = E2 = E and I = 0, we recover the standard homog-

enization framework, hence, A(y) = A1(y) + A2(y) = Â1(y) + Â2(y) corresponds to the
standard strain concentration tensor.

From (45), the local stress is then given by:

σ(y) = Ci : A1(y) : E1 + Ci : A2(y) : E2 + Ci : D(y) · I ∀y ∈ Ai (50)

From the definition of the partial stresses Σi and of the relative displacement V , we obtain
the macroscopic constitutive equations:

Σ1 = φ1C1 : A11 : E1 + φ1C1 : A12 : E2 + φ1C1 : 〈D˜ 〉1 · I (51a)

Σ2 = φ2C2 : A21 : E1 + φ2C2 : A22 : E2 + φ2C2 : 〈D˜ 〉2 · I (51b)

V =
(
a˜21 − a˜11

)
: E1 +

(
a˜22 − a˜12

)
: E2 +

(
〈d〉2 − 〈d〉1

)
· I (51c)

with Aij = 〈Aj(y)〉i and a˜ij = 〈a˜j(y)〉i.

Summing up the first two relations yields the macroscopic total stress:

Σ = Σ1 + Σ2 = 〈C(y) : A1(y)〉 : E1 + 〈C(y) : A2(y)〉 : E2 + 〈C(y) : D˜ (y)〉 · I (52)

and, again, if E1 = E2 = E and I = 0, it reduces to the standard macroscopic behavior:

Σ = 〈C(y) : (A1(y) + A2(y))〉 : E = 〈C(y) : A(y)〉 : E = Chom : E (53)
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3.4. Homogenized constitutive equations

Let us now introduce the partial stiffness tensors Dij = φiCi : Aij. Making use of the
Hill-Mandel lemma and the Maxwell-Betti reciprocity theorem, the following relations hold
true (see Appendix A):

〈(A1)T : C : A1〉 = D11 = (D11)T (54a)

〈(A2)T : C : A2〉 = D22 = (D22)T (54b)

〈D˜ T : C : D˜ 〉 = [[d]] = [[d]]T (54c)

〈(A2)T : C : A1〉 = D21 = (D12)T (54d)

〈(A1)T : C : D˜ 〉 = 〈(A2)T : C : D˜ 〉 = 0 (54e)

φ1C1 : 〈D˜ 〉1 = −[[a˜1]]T (54f)

φ2C2 : 〈D˜ 〉2 = −[[a˜2]]T (54g)

(54h)

The homogenized constitutive equations therefore admit the following symmetric3 expres-
sion:

Σ1 = D11 : E1 + D12 : E2 − [[a˜1]]T · I (55a)

Σ2 = (D12)T : E1 + D22 : E2 − [[a˜2]]T · I (55b)

V = [[a˜1]] : E1 + [[a˜2]] : E2 + [[d]] · I (55c)

From (53), we have the following important result:

Chom = D11 + D22 + D12 + (D12)T (56)

3.5. Centro-symmetric case

In the important case of a unit-cell presenting a center of symmetry at its origin, both
third-order tensors [[a˜1]] and [[a˜2]] vanish. In the remainder of this paper, we will always
consider this centro-symmetric case.

The first two constitutive equations regarding partial stresses then decouple from the
last one related to the interaction force so that the system of constitutive equations can
then be rewritten as:

Σ1 = D11 : E1 + D12 : E2 (57a)

Σ2 = (D12)T : E1 + D22 : E2 (57b)

I = κ · V (57c)

3Note that the antisymmetric terms associated with [[a˜i]] are due to the fact that the constitutive relations

are expressed partially in terms of stress (Σ1,Σ2) and of generalized strain (V ). Inverting the last relation
to express (Σ1,Σ2, I) as a function of (E1,E2,V ) yields a fully symmetric expression.
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where κ = [[d]]−1 is the interaction stiffness.
Obviously, the previous first two relations can be inverted in order to express the gener-

alized strains E1,E2 as functions of both partial stresses Σ1,Σ2 as follows:

E1 = F11 : Σ1 + F12 : Σ2 (58a)

E2 = (F12)T : Σ1 + F22 : Σ2 (58b)

I = κ · V (58c)

with the following relations between the partial stiffness tensors Dij and the partial compli-
ance tensors Fij:

F11 =
(
D11 − D12 : (D22)−1 : (D12)T

)−1
(59)

F22 =
(
D22 − (D12)T : (D11)−1 : D12

)−1
(60)

F12 = −F11 : D12 : (D22)−1 = −(D11)−1 : (D12)T : F22 (61)

3.6. Formal justification through asymptotic expansion and discussion

Let us now interpret the former auxiliary problem and the link between macroscopic and
microscopic quantities by means of a formal two-scale asymptotic expansion [47]. The x
space variable will denote the macroscopic scale (slow variable) and y = x/ε the microscopic
space (fast) variable. Mechanical fields will be represented as a series in terms of the scale
factor ε. In the following, we will use standard results of spatial derivatives of total and
partial averages in a periodic setting [30].

Let us consider the following first-order expansion for the stress field:

σ(x,y) = σ(0)(x,y) + εσ(1)(x,y)

= Ci : A(y) : E + ε(Ci : ∆A(y) : ∆E + Ci : D˜ (y) · I) (62)

with ∆A(y) = A2(y)/φ2 − A1(y)/φ1 and where the supscripts in parenthesis denote the
order in the expansion. This expansion can be directly derived from (50) in which it has
been assumed that the partial generalized strains are equal to the macroscopic strain at the
lowest-order plus a first-order correction depending on ∆E i.e. Ei = E + ε(−1)i∆E/φi.
Similarly, the interaction force real amplitude has been assumed of order 1 in ε. The three
macroscopic variables E,∆E, I are assumed to be functions of the macroscopic variable x.
The previous expansion is such that:

• The total average is equal to the macroscopic stress:

〈σ〉 = 〈σ(0)〉+ ε〈σ(1)〉 = 〈σ(0)〉 = Chom : E = Σ (63)

where the fact that 〈σ(1)〉 = 0 can be obtained from (47)-(49) and periodicity.

• The partial stresses are given by:

Σi = φi〈σ〉i = φi〈σ(0)〉i + εφi〈σ(1)〉i = (Di1 + Di2) : E + ε

(
Di2

φ2

− Di1

φ1

)
: ∆E (64)
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that is they are given at the lowest order by the localization obtained from classical
homogenization in addition to a first-order correction depending on the relative strain
∆E.

• Expressing the local balance equation at each order (assuming body forces of order 0)
gives:

ε−1(divy σ
(0)) + ε0(divx σ

(0) + divy σ
(1) + ρF (0)) + ε1(divx σ

(1)) = 0 (65)

Since σ(0) is the solution to (38) with E1 = E2 = E and I = 0, the term of order −1
is zero by construction. From the periodicity of σ(0),σ(1) and (63), the total average
of (65) yields the macroscopic equilibrium equation for the total stress:

〈divx σ
(0)〉+ 〈ρF (0)〉+ ε〈divx σ

(1)〉 = divx〈σ(0)〉+ 〈ρF (0)〉+ ε divx〈σ(1)〉
= divx Σ + 〈ρF (0)〉 = 0 (66)

As a result, if the total stress satisfies the macroscopic balance equation, its microscopic
counterpart is satisfied on average on the unit cell.

• Taking now the average on each phase, one has:

φi〈divx σ
(0)〉i + φi〈divy σ

(1)〉i + φi〈ρF (0)〉i + εφi〈divx σ
(1)〉i = 0

divx(φi〈σ(0)〉i + εφi〈σ(1)〉i)− (−1)iI + φi〈ρF (0)〉i = 0

divx Σi − (−1)iI + φi〈ρF (0)〉i = 0 (67)

where we used that σ(1) is the solution to (38) with non-zero interaction force I i.e.
divy σ

(1) = −ζ(y)I. As a result, if the partial stresses satisfy the macroscopic balance
equations for each phase (18)-(19) in which the partial body forces are now given a
clear microscopic interpretation from (67), the microscopic balance equation is satisfied
on average on each phase.

Similarly, let us now consider the following expansion for the displacement field:

U(x,y) = U (0)(x) + ε
(
U (1)(x) + u(1)(x,y)

)
+ ε2

(
U (2)(x) + u(2)(x,y)

)
(68)

u(1)(x,y) = a˜(y) : E(x) (69)

u(2)(x,y) = ∆a˜(y) : ∆E(x) + d(y) · I(x) (70)

with a˜(y) = a˜1(y) + a˜2(y) and ∆a˜(y) = a˜2(y)/φ2 − a˜1(y)/φ1. In the proposed expansion

u(1)(x,y) + εu(2)(x,y) corresponds exactly to the displacement solution to the auxiliary
problem (38) using the same hypothesis regarding the order of magnitudes of the macroscopic
variables as for the previous stress expansion, the total displacement being the addition of
this periodic fluctuation to a macroscopic displacement expanded up to the second-order.
The proposed expansion is therefore such that:
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• The average displacement is given by:

〈U〉(x) = U (0)(x) + εU (1)(x) + ε2U (2)(x) (71)

due to the fact that the periodic fluctuation is of zero-average.

• The average displacements on each phase are given by:

〈U〉i(x) = 〈U〉(x) + ε〈a˜〉i : E(x) + ε2
(
〈∆a˜〉i : ∆E(x) + 〈d〉i · I(x)

)
(72)

their relative difference being given by:

〈U〉2 − 〈U〉1 = ε[[a˜]] : E(x) + ε2
(
[[∆a˜]] : ∆E(x) + [[d]] · I(x)

)
= εV (x) (73)

showing that the average displacement on each phase is equal to the macroscopic
displacement at the lowest-order plus a first-order correction depending on V

• The local strain is given by:

ε(x,y) = ∇s
xU + ε−1∇s

yU

= ε0
(
∇s
xU

(0) +∇s
yu

(1)
)

+ ε1
(
∇s
xU

(1) +∇s
xu

(1) +∇s
yu

(2)
)

+ ε2
(
∇s
xU

(2) +∇s
xu

(2)
)

(74)

= ∇s
x〈U〉+∇s

y(a˜ : E) + ε
(
∇s
y(∆a˜ : ∆E) +D˜ · I +∇s

xu
(1)
)

+ ε2∇s
xu

(2)

Its total average is then 〈ε〉 = ∇s
x〈U〉 = 〈ε〉 because of periodicity and zero-average

of u(1),u(2). Comparing now this strain with that obtained from the stress expansion
(62) yields:

ε− (Ci)−1 : σ = ∇s
x〈U〉 −E + ε

(
∇s
xu

(1) − ζ(y)∆E
)

+ ε2∇s
xu

(2) (75)

On the one hand, the zero-order term is null if the macroscopic strain is identified
with the macroscopic gradient of the average displacement E = ∇s

x〈U〉, as expected
from the standard homogenization approach. On the other hand, it can be seen that
nor the first-order neither the second-order terms can be null in general. However,
both terms are of zero-average over the unit cell so that both strain fields are equal
on average on the unit cell. Besides, taking the difference of both phase-averages, one
obtains:

[[ε− (Ci)−1 : σ]] = ε
(
∇s
x

(
[[u(1)]] + ε[[u(2))]]

)
−∆E/(φ1φ2)

)
= ε (∇s

xV −∆E/(φ1φ2)) (76)

As a result if ∆E(x) = φ1φ2∇s
xV (x), the previous right-hand side vanishes. As

a result, since E2 − E1 = ε∆E/(φ1φ2) = ε∇s
xV = ∇s

x〈U〉2 − ∇s
x〈U〉1 and since

E = φ1E
1 + φ2E

2 = ∇s
x〈U〉 = φ1∇s

x〈U〉1 + φ2∇s
x〈U〉, we finally obtain that:

E1(x) = ∇s
x〈U〉1(x), E2(x) = ∇s

x〈U〉2(x) (77)
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As a conclusion, it can be shown that the solutions to the proposed auxiliary problem
can be associated with microscopic stress and displacement fields (62)-(68) such that local
equilibrium is verified on total average and on phase-average and such that the stress-strain
constitutive equation is satisfied locally at order 0 and in total and phase-average provided
that:

• the macroscopic displacement of both phases are identified with the average displace-
ment on the corresponding phase: U i = 〈U〉i

• the generalized strains E1,E2 are given by the compatibility conditions (77)

• the generalized stresses Σ1,Σ2, I satisfy the equilibrium equations (18)-(19)

• the generalized stresses and strains are linked by the macroscopic constitutive equa-
tions (54)

This derivation shows that the multiphase model can be thought of as a first-order correction
to the standard Cauchy continuum obtained at order 0, in which the relative displacement,
the strain mismatch and the interaction force control the first-order term. One key feature
is that the higher-order terms of the balance equation and strain compatibility equations
are not verified exactly, contrary to other higher-order approaches such as [17, 49] yielding
strain gradient models. Instead, these equations are satisfied on average on each phase,
yielding a simpler macroscopic model. Although the previous derivation is purely formal, it
is by no means a proof of convergence, it can be anticipated that the model will be able to
better describe what happens near the boundary, since it is driven by average fields in each
phase and not by average fields on the whole unit cell only. The validity of the proposed
model will then be assessed by means of the examples of section 5.

Remark: In problem (30), the fictitious body force enabling to control the interaction force
I has been chosen as b(y) = ζ(y)I with ζ being phase-wise uniform. However, any function
ζ(y) such that 〈ζ〉 = 0 and φi〈ζ〉i = (−1)i would also fulfill (31). The whole procedure
would therefore be very similar, the main change being that the dual quantity associated
with I would now be given by V = 〈ζU〉, reducing to the difference of phase-average with
the retained choice. As a result, the macroscopic displacements U i and associated strains
Ei would then have the following micromechanical interpretation:

U 1 = 〈U〉 − φ2〈ζU〉, U 2 = 〈U〉+ φ1〈ζU〉 (78)

E1 = ∇s
x〈U〉 − φ2∇s

x〈ζU〉, E2 = ∇s
x〈U〉+ φ1∇s

x〈ζU〉 (79)

A whole range of multiphase models can then be obtained from different choices of ζ, yield-
ing most certainly different values for the associated interaction stiffness. Exploring the
differences between such choices is out-of-the scope of the present paper, our initial choice
being the most simple and having the most satisfactory microscopic interpretation of the
macroscopic displacements and strains.

20



4. Derivation of effective properties

The homogenization procedure presented in section (3) can be easily extended to the
situation of a multiphase model consisting of n > 2 phases. In general, the determination of
the various effective moduli needs to resort to a numerical resolution of the auxiliary problem
(37) (or (38)), by means, for instance, of a finite-element discretization. It is to be noted
that this poses no specific difficulty since taking into account periodic boundary conditions,
eigenstrains and body forces can be straightforwardly done in finite-element codes. The
main difference compared to the standard homogenization framework comes from a larger
number of elementary solicitations to be solved which induces a negligible additional cost in
a linear elastic setting.

However, many situations can benefit from a direct evaluation or estimation of the effec-
tive moduli as a function of the constituents properties and the microstructure morphology.
We give here different results extending classical continuum micromechanics approaches to
the multiphase continuum framework, enabling to derive either an exact evaluation, an es-
timate or bounds on the effective moduli. As regards the results obtained in this section,
a few of them have already been established by other authors in some specific situations
such as homogenization of fiber-reinforced composites or porous materials. Our proposed
homogenization procedure is therefore shown to extend or encompass a wide range of results
arising in different fields.

4.1. Partial stiffness tensors of a two-phase material

In the case of a two-phase (n = 2) material, no estimation of the concentration tensors
Aij is needed if the standard overall homogenized stiffness Chom is known in advance (e.g.
from a numerical resolution, experimental results or also from an estimation based on stan-
dard micromechanical schemes) [32, 55].

Indeed, using the fact that 〈∇su〉 = 0, it can be deduced from (47) that:

〈A1〉 = φ1A11 + φ2A21 = φ1I, 〈A2〉 = φ1A12 + φ2A22 = φ2I (80)

Using now relations (54) (in particular the symmetry relations of Dij) and (56), it can be
shown that:

D11 = φ1C1 − C1 : [[C]]−1 : ∆C : [[C]]−1 : C1 (81a)

D22 = φ2C2 − C2 : [[C]]−1 : ∆C : [[C]]−1 : C2 (81b)

D12 = C1 : [[C]]−1 : ∆C : [[C]]−1 : C2 (81c)

with [[C]] = C2−C1 and ∆C = 〈C〉−Chom. We can also easily check that D11 +D22 +D12 +
(D21)T = Chom.
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4.2. Partial stiffness tensors for a two-phase material with stiff inclusions in small volume
fraction

The phenomenological multiphase continuum model used in [27, 52, 53] has been devel-
oped for the case of a matrix (phase 1) reinforced by a periodic array of linear inclusions
(phase 2) which are assumed to be much stiffer than the matrix (C2 � C1). At the same
time, the volume fraction of such inclusions is also supposed to be very small φ2 � 1. More
precisely, it is assumed that φ2C2 admits a finite limit C0 when φ2 → 0 so that inclusions
still have an effect with vanishing volume fraction. Considering this particular situation, the
previous effective moduli (81a)-(81c) admit a simpler form. We have indeed that:

[[C]] ∼ C2 (82)

〈C〉 → C1 + C0 (83)

Due to the last relation and since Chom � 〈C〉, the homogenized stiffness Chom will also
tend to a finite value denoted by Chom,0 and which depends on the microstructure. Using
all these relations, we have:

D11 → C1 (84)

D22 → Chom,0 − C1 (85)

D12 → 0 (86)

In this limit, the stress-strain behavior of one phase is therefore decoupled from the other
and the matrix phase partial behavior is exactly that of its constitutive material.

In the particular case of (transverse) isotropic linear inclusions oriented along direction
ex, it can be shown, using for instance the results of [37], that:

lim
φ2→0

Chom = Chom,0 = C1 + E0ex ⊗ ex ⊗ ex ⊗ ex (87)

where E0 = lim
φ2→0

φ2E2 (88)

with E2 being the (axial) Young’s modulus of the inclusion material. In this specific case:

D22 → E0ex ⊗ ex ⊗ ex ⊗ ex (89)

thereby justifying a posteriori the phenomenological multiphase constitutive relations (15)-
(16) in the case of stiff reinforcements.

4.3. Bounds on the effective properties

From (43), one can easily deduce the following bounds on the multiphase model effective
properties if the controlled loading parameters are (E1,E2, I):

φ1〈σ′〉1 : E1 + φ2〈σ′〉2 : E2 − 〈ψ∗(σ′)〉 ≤ Ψ(E1,E2, I) ≤ 〈ψ(E? +∇su′)〉 − I · [[u′]] (90)
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for any σ′ ∈ SA(I) and any u′ ∈ KA.

The generalization of Voigt’s upper bound to the multiphase effective moduli is obtained
by considering a zero periodic fluctuation u′ = 0 in the upper bound estimate (90), that is:

Ψ(E1,E2, I) ≤ 〈ψ(E?)〉 =
1

2
E1 : (φ1C1) : E1 +

1

2
E2 : (φ2C2) : E2 (91)

This upper bound thus corresponds to the situation in which both phases are perfectly
bonded at the macroscopic level (I being indeterminate but with V = 0⇔ ‖κ‖ → ∞) and
in which the partial stiffness tensor are given by4 Dii = φiCi and Dij = 0 for i 6= j. In
this situation, the multiphase model reduces to a standard one-phase Cauchy medium with
effective properties 〈C〉.

A generalized Reuss lower bound can also be derived by considering a uniform stress
field σ′(y) = Σ, which is statically admissible with I = 0, in the lower bound estimate (90),
that is:

Ψ(E1,E2, 0) ≥ Σ : (φ1E
1 + φ2E

2)− 1

2
Σ : 〈C−1〉 : Σ (92)

This lower bound holding true for any choice of Σ, the right-hand side can be replaced by
its maximum over all Σ, yielding:

Ψ(E1,E2, 0) ≥ max
Σ
{Σ : (φ1E

1 + φ2E
2)− 1

2
Σ : 〈C−1〉 : Σ} (93)

≥ 1

2
(φ1E

1 + φ2E
2) : 〈C−1〉−1 : (φ1E

1 + φ2E
2)

This leads to an effective behavior in which both phases are completely debonded (I = 0⇔
κ = 0) and in which the partial stiffness tensors are given by Dij = φiφj〈C−1〉−1.

As a result, simple bounds considering uniform strain or stress states do not produce
interesting results regarding the interaction stiffness since its behavior degenerates to either
fully bonded or fully debonded at the macroscopic level. It is interesting to point out that
this is reminiscent of the difficulty of deriving simple bounds when estimating the effective
permeability of a porous medium [15, 16, 18]. Obviously, obtaining more accurate bounds,
using for instance the Hashin-Shtrikman framework, would be of great value but is out of
the scope of the present paper.

4.4. Effective properties of a multi-layered medium

We consider here the case of a multi-layered medium consisting of alternating isotropic
(Lamé coefficients λi, µi) layers of thicknesses t1 and t2 in the y-direction (see Figure 3).
We will restrict here to the plane-strain case in the (x, y)-plane. The unit cell will be

4Note that these estimates are consistent with replacing Chom by its Voigt upper bound 〈C〉 in (81).
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Figure 3: Multi-layered medium and associated unit cell (left), auxiliary problem corresponding to the
longitudinal interaction stiffness κx identification (right).

characterized by a square domain of dimensions s×s (actually, the length in the x-direction
will play no role in the subsequent calculations) with s = t1 + t2 and with η = t2/s being the
volume fraction of phase 2 (later identified with the reinforcement phase). We also introduce
the non-dimensional coordinates (y1, y2) = (x/s, y/s).

4.4.1. Derivation of partial stiffness moduli

As previously mentioned, the partial stiffness moduli Dij can be expressed directly from
the knowledge of the homogenized stiffness tensor Chom in the case of a biphasic material.
The expression of Chom is available, for instance, in [27]. Instead, we will solve directly the
corresponding auxiliary problems since their resolution can be easily generalized to more
than two phases for which no simple expression in terms of Chom is available.

Let us consider problem (PI) in which phase 1 is subjected to generalized strains E1 =[
Exx Exy
Exy Eyy

]
(x,y)

, E2 = 0 and with no body forces (I = 0). The displacement solution

is searched in the form of U(y) = φ1E
1 · y + u(y2)ex + v(y2)ey where u(y2), v(y2) are

piecewise-linear periodic fluctuations in both directions such that u′(y2) (resp. v′(y2)) is
equal to a given constant Ai (resp. Bi) in phase i. The periodicity condition requires that
〈A〉 = 〈B〉 = 0 so that:

u(y2) =

A2y2 for 0 ≤ y2 ≤ η (in phase 2)

A2
η

1− η
(1− y2) for η ≤ y2 ≤ 1 (in phase 1)

(94)

v(y2) =

B2y2 for 0 ≤ y2 ≤ η (in phase 2)

B2
η

1− η
(1− y2) for η ≤ y2 ≤ 1 (in phase 1)

(95)
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Such a choice yields piecewise uniform stress states in each phases:

σxx =

M1Exx + λ1

(
Eyy −B2

η

1− η

)
in phase 1

λ2B2 in phase 2
(96)

σyy =

M1

(
Eyy −B2

η

1− η

)
+ λ1Exx in phase 1

M2B2 in phase 2
(97)

σxy =

µ1

(
2Exy − A2

η

1− η

)
in phase 1

µ2A2 in phase 2
(98)

where Mi = λi + 2µi is the oedometric modulus of phase i. Expressing traction continuity
at the interface y2 = η fixes the values of A2 and B2 and thus fully determines the solution.
Partial stresses Σ1 and Σ2 in both phases can then be completely expressed as a function
of the macroscopic generalized strain E1 components as follows:


Σ1
xx

Σ1
yy

Σ1
xy

 = (1− η)


M1 − η

λ2
1

〈M〉∗
λ1 − η

λ1M1

〈M〉∗
0

λ1 − η
λ1M1

〈M〉∗
(1− η)

M1M2

〈M〉∗
0

0 0 (1− η)
µ1µ2

〈µ〉∗



Exx
Eyy
2Exy

 (99)


Σ2
xx

Σ2
yy

Σ2
xy

 = η(1− η)


λ1λ2

〈M〉∗
λ2M1

〈M〉∗
0

λ1M2

〈M〉∗
M1M2

〈M〉∗
0

0 0
µ1µ2

〈µ〉∗



Exx
Eyy
2Exy

 (100)

where 〈X〉∗ = φ2X1 + φ1X2 for any X. These two equations respectively represent the
plane-strain components of tensors D11 and D21 = (D12)T. A similar derivation considering

problem (PII) with E1 = 0, E2 =

[
Exx Exy
Exy Eyy

]
(x,y)

and I = 0 yields the corresponding

expressions for D22:


Σ2
xx

Σ2
yy

Σ2
xy

 = η


M2 − (1− η)

λ2
2

〈M〉∗
λ2 − (1− η)

λ2M2

〈M〉∗
0

λ2 − (1− η)
λ2M2

〈M〉∗
η
M1M2

〈M〉∗
0

0 0 η
µ1µ2

〈µ〉∗



Exx
Eyy
2Exy

 (101)

Note that the obtained results also agree with [42].

25



Let us finally remark that adopting a similar reasoning for a generalized loading of the

form E1 =

[
E 0
0 ε1

]
(x,y)

and E2 =

[
E ′ 0
0 ε2

]
(x,y)

where ε1 and ε2 are left free such that

σyy(y) = 0, one finds:

F11
xxxx = 1/(φ1E

∗
1) (102)

F22
xxxx = 1/(φ2E

∗
2) (103)

F12
xxxx = 0 (104)

where E∗i = Ei
1− νi

1 + νi
with Ei being the Young’s modulus of phase i and νi its Poisson ratio.

4.4.2. Derivation of the interaction stiffness

Because of the unit-cell central symmetry, there is no coupling between the partial stresses
and the interaction force in the multiphase constitutive equations (57). The only remaining
parameters are therefore those related to the interaction stiffness κ which is of the form
κ = κxex ⊗ ex + κyey ⊗ ey.

Problem (PIII) where E1 = E2 = 0 and I = Ixex + Iyey is now considered (see Figure
3). As before the displacement field is sought of the form U(y) = u(y2)ex + v(y2)ey with u
and v being periodic. Expressing local equilibrium, displacement and traction continuities,
one can easily show that the solution of (PIII) (up to a rigid-body motion) is given by:

u(y2) =


s2Ix

2(1− η)µ1

(y2
2 − (1 + η)y2 + η) in phase 1

s2Ix
2ηµ2

y2(η − y2) in phase 2
(105)

v(y2) =


s2Iy

2(1− η)M1

(y2
2 − (1 + η)y2 + η) in phase 1

s2Iy
2ηM2

y2(η − y2) in phase 2
(106)

Computation of the average relative displacement between both phases yields:

V =
1

η

∫ η

0

U(y2)dy2 −
1

1− η

∫ 1

η

U(y2)dy2

=
s2〈µ〉∗

12µ1µ2

Ixex +
s2〈M〉∗

12M1M2

Iyey (107)

from which we deduce that:

κx =
12

s2〈1/µ〉
, κy =

12

s2〈1/M〉
(108)

Let us remark that these expressions are consistent with the derivations made in [8, 42,
51].
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(a) Fiber-reinforced composite (b) Composite cylinder assem-
blage (CCA) model

(c) Hexagonal unit cell

Figure 4: Unidirectional fiber-reinforced composite and associated microstructure models

4.5. Effective properties of unidirectional fiber-reinforced materials

In this section, the derivation of the multiphase model constitutive parameters is dis-
cussed in the case of unidirectional fiber-reinforced composites aligned along the z-direction
(see Figure 4a). Again, it is possible to numerically solve the auxiliary problem using a
finite-element discretization of the real fiber-matrix microstructure. However, many ana-
lytical results are available when adopting, for instance, a simplified representation of the
composite microstructure in the form of a composite cylinder assemblage (CCA) model in
which a fiber cylinder of radius a is embedded in a matrix cylinder of radius b (Figure 4b).
In [38], a procedure based on stress and displacement expansions with r is proposed but
does not lead to the correct expressions of the macroscopic (and hence the partial) stiffness
and the interaction stiffness.

4.5.1. Derivation of partial stiffness moduli

As regards the partial stiffness moduli Dij, it has already been mentioned that they can
be derived from the sole knowledge of the standard homogenized moduli Chom of the corre-
sponding composite. Classical results from Hashin and Rosen [36, 37] provide either exact
expressions or bounds on the effective moduli in the case of isotropic or transverse isotropic
constituents.

Some particular loading cases of the auxiliary problem offer simple exact solutions based
on the CCA model. For instance, consider the problem for which E2 = Eez ⊗ ez and
E1 = 0 in the case of isotropic constituents. Building a piecewise-linear periodic fluctuation
displacement field such that ∇su = Ai (ex ⊗ ex + ey ⊗ ey) in phase i with φ1A1 +φ2A2 = 0
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to satisfy the periodicity requirements leads to the following uniform stresses in each phases:

σzz =

{
2λ1A1 in phase 1

(λ2 + 2µ2)E + 2λ2A2 in phase 2
(109)

σxx = σyy =

{
2(λ1 + µ1)A1 in phase 1

λ2E + 2(λ2 + µ2)A2 in phase 2
(110)

Continuity of the transverse stresses further imposes that 2(λ1+µ1)A1 = λ2E+2(λ2+µ2)A2,
so that:

A1 =
φ2λ2

2〈λ+ µ〉∗
E, A2 =

−φ1λ2

2〈λ+ µ〉∗
E (111)

We then deduce that:

D22
zzzz = φ2

(
λ2 + 2µ2 −

φ1λ
2
2

〈λ+ µ〉∗

)
(112)

D12
zzzz = φ1φ2

λ1λ2

〈λ+ µ〉∗
(113)

D12
zzxx = D12

zzyy = D22
xxzz = D22

yyzz = φ1φ2
λ2(λ1 + µ1)

〈λ+ µ〉∗
(114)

Exchanging the role of 1 and 2 we also easily deduce the corresponding expressions for D11
zzzz,

D11
xxzz and D12

xxzz. Extension of these expressions for transverse isotropic constituents is also
straightforward.

Similarly, let us now consider the case whereE2 =

ε2 0 0
0 ε2 0
0 0 E


(x,y,z)

andE1 =

ε1 0 0
0 ε1 0
0 0 0


(x,y,z)

where ε1 and ε2 are left free such that Σxx = Σyy = 0. Considering the same periodic fluc-
tuation field, one now has:

σzz =

{
2λ1(A1 + ε1) in phase 1

(λ2 + 2µ2)E + 2λ2(A2 + ε2) in phase 2
(115)

σxx = σyy =

{
2(λ1 + µ1)(A1 + ε1) in phase 1

λ2E + 2(λ2 + µ2)(A2 + ε2) in phase 2
(116)

Again, because of the continuity condition on the transverse stresses, 2(λ1 + µ1)(A1 + ε1) =
λ2E + 2(λ2 + µ2)(A2 + ε2) which should both be zero to satisfy the macroscopic condition

Σxx = Σyy = 0. One finds A1 = −ε1 and φ1ε1 + φ2ε2 = Exx = Eyy = − λ2

2(λ2 + µ2)
φ2E. This

results in Σ1 = 0 and Σ2 = φ2

(
λ2 + 2µ2 −

λ2
2

λ2 + µ2

)
Eez ⊗ ez = φ2E2Eez ⊗ ez where E2
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is the Young’s modulus of phase 2. Obviously, a similar result is obtained when exchanging
the role of phase 1 and 2. One can then deduce that:

F11
zzzz = 1/(φ1E1) (117)

F22
zzzz = 1/(φ2E2) (118)

F12
zzzz = 0 (119)

Note that these results are also easily extended to the case of transverse isotropy for each
phases.

4.5.2. Interaction stiffness

Assuming a transverse isotropic behavior of axis ez for both constituents, the interaction
stiffness is necessary of the following form:

κ = κLez ⊗ ez + κT (ex ⊗ ex + ey ⊗ ey) (120)

Longitudinal interaction stiffness κL. The longitudinal interaction stiffness is obtained by
solving an auxiliary problem with self-equilibrated uniform body forces along the cylinder
axis:

divσ + I/φ2ez = 0 for 0 < r < a (121)

divσ − I/φ1ez = 0 for a < r < b (122)

in addition to the traction and displacement continuity at the interface r = a and the
constitutive equations and where φ2 = a2/b2 = 1−φ1. This problem is solved by considering
purely longitudinal displacements u = ui(r)ez in both phases associated with shear stresses

σirz = µi
dui
dr

where µi denotes the longitudinal shear modulus of phase i. The displacements

are then solutions to:

d2u2

dr2
+

1

r

du2

dr
=− I

µ2φ2

(123)

d2u1

dr2
+

1

r

du1

dr
=

I

µ1φ1

(124)

which can be solved as:

u2(r) = − I

4µ2φ2

r2 + A (125)

u1(r) =
I

4µ1φ1

(r2 − b2) +B ln(r/b) + C (126)

The constants A,B and C are then obtained by solving the system of equations correspond-
ing to the following conditions:

u1(a) = u2(a) (127)

σ1
rz(a) = σ2

rz(a) (128)

u1(b) = 0 (129)
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Note that the last condition enables to remove the rigid body motion, it can be equivalently
replaced by another condition fixing this indeterminacy. One finds C = 0 and:

A = b2µ1φ1 − µ2(φ1 + ln(φ2))

4µ1µ2φ1

(130)

B = − b2I

2µ1φ1

(131)

Finally, the average displacement jump between both phases is computed as:

V =
2

a2

∫
u2(r)rdr − 2

b2 − a2

∫ b

a

u1(r)rdr (132)

The corresponding longitudinal interaction stiffness κL = I/V is given, after computations,
by:

κL =
8µ1µ2φ1

b2(µ1φ1 − µ2(2 + φ1 + 2(lnφ2)/φ1))
(133)

In the limit of rigid inclusions µ2 � µ1 the previous expression reduces to:

κL → κrigid
L = − 8µ1φ1

b2(2 + φ1 + 2(lnφ2)/φ1)
(134)

It is worth noting that this expression gives a larger value (up to 50% for large reinforcement
volume fractions) of the interaction stiffness compared to Sudret’s estimate [52]:

κSudret
L = − 4µ1

b2(1 + (lnφ2)/φ1)
(135)

derived from the solution of a rigid pull-out displacement of the fiber.
Interestingly, expression (134) also coincides for small fiber volume fractions (φ2 → 0) with
the permeability estimate derived by Boutin [18] using a static approach for a flow in a
fluid-solid cylindrical inclusion:

κBoutin
L = − 8µ1

b2(φ1(3− φ2) + 2 lnφ2)
(136)

Transverse interaction stiffness κT . The transverse interaction stiffness κT is now obtained
from a similar auxiliary problem in which uniform distributed forces are oriented along ex:

divσ + I/φ2ex = 0 for 0 < r < a (137)

divσ − I/φ1ex = 0 for a < r < b (138)

We look for displacements of the following form u = Ui(r) cos θer + Wi(r) sin θeθ in each
phase. As a consequence, the plane components of the stress tensor are of the form σrr =
Σrr(r) cos θ, σθθ = Σθθ(r) cos θ and σrθ = Σrθ(r) sin θ in both phases.
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It can be shown that the following displacements will induce stresses in equilibrium with
the prescribed body forces:

U1(r) = A+Br2 + Cr−2 + A+D ln r (139)

W1(r) = −A− I

φ1(2µ1 − k1)
r2 + γ1Br

2 + Cr−2 − k1

k1 + 2µ1

D −D ln(r) (140)

U2(r) = A′ +B′r2 (141)

W2(r) = −A′ + I

φ2(2µ2 − k2)
r2 + γ2B

′r2 (142)

with γi = (3ki + 2µi)/(2µi− ki), µi denoting now the transverse shear modulus and ki being
the transverse bulk modulus used in the replacement scheme of [36].

The six unknown constants are then determined by solving the linear system associ-
ated with the displacement and traction continuities at the fiber/matrix interface r = a
(4 conditions), one condition fixing the rigid body motion (e.g. U2(0) = 0) and the anti-
periodicity conditions for the traction at the outer boundary. The latter imposes that
Σrr(b) = Σrθ(b) = 0 which seems to lead to an overdetermined system. However, because
the body forces are self-equilibrated, the divergence theorem shows that both conditions are
in fact linearly dependent so that only one is necessary to solve the problem.

The transverse interaction stiffness is then determined after computing the horizontal
displacement average jump. The analytical expression is unfortunately too long to be repro-
duced here. If the matrix phase is assumed to be isotropic and incompressible and in the
limit of an infinitely stiff reinforcement, the transverse interaction stiffness reduces to:

κrigid
T =

8φ2
1(1 + φ2

2)µ1

b2(φ2
2 − 1− (1 + φ2

2) ln(φ2))
(143)

which, once again, has the same behavior when φ2 → 0 as the permeability estimate derived
by Boutin [18]:

κBoutin
T =

8(1 + φ2)µ1

b2(φ2
2 − 1− (1 + φ2

2) ln(φ2))
(144)

4.5.3. Comparison with a hexagonal unit cell model

The previous analytical estimates based on a CCA model are now compared with respect
to a periodic hexagonal microstructure (see material properties in Table 1). Due to the
microstructure invariance along the fiber axis direction, the auxiliary problem is solved in
generalized plane strain conditions along with periodic boundary conditions, see Figure 4c.
The spacing between fibers is equal to 2b, that is the outer diameter of the CCA model, and
the fiber radius a′ is such that the fiber volume fraction φ2 is equal for both models.

The validity of the CCA model has already been established in previous work but we
reproduce in Figure 5a the homogenized longitudinal and transverse shear moduli computed
from the resolution of the auxiliary problem (with ∆E = I = 0) and from the lower bounds
derived in [36]. The values for both models are in very good agreement for a wide range of
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Matrix (epoxy) Fibers (graphite)
EL = 345 GPa
ET = 9.66 GPa

E = 3.45 GPa νL = 0.2
ν = 0.35 νT = 0.3

µL = 2.07 GPa
µT = 3.72 GPa

Table 1: Material properties of a graphite/epoxy composite (graphite fibers are transverse isotropic with
respect to their longitudinal (L) direction, epoxy matrix is isotropic), taken from [36].

(a) Longitudinal and transverse shear moduli (b) Longitudinal and transverse interaction stiff-
ness

Figure 5: Comparison of the analytical predictions based on the CCA model and finite-element computations
on an hexagonal periodic unit-cell for varying fiber volume fraction

volume fractions, this is also the case for other homogenized moduli. As a consequence, the
agreement of both models would also be very good when comparing directly the different
coefficients of the Dij partial stiffness tensors.

In addition, the longitudinal κL and transverse κT interaction stiffness derived previously
are also compared with their numerical estimates using a hexagonal unit cell in Figure 5b.
It can be observed that the CCA model and the hexagonal unit cell give very similar values
at low volume fractions. Both models differ by a few percents for higher volume fraction,
especially regarding the longitudinal interaction stiffness. However, it can be observed that
the analytical estimate (133) is much more accurate than the estimates assuming that the
inclusion is infinitely stiff (134) or the one from Sudret (135).
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multiphase 
continuum

Figure 6: Reinforced multilayered block in plane-strain compression: heterogeneous problem (left) and
equivalent multiphase model with associated boundary conditions (right)

5. Illustrative applications of boundary-value problems

In the subsequent subsection, a numerical implementation of the multiphase model has
been performed using the FEniCS finite-element library [1, 40]. One key advantage of such
models regarding their numerical implementation compared to other generalized continuum
media is that no specific finite-element needs to be developed since it is just sufficient to
use a two-field formulation with standard displacement interpolation for both fields. In
particular, no higher regularity is needed (as in strain gradient models for instance) and no
locking behavior is observed.

5.1. Reinforced block in compression

For this first example, we revisit a problem already considered in [27, 52] which illustrates
the capability of the multiphase model to capture size-dependency due to boundary-layer
effect. A rectangular block of dimensions L×H in 2D plane strain conditions and reinforced
by a regular distribution of N horizontal layers is considered (Fig. 6-left), isotropic material
properties of both phases are recalled in Table 2. A downwards vertical displacement of
intensity δ is imposed by means of a rigid plate in smooth contact with the block top
boundary. The lower boundary is also in smooth contact with a fixed plate while the lateral
boundaries are stress-free. Finite-element (FE) computations on the heterogeneous problem
have been performed for various numbers of reinforcing layers and will serve as a reference
solution.

This problem is also modeled in the multiphase framework by considering identical
boundary conditions for both phases (see Fig. 6-right) with the effective properties de-
rived in section 4.4. It has been shown in the previous references that the vertical dis-
placement is the same for both phases and corresponds to a homogeneous vertical strain:
Um
y = U r

y = −δy/H. Conversely, the horizontal displacement is a priori different for both
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Matrix (phase 1) Reinforcement (phase 2)
Volume fraction 1− η = 0.9 η = 0.1
Young’s modulus E1 = 10 MPa E2 = 1000 MPa

Poisson ratio ν1 = 0.45 ν2 = 0.3

Table 2: Material properties for the plane-strain multilayered block.

phases and depends only upon the x-variable. The detailed analytical solution is provided
in Appendix B.3. A key feature of this solution is that both phase displacements can be
written as a zero-order contribution corresponding to the standard homogenization solution
Uhom(x) = νhom,∗(δ/H)x plus a first-order (with respect to the scale factor ε = s/L) correc-
tion which enables to satisfy the lateral stress-free boundary condition for both phases. More
particularly, this boundary-layer correction is controlled by a characteristic length scale `
(see (B.12)) depending on the partial stiffnesses and the horizontal interaction stiffness κx
in such a way that it is proportional to the scale factor. For the retained numerical values,
it is approximately ` ≈ 0.75s. The particular structure of this solution justifies a posteriori
the scaling used in the two-scale asymptotic expansion of section 3.6.

Comparison of the obtained analytical solution and the reference FE solution is reported
in Figure 7 for various values of the scale factor. Due to the macroscopic invariance along
the vertical direction, each symbol of the heterogeneous computations corresponds to a
partial average over the corresponding phase in the vertical direction for a given horizontal
location. First, both solutions are found to be in perfect agreement. Second, one can observe
the influence of the scale factor ε = 1/N on the boundary-layer effect which manifests itself
by a relative displacement between both phases and a drop of the partial stress to zero
near the free boundary. Although the characteristic length is ` ≈ 0.75s, the reinforcement
partial stress differs from its constant value in the middle of the sample on a distance
corresponding to a few heterogeneities spacing. For sufficiently small scale factors, the
central value corresponds to the homogenized solution.

The solution computed in [52] has also been represented in Figure 7. It clearly differs
by a few percent from the reference FE computations and the present solution, despite
exhibiting the correct trend. This discrepancy is due to two different reasons: first, the
phenomenological constitutive equations used by Sudret are valid only for infinitesimally
small volume fraction and large stiffness of the reinforcing material; second, the computations
relied on an estimate of the longitudinal interaction stiffness κSudret

x = 8µ1/(1− η)/s2 based
on a rigid pull-out loading of the reinforcing layer which turns out to be 50% smaller than
the value (108) obtained from the proposed homogenization procedure when µ2 � µ1.

5.2. Size-effect of stress concentration near a circular hole

It has been previously demonstrated that, contrary to a standard homogenized medium,
the multiphase model can account for size effects due to relative displacements between the
fibers and the matrix in the vicinity of free-edges. This example explores the implication
on the prediction of stress concentration near a circular hole in an infinite plate. To this
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Figure 7: Comparison of matrix and reinforcement displacements (left) and partial stresses in the rein-
forcement (right) for different scale factors ε = s/L = 1/N obtained with the original multiphase model
of [52] (dashed line), the present multiphase model (solid line) and FE computations on the heterogeneous
structure (symbols) with N layers.
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(a) Longitudinal tension, stresses along
x = 0, y = R+ d. Inset: zoom near the hole
edge

(b) Transverse tension, stresses along
x = R+ d, y = 0. Inset: zoom near the
hole edge

Figure 8: Total stress concentration profile near a circular hole for tension loading parallel or perpendicular
to the fiber direction for varying values of the scale factor s/R = 0.01, 0.02, 0.05, 0.1 and for the standard
homogenized Cauchy medium (black dashed line).

end, a quarter of a square plate perforated by a circular hole of radius R in its bottom-
left corner is loaded by a uniform uniaxial tension very far from the hole. The plate, in
plane-strain conditions, consists of a fiber-reinforced composite (properties of Table 1) with
a fiber volume fraction φ2 = 10% and with fibers oriented along the x-direction. The far-field
uniaxial tension σ∞ is either aligned with the fibers (longitudinal tension) or perpendicular
to it (transverse tension). In the following, the problem will be solved thanks to a FE
multiphase model with properties derived in section 4.5 with the CCA model. Different
scale factors ε = s/R will be considered in which s denotes the outer matrix diameter
of the CCA model and will be compared to the standard homogenized medium solution.
Let us mention that the far-field partial stress boundary conditions have been imposed as
σmnn = φ1σ∞ and σrnn = φ2σ∞ (with n = x or y depending on the loading case) although the
result is insensitive to the specific linear combination as long as σmnn + σrnn = σ∞.

Figure 8a represents the evolution of the horizontal stress near the hole boundary on the
vertical line (x = 0, y = R+d) in the case of a longitudinal tension loading. The stress values
are very close to the homogenized solution for distances d larger than the heterogeneities
length scale s. Close inspection of the stress fields near the hole boundary reveals that the
multiphase model predicts a larger stress, all the more larger for increasing values of s. The
stress field then decreases sharply before reaching the homogenized value from below.

On Figure 8b, the vertical stress near the hole boundary on the horizontal line (x =
R + d, y = 0) is represented in the case of a transverse tension loading. In this case, the
picture is quite different since both models differ on a larger distance (roughly 2s) but,
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(a) Vertical partial stresses along x = R, y > 0, ma-
trix stress in thick lines, fiber stress in thin lines.

(b) Regions where ∆σ > 5% for different
scale factors, the corresponding microscopic
length s is indicated for comparison.

Figure 9: Stress concentration along the vertical direction near the hole edge in transverse tension.

more interestingly, the vertical stress converges to a well-defined value at the hole boundary,
independently of the scale factor. With decreasing scale factors, the stress variation indeed
converges to the homogenized solution but not in a uniform manner. More precisely, the
stress concentration factor (SCF) predicted by the multiphase model is here approximately
22% smaller than the homogenized value (2.52 against 3.25). Let us mention that a similar
behavior is obtained when investigating separately the matrix and fiber partial stresses.
Besides, we obtained very similar results when increasing the fiber volume fraction to 50%
(SCF = 2.70 for the multiphase model and SCF = 3.28 for the homogenized continuum).

It turns out that the discrepancy between both models occurs on a much larger area when
investigating the stress values along the vertical line x = R. The partial vertical stresses
along this line have been represented in Figure 9a. It can be seen that both solutions differ
on a much larger distance, roughly given by 10s. In Figure 9b, the relative gap ∆σ =
|σmultiphase
yy − σhomog.

yy |/σ∞ is used as a measure of the discrepancy between both solutions.
Regions where ∆σ > 5% have been represented for three different scale factors, revealing
the strong anisotropy originating at the hole boundary and extending along the vertical
direction on scales much larger than the microscopic scale s. Finally, this picture illustrates
that both models differ in critical regions in which delamination or cracking are likely to
occur. The correct evaluation of the stress levels in these regions is of paramount importance
in order to predict initiation of such phenomena, a task for which multiphase models may
prove to be very useful.

5.3. Modeling crack bridging and delamination

This last example serves to illustrate the efficiency of multiphase models to simulate
complex mechanisms such as crack bridging or delamination in fiber-reinforced materials.
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matrix crack

multiphase 
continuum

Figure 10: Left: Tension of a multilayered medium with a matrix crack bridged by reinforcements. Right:
Boundary conditions for the associated multiphase model.

Let us consider a rectangular domain of dimension 2L × H consisting of a multilayered
medium oriented along direction ex. A vertical crack of length H/2 is introduced in the
matrix phase only at middle of the sample (see Figure 10-left). The reinforcing phase is as-
sumed to be perfectly sound and can still transfer loads across this surface. This situation,
typical of crack bridging in fiber-reinforced materials cannot be modeled using a standard
homogenized medium, except by introducing some ad hoc cohesive forces. On the contrary,
the multiphase model can account for such a situation by prescribing different boundary
conditions for the matrix and the reinforcing phase along the crack surface.
More precisely, one half of the sample is modeled in the multiphase framework (see Figure
10-right) by prescribing zero horizontal displacements for the reinforcing phase along the
symmetry plane (x = 0) boundary, whereas zero horizontal displacements for the matrix
phase are prescribed only along the uncracked part of the plane (x = 0, y ≥ H/2); on the
cracked part, the matrix phase is stress-free. The loading consists of a horizontal displace-
ment (δ = 1) prescribed on the left part to both phases, the vertical displacement remaining
free on this boundary. Once again, the solution of the multiphase model will be compared
to a fully heterogeneous computation with N = 8, 16 or 32 layers across the sample height,
corresponding to a scale factor of s/H = 1/N . Dimensions are fixed to L = 2, H = 1 and
material properties are those of Table 2.

Comparing the horizontal displacement on the vertical line x = 0 in the matrix phase for
both models shows a very good agreement for all values of the scale factor (see Figure 11a).
In particular, the crack-opening of the matrix phase relative to the fixed reinforcements is
well reproduced by the multiphase model and decreases (roughly linearly) with the scale
factor, eventually converging to zero for a crack bridged by an infinite number of reinforce-
ments. It should be mentioned that the discrete symbols relative to the heterogeneous model
correspond to an average displacement over each matrix layer.

In Figure 11b, the interfacial shear stress σxy on the horizontal line corresponding to
the top interface relative to the reinforcement located near y = H/4 is represented (no
average for the heterogeneous model in this case). On the same plot, we also represented a
reconstructed interfacial shear stress from the multiphase model. Using relation (31) over
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(a) Matrix displacement (averaged over each ma-
trix layer for the heterogeneous model)

(b) Interfacial shear stress σ+
xy (reconstructed

from the interaction force Ix for the multiphase
model)

Figure 11: Matrix displacements along the symmetry plane x = 0 (left) and interfacial shear stress σxy along
a horizontal line near y = H/4 for both models (heterogeneous model : filled symbols, multiphase model :
solid lines)

an infinitesimal reinforcement length, we can indeed relate the horizontal interaction force
Ix to the top (resp. bottom) interfacial shear stress σ+

xy (resp. σ−xy) as follows:

Ix(x) =
1

s
(σ−xy(x)− σ+

xy(x)) (145)

Using the fact that top and bottom interfacial shear stresses are opposite σ−xy = −σ+
xy, we

obtain the estimate σ+
xy = −sIx/2. It can be observed that this reconstruction is of extremely

good quality for all scale factors, even regarding the maximal value of the shear stress at
x = 0. The dashed lines originating from the maximal shear stress intercept the horizontal
axis at the scale-dependent distance ` and characterize the length-scale over which the shear
stress decreases to zero. Quite interestingly, the maximal shear stress depends only weakly
on the scale factor. Once again, this example illustrates that the multiphase model can be
used to predict initiation of delamination in the critical region of the crack surface.

As a follow-up to this problem, we also investigated the case where each interface bridging
the crack has delaminated over a distance d = 0.1. This problem, with N = 16 layers, has
been modeled, on the one hand, by explicitly including a discontinuity in the heterogeneous
finite-element mesh and, on the other hand, by forcing the interaction stiffness κ, and
thus the interaction force I, to be zero in the region (0 ≤ x ≤ d, 0 ≤ y ≤ H/2) for the
multiphase model (see Figure 12). Figure 13a represents each phase horizontal displacement
on the vertical line located halfway through the delaminated zone (x = d/2 = 0.05), once
again each symbol corresponds to the total displacement averaged over the corresponding
phase layer. On Figure 13b, the horizontal partial stresses σixx in the sixth layer have been
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delaminated interface

multiphase 
continuum

delaminated interface

Figure 12: Matrix crack bridged by reinforcements with delaminated interfaces: heterogeneous model (left)
and multiphase model with zero interaction stiffness in the delaminated zone (right)

(a) Displacements along a vertical line at x =
0.05 (halfway through the delaminated zone)

(b) Partial stresses along a horizontal line in the
sixth layer

Figure 13: Comparison of displacement and stress fields between the heterogeneous problem and the multi-
phase model with a delaminated zone (N = 16)
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Figure 14: Close-up on the shear stress field near the delaminated zone (heterogeneous FE computations)
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represented along a horizontal line. As before, both stresses and displacements are very well
reproduced by the multiphase model, even in this complex case involving a matrix crack
and a partially debonded interface as evidenced in Figure 14 by the shear stress field in
the vicinity of the debonded region. This figure also indicates some bending of the bottom
and top debonded layers which is not accounted for in this version of the multiphase model,
possibly explaining the slight discrepancy observed in Figure 13a.

6. Conclusions and perspectives

Multiphase models have been initially proposed as a generalized continuum capable of
accounting for scale effects in media reinforced by stiff linear inclusions in small volume frac-
tion. The reinforced medium is represented as the superposition of two mutually interacting
continuous media, each of them possessing its own kinematics along with phenomenological
constitutive relations.

In this contribution, a more general formulation has been considered which is not limited
to stiff inclusions in small volume fraction. Reminiscent of mixture models for porous media,
the macroscopic equilibrium equations have been linked to their microscopic counterpart.
A homogenization procedure has then been developed so as to control exactly the averaged
quantities involved in this phase-average balance equations. The corresponding auxiliary
problem is parametrized by the partial stresses of each phase and an interaction force which
can be interpreted as the average traction on the interface separating both phases. In
a more convenient manner, this problem can be equivalently formulated by considering
phase-wise uniform self-equilibrated eigenstrains and body forces in addition to the standard
macroscopic strain. The obtained macroscopic constitutive equations involve, in particular,
partial stiffness tensors Dij which can be expressed on the basis of the macroscopic stiffness
for biphasic materials and an interaction stiffness tensor κ which can be obtained from the
resolution of a permeability-like problem.

Analytical expressions have been derived in the case of multilayered and fiber-reinforced
media, recovering, in a unified way, independent results of the literature. Finally, some
boundary-value problems have been considered in the multiphase framework. The solution of
a multilayered block in compression is perfectly well reproduced with the previously derived
effective properties, differing from earlier works which considered the same problem. More
complex scale effects induced by boundary layers near free surfaces have been investigated by
considering stress concentrations near circular notches. The importance of the discrepancy
between the multiphase model and a standard homogenized continuum depends on the
loading conditions and the considered region. Non-negligible differences can be reached on
regions much larger than the typical heterogeneity size which also happen to be those prone
to fracture and delamination. Regarding these two phenomena, it has also been shown
that the multiphase approach can model very accurately complex situations such as crack
bridging or interface debonding which is very hard to do using traditional continuum models.
Investigation of some specific one-dimensional problems also reveals that the multiphase
framework generalize in some way shear-lag models and provide a rational basis for deriving
their stress-transfer β parameter.
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Inspection of the form of multiphase analytical solutions reveals that the phase displace-
ments consist of a zero-order macroscopic displacement which is identical for both phases
and is equal to the standard homogenization solution. A first-order correction is governed by
the relative displacement between both phases, the amplitude of which is maximal near free
boundaries or boundaries with fixed displacement conditions for one phase only. Although
the homogenization procedure has been built in a periodic setting, which is not valid near the
boundaries, we believe that the multiphase framework provides more degrees of freedom for
matching what happens near the boundary with the inner expansion, thereby improving on
the standard Cauchy continuum. In addition, the proposed two-scale asymptotic expansion
of section (3.6) shows that the multiphase auxiliary problem is consistent with a microscopic
description of mechanical fields in terms of partial averages on each phases. In particular,
the macroscopic equilibrium equations are equivalent to satisfying the microscopic balance
equations on average on each phases, and not only on average on the unit cell as for standard
homogenization.

Although interesting results have been obtained regarding stress concentration, bridged
cracks or debonded interfaces, it should be acknowledged that scale effects induced by bound-
ary layers are not very strong in a purely elastic setting since the first-order contribution
rapidly drops to zero when considering macroscopic quantities such as an apparent modulus
for instance. However, situations involving bending of the reinforcing phase can induce much
stronger scale-effects, depending on the phase contrast and aspect ratio. A generalization of
the proposed procedure to such a situation is therefore a natural perspective. It will how-
ever require considering phases with a Cosserat or even micromorphic kinematics, for which
proper homogenization procedures still seem lacking at this moment. Besides, the proposed
approach can also be applied, in principle, to short fiber-reinforced composites. It seems
that, in this case, the effect of relative displacement between both phases is much smaller
than for long reinforcements whereas bending effects seem to play an important role. The
applicability of the proposed model for such a situation will therefore be the subject of a
future work.

When considering material non-linearities such as plasticity or fracture and damage, scale
effects may also become much more important. As evidenced by the considered examples,
multiphase models offer an extremely natural way to model independently the damaging
process of each phase and possible debonding of their common interface. Such aspects are
obviously of paramount importance for the assessment of the bearing capacity of many
fiber-reinforced materials.

Finally, other topics would be worthy of investigation such as elastodynamics or the
extension to geometrical non-linearities.

Appendix A. Symmetry properties of the homogenized constitutive equations

In this section we establish some relations between the constitutive coefficients appearing
in the homogenized behavior (51).
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We consider the following solution pairs of a particular auxiliary problem (37): (uI ,σI)
associated with problem (PI) in whichE2 = 0 and I = 0, (uII ,σII) associated with problem
(PII) in which E1 = 0 and I = 0 and (uIII ,σIII) associated with problem (PIII) in which
E1 = E2 = 0. For each pair J = I, II, III, we also consider the associated local elastic
strain εel,J .

Recalling that the generalized Hill-Mandel lemma (41):

〈σ : (E? +∇su)〉 = φ1〈σ〉1 : E1 + φ2〈σ〉2 : E2 + I ·
(
〈u〉2 − 〈u〉1

)
(A.1)

applies for any pair (u,σ) ∈ SA(I)×KA, the following relations hold true:

〈σI : εel,I〉 = φ1〈σI〉1 : E1 (A.2)

〈σII : εel,II〉 = φ2〈σII〉2 : E2 (A.3)

〈σIII : εel,III〉 =
(
〈uIII〉2 − 〈uIII〉1

)
· I (A.4)

〈σI : εel,II〉 = φ2〈σI〉2 : E2 (A.5)

〈σII : εel,I〉 = φ1〈σII〉1 : E1 (A.6)

〈σI : εel,III〉 = 0 (A.7)

〈σIII : εel,I〉 = φ1〈σIII〉1 : E1 +
(
〈uI〉2 − 〈uI〉1

)
· I (A.8)

〈σII : εel,III〉 = 0 (A.9)

〈σIII : εel,II〉 = φ2〈σIII〉2 : E2 +
(
〈uII〉2 − 〈uII〉1

)
· I (A.10)

Applying now the Maxwell-Betti reciprocity theorem to problems (PI) and (PII), we
have:

φ2〈σI〉2 : E2 = 〈σI : εel,II〉 = 〈εel,I : C : εel,II〉 = 〈εel,I : σII〉 = φ1〈σII〉1 : E1 (A.11)

so that (A.5) and (A.6) are in fact equal. We obtain the same result for (A.7) and (A.8)
on the one hand and (A.9) and (A.10) on the other hand. Using now the expressions of the
localized displacements (44) and stresses (50) in terms of their loading parameters in both
sides of the previous relations, we obtain:

E1 : 〈(A1)T : C : A1〉 : E1 = φ1E
1 : C1 : A11 : E1 (A.12)

E2 : 〈(A2)T : C : A2〉 : E2 = φ2E
2 : C2 : A22 : E2 (A.13)

I · 〈D˜ T : C : D˜ 〉 · I = I ·
(
〈d〉2 − 〈d〉1

)
· I (A.14)

E2 : 〈(A2)T : C : A1〉 : E1 = E2 : φ2C2A21 : E1 (A.15)

= E1 : φ1C1A12 : E2 = E1 : 〈(A1)T : C : A2〉 : E2

0 = E1 : 〈(A1)T : C : D˜ 〉 · I = E1 :
(
φ1C1〈D˜ 〉1 + (a˜21 − a˜11)T

)
· I (A.16)

0 = E2 : 〈(A2)T : C : D˜ 〉 · I = E2 :
(
φ2C2〈D˜ 〉2 + (a˜22 − a˜12)T

)
· I (A.17)

Since these relations hold for any value of the loading parameters, we obtain the relations
of (54).
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Appendix B. One-dimensional solutions of multiphase continua

We consider here one-dimensional solutions of the equations describing multiphase con-
tinua depending on one space variable x in the absence of macroscopic body forces.

Appendix B.1. General structure

Let us assume that the partial uniaxial stresses in both phases are of the following form:

σm(x) = α11
dum

dx
(x) + α12

dur

dx
(x) + τm (B.1)

σr(x) = α21
dum

dx
(x) + α22

dur

dx
(x) + τ r (B.2)

where um(x), ur(x) are some displacement component for both phases, αij are generalized
stiffness coefficients and τm, τ r are given constants. The corresponding uniaxial partial
equilibrium equations are given by:

dσm

dx
(x) + I(x) = 0 (B.3)

dσr

dx
(x)− I(x) = 0 (B.4)

where I(x) = κ(ur(x) − um(x)) is the uniaxial interaction force and κ the corresponding
interaction stiffness. Injecting all constitutive relations into the equilibrium equations yields
the following coupled second-order differential equations:

α11
d2um

dx2
(x) + α12

d2ur

dx2
(x) + κ(ur(x)− um(x)) = 0 (B.5)

α21
d2um

dx2
(x) + α22

d2ur

dx2
(x)− κ(ur(x)− um(x)) = 0 (B.6)

These equations can be conveniently rewritten as a linear system of differential equations
as follows: [

α11 α12

α21 α22

]
d2

dx2

{
um(x)
ur(x)

}
− κ

[
1 −1
−1 1

]{
um(x)
ur(x)

}
=

{
0
0

}
(B.7)

αu′′(x)− κu(x) = 0 (B.8)

where the prime symbol now denotes the derivative with respect to x. By performing a
generalized eigenvalue decomposition of matrices α and κ, one can easily show that the
previous system can be written as the following two uncoupled differential equations:

αhomw
′′(x) = 0 (B.9)

j′′(x)− 1

`2
j(x) = 0 (B.10)

45



where:

αhom = α11 + α12 + α21 + α22 (B.11)

` =

√
α11α22 − α12α21

καhom
=

√
detα

καhom
(B.12)

w(x) =
α11 + α21

αhom
um(x) +

α12 + α22

αhom
ur(x) (B.13)

j(x) = ur(x)− um(x) (B.14)

From the last two relations, we deduce the inverse relations:

um(x) = w(x)− α12 + α22

αhom
j(x) (B.15)

ur(x) = w(x) +
α11 + α21

αhom
j(x) (B.16)

as well as the partial stresses as functions of w(x) and j(x):

σm(x) = (α11 + α12)w′(x)− detα

αhom
j′(x) + τm (B.17)

σr(x) = (α21 + α22)w′(x) +
detα

αhom
j′(x) + τ r (B.18)

This decomposition makes it clear, at least in the one-dimensional case, that the displace-
ment solutions of multiphase continua can also be expressed as the superposition of w(x)
corresponding to the standard displacement of the associated Cauchy continuum since, if
um(x) = ur(x) (j(x) = 0), both fields are then given by w(x), and a part j(x) corresponding
to the contribution of the relative displacement between both phases. This last contribu-
tion is governed by a modified Helmholtz equation (B.10) characterized by a characteristic
length scale ` which is related to both the partial stiffnesses αij and the interaction stiff-
ness κ (B.12). It can be seen in the following examples that the amplitude of the relative
displacement j(x) scales with `/L (L being a structural characteristic length) that is with
the heterogeneities scale factor ε = s/L since ` ∝ 1/

√
κ and κ ∝ 1/s2. Hence, the relative

displacement contribution is a first-order correction to the standard homogenized displace-
ment.

Appendix B.2. General solutions for different types of boundary conditions

We now give the expression of the previous system general solution for different types of
boundary conditions. The matrix (resp. reinforcement) phase corresponds to phase 1 (resp.
2).

Appendix B.2.1. Fixed displacements at x = 0 and imposed tractions at x = L

We assume here that um(0) = ur(0) = 0 and that some tractions tm, tr are imposed at
x = L. The solution will be more conveniently expressed as a function of the derivatives
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tw = w′(L) and tj = j′(L) at x = L. Hence, we will reformulate the stress boundary
conditions at x = L using these derivatives by inverting relations (B.13) and (B.14) so that:{

σm(L) = tm

σr(L) = tr
⇔ αu′(L) =

{
tm − τm
tr − τ r

}
(B.19)

⇔ α

[
1 −α12+α22

αhom

1 α11+α21

αhom

]{
tw

tj

}
=

{
tm − τm
tr − τ r

}
(B.20)

that is:

tw =
tm − τm + tr − τ r

αhom
(B.21)

tj = (tr − τ r)α11 + α12

detα
− (tm − τm)

α21 + α22

detα
(B.22)

The solution of (B.9)-(B.10) can then be expressed as:

w(x) = twx (B.23)

j(x) =
`tj

cosh(L/`)
sinh(x/`) (B.24)

which can be further recombined in terms of partial displacements:

um(x) = twx− α12 + α22

αhom

`tj

cosh(L/`)
sinh(x/`) (B.25)

ur(x) = twx+
α11 + α21

αhom

`tj

cosh(L/`)
sinh(x/`) (B.26)

and of partial stresses:

σm(x) = (α11 + α12)tw − tj detα

αhom

cosh(x/`)

cosh(L/`)
+ τm (B.27)

σr(x) = (α21 + α22)tw + tj
detα

αhom

cosh(x/`)

cosh(L/`)
+ τ r (B.28)

Appendix B.2.2. Fixed displacement at x = L for one phase only

We assume here that the displacement at x = 0 is fixed for both phases and imposed to
some value U at x = L for one phase only, say the fiber phase ur(L) = U , whereas the other
phase is assumed to be stress-free at x = L : σm(L) = 0. The global displacement w(x) and
the jump displacement j(x) are of the same form as before:

w(x) = Ax (B.29)

j(x) = B sinh(x/`) (B.30)
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except that A and B are now solutions to the linear system corresponding to boundary
conditions at x = L, namely:

ur(L) = AL+
α11 + α21

αhom
sinh(L/`)B = U (B.31)

σm(L) = (α11 + α12)A− detα

αhom

cosh(L/`)

`
B = 0 (B.32)

Resolution of this system gives the following expressions for the displacement and stress
fields:

um(x) =
U

1 + α̂ `
L

tanh(L/`)

(
x

L
− α̂α12 + α22

α11 + α21

`

L

sinh(x/`)

cosh(L/`)

)
(B.33)

ur(x) =
U

1 + α̂ `
L

tanh(L/`)

(
x

L
+ α̂

`

L

sinh(x/`)

cosh(L/`)

)
(B.34)

σm(x) = (α11 + α12)
U/L

1 + α̂ `
L

tanh(L/`)

(
1− cosh(x/`)

cosh(L/`)

)
+ τm (B.35)

σr(x) = (α21 + α22)
U/L

1 + α̂ `
L

tanh(L/`)

(
1 +

α11 + α12

α21 + α22

cosh(x/`)

cosh(L/`)

)
+ τ r (B.36)

where α̂ = (α11 + α12)(α11 + α21)/ detα.

Appendix B.3. Solution for the multilayered block in compression

In the context of the multilayered block problem (section 5.1), um and ur represent the
horizontal component of the partial displacements ui = U i

x and σm = σmxx and σr = σrxx
are the uniaxial stresses in the horizontal direction. Since ε1

yy = ε2
yy = −δ/H, the partial

stresses are given by (B.1)-(B.2) with αij = Dij
xxxx (in this case α12 = α21) and:

τm = − δ

H
(γ11 + γ12) (B.37)

τ r = − δ

H
(γ21 + γ22) (B.38)

where γij = Dij
xxyy (note that γ12 6= γ21). The boundary conditions are those of subsection

Appendix B.2.1 with tm = tr = 0. Equations (B.21)-(B.22) reduce here to:

tw =
γ11 + γ12 + γ21 + γ22

αhom
δ

H
=

Chom
xxyy

Chom
xxxx

δ

H
= νhom,∗

δ

H
(B.39)

tj =
δ

H

(α11 + α12)(γ21 + γ22)− (α21 + α22)(γ11 + γ12)

detα
(B.40)

The first result shows that w(x) = νhom,∗
δ

H
x indeed corresponds to the displacement

of the standard homogenized Cauchy medium for which νhom,∗ = νhom/(1 − νhom) is the
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macroscopic pseudo-Poisson ratio in plane-strain conditions. The partial stresses in both
phases take here the following simple form:

σm(x) = −σr(x) = tj
detα

αhom

(
1− cosh(x/`)

cosh(L/`)

)
(B.41)

where we recover that total horizontal stress Σxx(x) = σm(x) + σr(x) is identically null

for this problem. Finally, it can be shown that the prefactor tj
detα

αhom
corresponds exactly

to the partial stress that one would obtain when relocalizing the solution of the standard
homogenized Cauchy medium in each phase. However, this stress level is reached only in
the central part of the sample and if `� L.

Appendix C. A link with shear-lag models

Shear-lag models have been developed in order to analyze stress states in composite
materials and, more particularly, the stress transfer between a fiber embedded in a matrix.
Various models have been built using different simplifying hypotheses with respect to the
equations of planar or axisymmetric elasticity. We refer to Nairn [43, 44] for many refer-
ences on the subject. One key feature of such models is, for instance, to characterize the
heterogeneous axial stress occurring in the case of transverse cracking of the fibers. When
subjected to a macroscopic tensile stress, the fiber axial stress is zero at both cracked ends
and increases towards the center of a cracked fiber, eventually reaching a homogeneous value
corresponding to an uniaxial strain equal to that of the matrix. This occurs if the fiber is
sufficiently long compared to the stress transfer length corresponding to the intermediate
region on which the axial stress increases from zero to its homogeneous value. As regards the
interfacial shear stress, it is maximal at both fiber ends (with opposite sign) and decreases to
zero over this stress transfer region. Note that, in the case of matrix cracking with bridging
fibers, a similar behaviour is obtained when exchanging the role played by the matrix and
the fibers.

Appendix C.1. Shear-lag models for microcracked laminates

Considering the case of a plane strain bilayered laminate under uniaxial stress σ0 with
one layer (phase one) being damaged by the presence of microcracks separated by a distance
2L, shear-lag models predict that the average axial stress in this phase is given by [44]:

〈σ〉1(x) = σ0
E∗1
〈E∗〉

(
1− cosh(βx)

cosh(βL)

)
(C.1)

where E∗1 is the longitudinal modulus of the corresponding phase5 and where the shear-lag
parameter β can be interpreted as the inverse of a stress-transfer length and depends only

5It corresponds to the Young’s modulus E in the case of an isotropic phase in plane stress state and to
E(1− ν)/(1 + ν) in plane strain conditions.
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on the constituent moduli and ply thicknesses ti. Depending on the precise hypotheses of
the underlying shear-lag model, various expressions for β have been proposed such as [44]:

β2 = 4
(t1E

∗
1)−1 + (t2E

∗
2)−1

t1/µ1

for [35] (C.2)

β2 = 4
(t1E

∗
1)−1 + (t2E

∗
2)−1

3t1/µ1

for [6] (C.3)

β2 = 12
(t1E

∗
1)−1 + (t2E

∗
2)−1

(t1/µ1) + (t2/µ2)
for [41] (C.4)

Nairn derived a more general expression using shape functions which encompasses all
these formulas depending on a specific choice of these shape functions. However, a com-
parison with finite element computations showed that the formula (C.4) proposed in [41] is
almost exact, yielding an error less than a percent.

Appendix C.2. Solution with the multiphase model

Let us consider here the constitutive equations of the mutiphase model for uniaxial
tension in the longitudinal direction. From the constitutive equations expressed in terms of
partial compliances, we have:

εmzz = F11
zzzzσ

m
zz + F12

zzzzσ
r
zz (C.5)

εrzz = F12
zzzzσ

m
zz + F22

zzzzσ
r
zz (C.6)

In the case of laminates, results of sections 4.4 induce that:

σmzz = φ1E
∗
1ε
m
zz (C.7)

σrzz = φ2E
∗
2ε
r
zz (C.8)

From the general form of the one-dimensional solutions (B.12) with α11 = φ1E
∗
1, α22 =

φ2E
∗
2 and α12 = 0, the characteristic length scale ` is here given by:

` =

√
φ1φ2E

∗
1E
∗
2

κ〈E∗〉
(C.9)

where 〈E∗〉 = αhom = φ1E
∗
1 + φ2E

∗
2.

Considering that the matrix phase is cracked at both ends z = ±L and that the fiber
phase carries a total tension σ0, the following boundary conditions hold true: um(0) =
ur(0) = 0, σmzz(L) = tm = 0 and σrzz(L) = tr = σ0. One then has tw = σ0/〈E∗〉 and
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tj = σ0/(φ2E
∗
2) and expressions of section Appendix B.2.1 particularize to:

um(z) =
σ0

〈E∗〉

(
z − ` sinh(x/`)

cosh(L/`)

)
(C.10a)

ur(z) =
σ0

〈E∗〉

(
z + `

φ1E
∗
1

φ2E
∗
2

sinh(x/`)

cosh(L/`)

)
(C.10b)

σm(x) =
φ1E

∗
1

〈E∗〉
σ0

(
1− cosh(x/`)

cosh(L/`)

)
(C.10c)

σr(x) =
φ2E

∗
2

〈E∗〉
σ0

(
1 +

φ1E
∗
1

φ2E
∗
2

cosh(x/`)

cosh(L/`)

)
(C.10d)

Recalling that σm = φ1〈σ〉1, the obtained expression are exactly those of the shear-lag
model with β = 1/`. Upon replacing κ by the corresponding longitudinal interaction stiffness
of the multilayered medium (108), one has:

1/`2 =
12〈E∗〉

φ1φ2E
∗
1E
∗
2(t1 + t2)2〈1/µ〉

= 12
(t1E

∗
1)−1 + (t2E

∗
2)−1

(t1/µ1) + (t2/µ2)
= β2 (C.11)

that is the multiphase solution corresponds exactly to the best shear-lag solution with (C.4).

Appendix C.3. Other comparisons

An alternative to the previous microcracked problem corresponds to the case where a
prescribed displacement U is imposed to the uncracked phase. In this case, the solution
derived in section Appendix B.2.2 reduces here to the same expressions as (C.10) with:

σ0

〈E∗〉
=

U/L

1 +
φ1E

∗
1

φ2E
∗
2

`

L
tanh(L/`)

(C.12)

the denominator of which also appears in the derivation of the effective modulus of a micro-
cracked composites through shear-lag models.

Finally, when considering shear lag models for fiber-matrix concentric cylinders, the β
parameter appearing in [41, 43] is exactly the one corresponding to the longitudinal inter-
action stiffness derived in (133).

Appendix C.4. Conclusions

As a result, the proposed multiphase models can be seen as a generalization of the shear-
lag models in the sense that the former degenerate to the latter when investigating purely
uniaxial solutions. The proposed homogenization procedure also provide a systematic way
for deriving optimal values for the shear-lag β parameter. By considering 3D kinematics
and equilibrium equations, multiphase models are therefore able to generalize shear-lag type
predictions for complex loadings and damage modes.
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