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1 Université Paris-Est, LIGM (UMR CNRS 8049), ENPC, F-77455 Marne-la-Vallée, France
(thibaud.briand@enpc.fr, monasse@imagine.enpc.fr)
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Abstract

We explain how the B-spline interpolation of signals and, in particular, of images can be ef-
ficiently performed by linear filtering. Based on the seminal two-step method proposed by
Unser et al. in 1991, we propose two slightly different prefiltering algorithms whose precisions
are proven to be controlled thanks to a rigorous boundary handling. This paper contains all
the information, theoretical and practical, required to perform efficiently B-spline interpolation
for any order and any boundary extension. We describe precisely how to evaluate the kernel
and to compute the B-spline interpolator parameters. We show experimentally that increasing
the order improves the interpolation quality. As a fundamental application we also provide an
implementation of homographic transformation of images using B-spline interpolation.

Source Code

The ANSI C99 implementation of the code that we provide is the one which has been peer
reviewed and accepted by IPOL. The source code, the code documentation, and the online
demo are accessible at the IPOL web part of this article1. Compilation and usage instructions
are included in the README.txt file of the archive.

Keywords: interpolation; splines; linear filtering; boundary handling

1 Introduction

Interpolation consists in constructing new data points within the range of a discrete set of known
data points. It is closely related to the concept of approximation [3], fitting [4], and extrapolation.
In signal processing it is commonly expressed as the problem of recovering the underlying continuous
signal from which the known data points are sampled. A continuous signal representation is handy
when one wishes to implement numerically an operator that is initially defined in the continuous
domain (e.g. edge detection, geometric transformation).

Under the assumption that the signal belongs to a given class of functions, the common principle of
all interpolation schemes is to determine the parameters of the continuous image representation [6,
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18]. A fundamental example is given by Shannon’s sampling theory which states an equivalence
between a band-limited function and its equidistant samples taken at a frequency that is superior
or equal to the Nyquist rate [16]. According to the Shannon-Whittaker interpolation formula, a
band-limited signal can be written as the convolution between a Dirac comb weighted by its samples
and the cardinal sine (or sinc) function. However this result cannot be used in practice [20], notably
because real-world signals have a bounded domain. In addition, the cardinal sine function has a
decay in 1/x that is too slow for practical computations [17].

A non band-limited alternative approach that has been widely used since the 1990s is the spline
representation. A spline of degree n is a continuous piece-wise polynomial function of degree n of a
real variable with derivatives up to order n−1. This representation has the advantage of being equally
justifiable on a theoretical and practical basis [19]. It can model the physical process of drawing a
smooth curve and it is well adapted to signal processing thanks to its optimality properties. It is
handy to consider the B-spline representation [15] where the continuous underlying signal is expressed
as the convolution between the B-spline kernel, that is compactly supported, and the parameters of
the representation, namely the B-spline coefficients. One of the strongest arguments in favor of
the B-spline interpolation is that it approaches the Shannon-Whittaker interpolation as the order
increases [2].

The determination of the B-spline coefficients is done in a prefiltering step which, in general,
can be done by solving a band diagonal system of linear equations [8, 11]. For uniformly spaced
data points, which is most of the time the case in signal processing, Unser et al. proposed in [21]
an efficient and stable algorithm based on linear filtering that works for any order. More details, in
particular regarding the determination of the interpolator parameters, were provided by the authors
in later publications [22, 23].

As for Shannon’s sampling theory, the spline representation is designed for infinite signals. Finite
signals need to be extended in an arbitrary way in order to apply the interpolation scheme. This
issue is commonly referred to as the boundary handling. The influence of the unknown exterior
data decays with the distance to the boundary of the known data points [17] and is therefore often
neglected. However in some applications this decay may be too slow or it can be relevant to consider a
particular extension. Unser’s algorithm is described with a symmetrical boundary handling which is
a classical but restrictive choice. Additional boundary extensions are available in the implementation
provided by [6]. The problem that arises in this prefiltering algorithm is that the boundary handling
involves infinite sums that are approximated by truncation. Because it uses a recursive structure,
the B-spline coefficients are computed a priori with an uncontrolled error.

In this article we provide all the information, theoretical and practical, required to perform B-
spline interpolation for any order and any boundary extension. We propose two slightly different
prefiltering algorithms based on Unser’s algorithm but with additional computations that take into
account the boundary extension. The computational errors are proven, theoretically and experimen-
tally, to be controlled (up to dimension two) thanks to a correct boundary handling. The computa-
tional cost increases slowly with the desired precision (which can be set to the single precision in most
of the applications). The first algorithm is general and works for any boundary extension while the
second is applicable under specific assumptions. In addition, we describe precisely how to evaluate
the B-spline kernel and to compute the B-spline interpolator parameters. We show experimentally
that increasing the order improves the interpolation quality. As a fundamental application we also
provide an implementation of homographic transformation of images using B-spline interpolation.

This article is accompanied by an online demo where the user can upload an image and apply a
homographic transformation to it. The homography is chosen by selecting the transformation of the
four corners of the image.

This article is organized as follows: Section 2 presents the B-spline interpolation theory of a
discrete infinite unidimensional signal as a two-step method. Section 3 describes two prefiltering
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algorithms for a finite unidimensional signal whose computational errors are controlled thanks to a
proper boundary handling. The extension to higher dimensions, with a particular focus to dimension
two, is done in Section 4. Details concerning the provided numerical implementation are given in
Section 5. Section 6 presents some experiments.

2 B-spline Interpolation of a Discrete Signal

In this section we present the B-spline interpolation of an infinite discrete unidimensional signal
as a two-step interpolation method. We detail how the first step, i.e., the prefiltering step, can
be decomposed into a cascade of exponential filters, themselves separated into two complementary
causal and anti-causal components. We also explain how to evaluate by closed form formulas the
B-spline values at arbitrary points.

2.1 B-spline Interpolation Theory

Let n be a non-negative integer. A spline of degree n ≥ 1 is a continuous piece-wise polynomial
function of degree n of a real variable with continuous derivatives up to order n − 1. The junction
abscissas between successive polynomials are called the knots.

Definition 1. The normalized B-spline function of order n, noted β(n), is defined recursively by

β(0)(x) =


1, −1

2
< x < 1

2
1
2
, x = ±1

2

0, otherwise
and for n ≥ 0, β(n+1) = β(n) ∗ β(0), (1)

where the symbol ∗ denotes the convolution operator.

The normalized B-spline function of order n is even, compactly supported in supp(β(n)) =
[−n+1

2
, n+1

2
] and non-negative. Moreover, it has n + 2 equally spaced knots k ∈ Z ∩ supp(β(n))

when n is odd and n+ 2 equally spaced knots k ∈
(
Z + 1

2

)
∩ supp(β(n)) when n is even. An explicit

formula for β(n) can be derived from its recursive definition [19] and will be used in Section 2.3.
Figure 1 displays β(n) for n = 0, . . . , 3.

The normalized B-spline functions are the basic atoms for constructing splines in the case of
equally spaced knots. Let ϕ be a spline of degree n with equally spaced knots belonging to Z for n
odd and to Z + 1

2
for n even. Then, as proved by Schoenberg [15], ϕ can be uniquely represented as

the weighted sum of shifted normalized B-splines of order n, i.e.

ϕ(x) =
∑
i∈Z

ciβ
(n)(x− i), (2)

where the weights c = (ci)i∈Z ∈ RZ are called the B-spline coefficients. The spline ϕ is uniquely
characterized by its B-spline coefficients, or equivalently by its samples (ϕ(k))k∈Z ∈ RZ at integer
locations. Thus, the interpolation of a discrete signal f ∈ RZ by a spline of degree n, namely the
B-spline interpolation of order n, can be defined as follows.

Definition 2 (B-spline interpolation). The B-spline interpolate of order n of a discrete signal f ∈ RZ

is the spline ϕ(n) of degree n defined for x ∈ R by

ϕ(n)(x) =
∑
i∈Z

ciβ
(n)(x− i), (3)

where the B-spline coefficients c = (ci)i∈Z are uniquely characterized by the interpolating condition

ϕ(n)(k) = fk, ∀k ∈ Z. (4)
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Figure 1: Normalized B-spline functions β(n) for 0 ≤ n ≤ 3.

Given a signal f and a real x, computing the right hand side of (3) requires two evaluations: the
signal c = (ci)i∈Z and β(n)(x− i). This explains the two steps involved in the computation:

• Step 1 (prefiltering or direct B-spline transform) provides a B-spline representation of the
signal. The computation of the B-spline coefficients c is done in the prefiltering step detailed in
Section 2.2. Except in the simplest cases, n = 0 or n = 1, in which case β(n)(k−i) = δi(k) and so
ci = fi, the determination of the coefficients ci from f so as to satisfy (4) is not straightforward.

• Step 2 (indirect B-spline transform [21]) reconstructs the signal values from the B-spline rep-
resentation. Given the Dirac comb of B-spline coefficients c =

∑
i∈Z ciδi the value of ϕ(n)(x)

in (3) is computed at any location x ∈ R as a convolution of c with the finite signal β(n)(x− .),
whose computation is explained in Section 2.3.

The B-spline interpolation can be expressed also as a direct interpolation

ϕ(n)(x) =
∑
i∈Z

fi η
(n)(x− i) (x ∈ R), (5)

where η(n) is called the cardinal spline function of order n [19, 22]. In [2] it is proven that the cardinal
spline Fourier transform approaches the ideal filter (i.e., the Fourier transform of the cardinal sine)
when n goes to infinity. This result makes the link between the Shannon’s sampling theory and the
B-spline interpolation. For n = 0 and n = 1, we have ci = fi and η(n) = β(n) so that the direct
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and indirect methods coincide. These interpolations correspond respectively to the nearest neighbor
and linear interpolation methods [6]. For n ≥ 2, η(n) is no longer compactly supported so that
the two-step representation becomes more efficient. See [18] for more information about two-step
interpolation methods.

2.2 Prefiltering Step

The prefiltering step (or direct B-spline transform) consists in computing the B-spline coefficients c
introduced in (3).

2.2.1 Expression as a Discrete Convolution

The interpolating condition (4) can be written as

ϕ(n)(k) =
∑
i∈Z

ciβ
(n)(k − i) = fk, ∀k ∈ Z. (6)

Let us define b(n) ∈ RZ by b
(n)
i = β(n)(i) for i ∈ Z. Then, we recognize in (6) the convolution equation

c ∗ b(n) = f. (7)

Solving for c in the latest equation is efficiently done thanks to transfer functions:

Definition 3 (Z-transform (or transfer function) [9]). The Z-transform of a discrete signal y ∈ RZ

is the formal power series Z[y] defined by

Z[y](z) =
∑
i∈Z

yiz
−i. (8)

The set of complex points for which the Z-transform summation converges is called the region of
convergence (ROC). In particular, if the ROC contains the unit circle then the Z-transform can be
inverted and characterizes the signal.

The advantage of introducing this transform is its property of transforming a convolution into a
simple multiplication, so that inverting a convolution amounts to a division in the Z-domain:

Proposition 1 (Convolution property [9]). Let v ∈ RZ and w ∈ RZ be two discrete signals. Then,

Z[v ∗ w] = Z[v]Z[w], (9)

on the intersection of their regions of convergence.

The finite discrete convolution kernel b(n) is entirely characterized by its Z-transform B(n) =
Z[b(n)] (whose ROC is C \ {0} since β(n) is compactly supported). As B(n) has no zeros on the
unit circle [2], the inverse operator (b(n))−1 exists and is uniquely defined by its Z-transform, noted
(B(n))−1, which verifies (formally)

(B(n))−1 = Z[(b(n))−1] =
1

Z[b(n)]
=

1

B(n)
, (10)

and whose ROC contains the full unit circle. Finally, the prefiltering step boils down to the discrete
convolution

c = (b(n))−1 ∗ f. (11)
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2.2.2 Decomposition into Elementary Filters

The filter (b(n))−1 can be decomposed into elementary causal and anti-causal filters. Using the fact
that β(n) is even and supported in

[
−n+1

2
, n+1

2

]
, denoting ñ = bn

2
c, we can write

B(n)(z) = b
(n)
0 +

ñ∑
i=1

b
(n)
i (zi + z−i). (12)

Schoenberg proved that B(n) has only negative (simple) zeros [14, lemma 8]. By the symmetry
B(n)(z) = B(n)(z−1) for z 6= 0, these zeros can be grouped in reciprocal pairs (α, α−1). Denoting by
R(n) the set of zeros of B(n) yields

R(n) =
ñ⋃
i=1

{zi, z−1i }, with − 1 < z1 < · · · < zñ < 0. (13)

The zi’s are called the poles of the B-spline interpolation. Their practical computation is dealt with
in Appendix A. As zñB(n)(z) is a polynomial whose roots are the elements of R(n), B(n) can be
rewritten for z 6= 0 as

B(n)(z) = b
(n)
ñ z−ñ

ñ∏
i=1

(z − zi)(z − z−1i ), (14)

which gives for z /∈ R(n) ∪ {0},

(B(n))−1(z) = γ(n)
ñ∏
i=1

H(z; zi), (15)

where

γ(n) =
1

b
(n)
ñ

, (16)

and

H(z; zi) =
−zi

(1− ziz−1)(1− ziz)
. (17)

Let −1 < α < 0, α playing the role of one zi. Denote by k(α) ∈ RZ the causal filter and by l(α) ∈ RZ

the anti-causal filter defined for i ∈ Z by

k
(α)
i =

{
0 i < 0

αi i ≥ 0
and l

(α)
i =

{
0 i > 0

α−i i ≤ 0.
(18)

In terms of Z-transform we have for |z| > |α|,

Z[k(α)](z) =
∞∑
i=0

αiz−i =
1

1− αz−1
, (19)

and for |z| < |α−1|,

Z[l(α)](z) =
0∑

i=−∞

α−iz−i =
1

1− αz
. (20)

Set h(α) = −αl(α) ∗ k(α). The filter h(α) is called exponential filter because it is shown, using for
instance (41), that for j ∈ Z,

h
(α)
j =

α

α2 − 1
α|j|. (21)
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Define the domain Dα = {z ∈ C, |α| < |z| < |α−1|}. Applying Proposition 1 to h(α) and combin-
ing (19), (20) and (17), we get the following equality, valid on Dα

Z[h(α)] = −αZ[k(α)]Z[l(α)] = H(.;α). (22)

Since z1 < · · · < zñ < 0 we have Dz1 ⊂ · · · ⊂ Dzñ . Thus with Proposition 1 and (22) we get for
z ∈ Dz1 ,

Z
[
γ(n)h(zñ) ∗ · · · ∗ h(z1)

]
(z) = γ(n)

ñ∏
i=1

H(z; zi) = (B(n))−1(z). (23)

Since Dz1 contains the unit circle, this yields

(b(n))−1 = γ(n)h(zñ) ∗ · · · ∗ h(z1), (24)

and provides a new expression for c,

c = γ(n)h(zñ) ∗ · · · ∗ h(z1) ∗ f. (25)

To simplify, define recursively the signal c(i) ∈ RZ for i ∈ {0, . . . , ñ} by

c(0) = f and for i ≥ 1, c(i) = h(zi) ∗ c(i−1). (26)

We have c = γ(n)c(ñ). Thus the computation of the prefiltering step can be decomposed2 into ñ
successive filtering steps with exponential filters that can themselves be separated into two comple-
mentary causal and anti-causal components. The corresponding algorithm for prefiltering an infinite
discrete signal is presented in Algorithm 1. This is a theoretical algorithm that cannot be used in
practice because it requires an infinite input signal. Turning this algorithm into a practical one, that
is, applicable to a finite signal, is the subject of Section 3.

Algorithm 1: Theoretical prefiltering of an infinite signal

Input : A discrete infinite signal f = (fi)i∈Z and the B-spline interpolation order n
Output: The B-spline coefficients c = (ci)i∈Z of f

1 Compute the poles (zi, z
−1
i )1≤i≤ñ and the normalization coefficient γ(n) = 1

b
(n)
ñ

(Appendix A)

2 Define c(0) = f
3 for i = 1 to ñ do
4 Compute c(i) = h(zi) ∗ c(i−1) where h(zi) is given by (21)
5 end

6 Normalization: c = γ(n)c(ñ)

2.3 Normalized B-spline Function Evaluation

The evaluation of the normalized B-spline function β(n) at any location x ∈ R is necessary in order
to perform the indirect B-spline transform (see Algorithm 6 and Algorithm 7). As β(n) is continuous,
even and compactly supported in [−n+1

2
, n+1

2
], it is sufficient to evaluate β(n)(x) for 0 ≤ x < n+1

2
.

Moreover, β(n) is a piece-wise polynomial function so this evaluation can be efficiently performed
after the precomputation of the polynomial coefficients between each pair of successive knots.

2In general the same decomposition principle is applicable to linear interpolation methods whose kernel is symmet-
rical and compactly supported [18].
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We use the explicit expression of β(n), justified in Appendix B: for n ≥ 1 and x ∈ R,

β(n)(x) =
1

n!

n+1∑
i=0

(−1)i
(
n+ 1

i

)(
x− i+

n+ 1

2

)n
+

, (27)

where for all y ∈ R, y+ = max(y, 0) denotes the positive part of y. Let 0 ≤ x < n+1
2

. Starting
from (27) and by symmetry we get for n ≥ 1,

β(n)(x) = β(n)(−x) =
1

n!

n+1∑
i=0

(−1)i
(
n+ 1

i

)(
n+ 1

2
− i− x

)n
+

, (28)

To get rid of the + subscript in this equation, we observe that

n+ 1

2
− i− x > 0⇔ x− n+ 1

2
+ i < 0⇔

⌊
x− n+ 1

2
+ i

⌋
≤ −1⇔ i ≤ k,

with

k =

⌈
n+ 1

2
− x
⌉
− 1.

Therefore (28) can be rewritten as the restricted sum

β(n)(x) =
1

n!

k∑
i=0

(−1)i
(
n+ 1

i

)(
n+ 1

2
− i− x

)n
. (29)

We then expand the powers to write β(n)(x) as a sum of monomials. We observe that 0 ≤ k ≤ ñ.

Polynomial expression. Define y = n+1
2
−x−k, so that 0 < y ≤ 1. Using the relation n+1

2
−i−x =

y + (k − i) and the binomial expansion, (29) becomes

β(n)(x) =
1

n!

(
(−1)k

(
n+ 1

k

)
yn +

k−1∑
i=0

(−1)i
(
n+ 1

i

) n∑
j=0

(
n

j

)
yj(k − i)n−j

)
(30)

=
1

n!

(
(−1)k

(
n+ 1

k

)
yn +

n∑
j=0

((
n

j

) k−1∑
i=0

(−1)i
(
n+ 1

i

)
(k − i)n−j

)
yj

)
. (31)

For 0 ≤ j ≤ n define the polynomial coefficients

C
(n)
k,j =

{(
n
j

)∑k−1
i=0 (−1)i

(
n+1
i

)
(k − i)n−j 0 ≤ j ≤ n− 1∑k

i=0(−1)i
(
n+1
i

)
j = n

, (32)

so that

β(n)(x) =
1

n!

n∑
j=0

C
(n)
k,j y

j. (33)

Polynomial expression near 0. Assume k = ñ, i.e., 0 ≤ x < n+1
2
− ñ. This upper bound is 0.5

for even n and 1 for odd n. Using the binomial expansion, we have

β(n)(x) =
1

n!

ñ∑
i=0

(−1)i
(
n+ 1

i

) n∑
j=0

(−1)j
(
n

j

)
xj
(
n+ 1

2
− i
)n−j

(34)

=
1

n!

n∑
j=0

(
(−1)j

(
n

j

) ñ∑
i=0

(−1)i
(
n+ 1

i

)(
n+ 1

2
− i
)n−j)

xj. (35)
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For 0 ≤ j ≤ n, define the polynomial coefficients

D
(n)
ñ,j = (−1)j

(
n

j

) ñ∑
i=0

(−1)i
(
n+ 1

i

)(
n+ 1

2
− i
)n−j

=
1

2n−j

(
n

j

) ñ∑
i=0

(−1)i+j
(
n+ 1

i

)
(n+ 1− 2i)n−j, (36)

so that

β(n)(x) =
1

n!

n∑
j=0

D
(n)
ñ,jx

j. (37)

The function β(n) is even and (n − 1)-times differentiable, so that djβ(n)

dxj
(0) = 0 for any odd j such

that 0 ≤ j ≤ n− 1. In other words, Dñ,j = 0 for 0 ≤ j ≤ n− 1, j odd. Applying (37) results in only
n+ 1− ñ terms (i.e., ñ+ 1 if n is even and ñ+ 2 if n is odd) in the sum instead of n+ 1 with (33).

In practice, the polynomial coefficients (C
(n)
l,j )0≤l≤ñ−1,0≤j≤n and (D

(n)
ñ,j )0≤j≤n are precomputed3

before the indirect B-spline transform, as detailed in Algorithm 2. Then, the evaluation of β(n)(x) is
done by Horner’s method [5].

Algorithm 2: Coefficients of the piecewise polynomial expression of β(n)

Input : Order n of the B-spline
Output: The coefficients C

(n)
k,j and D

(n)
ñ,j for j = 0 . . . n, k = 0 . . . ñ− 1

1 Compute
(
n
j

)
for j = 0 . . . n using recursive formulas

(
n
0

)
= 1,

(
n
j

)
= n−j+1

j

(
n
j−1

)
for j = 1 . . . ñ

and
(
n
j

)
=
(
n
n−j

)
for j > ñ.

2 Compute
(
n+1
i

)
= n+1

i

(
n
i−1

)
for i = 1 . . . ñ

3 Compute matrix P with Pij = ji for i = 0 . . . n, j = 1 . . . n+ 1 using P0,. = 1 and Pi,j = jPi−1,j
for i ≥ 1

4 Compute C
(n)
k,j for j = 0 . . . n, k = 0 . . . ñ− 1 applying (32)

5 Compute D
(n)
ñ,j applying (36).

3 B-spline Interpolation of a Finite Signal

In practice the signal f to be interpolated is finite and discrete, i.e., f = (f
i
)0≤i≤K−1 for a given

positive integer K. There exists an infinite number of coefficients (ci)i∈Z satisfying the interpolating
condition (6) for 0 ≤ k ≤ K−1. To insure uniqueness, an arbitrary extension of f outside {0, . . . , K−
1} is necessary. B-spline interpolation theory can then be applied to the extended signal f ∈ RZ.
To simplify the notations in the following, no distinction will be made between the signal f and its
extension f when there is no ambiguity.

Extension on a finite domain. Let x ∈ [0, K−1]. To compute the interpolated value ϕ(n)(x), the
indirect B-spline transform in (3) only requires the ci’s for i ∈

(
x+

]
−n+1

2
, n+1

2

[)
∩Z ⊂ {−ñ, . . . , K−

1+ñ}. In addition, even though the value fk for k ∈ Z contributes to every B-spline coefficient ci, this
contribution vanishes when |k− i| tends to infinity. As presented in the following, to compute ϕ(n)(x)

3Note that [12] provides a recursive algorithm, that is not used in our implementation, for computing these coeffi-
cients.
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with a relative precision ε it is sufficient to extend the signal to a finite domain {−L(n,ε), . . . , K−1 +
L(n,ε)} where L(n,ε) is a positive integer that only depends on the B-spline order n and the desired
precision ε. The precision is relative to the values of the signal. A relative precision of ε means that
the error committed is less than ε supk∈Z |fk| = ε‖f‖∞. In practice the images are large enough so
that L(n,ε) < K and it is possible to express the extension as a boundary condition4 around 0 and
K − 1. The most classical boundary condition choices are summarized in Table 1 and represented in
Figure 2.

Extension Signal abcde
Constant aaa|abcde|eee
Half-symmetric cba|abcde|edc
Whole-symmetric dcb|abcde|dcb
Periodic cde|abcde|abc

Table 1: Classical boundary extensions of the signal abcde by L = 3 values.

(a) Input

(b) Constant (c) Periodic (d) Half-symmetric (e) Whole-symmetric

Figure 2: Classical extensions by L = 5 values of a binary image of size 10 × 10. The boundary of the original image is
colored in red.

Prefiltering computation using the extension. As presented in Algorithm 1, for computing
the B-spline coefficients using the prefiltering decomposition given in (25), only the first exponential
filter h(z1) is applied directly to f = c(0). Therefore, for i ≥ 1 the intermediate filtered signals c(i) are
known a priori only where they are computed. Considering this, the two following approaches are
proposed in order to perform the prefiltering.

• Approach 1 (See Section 3.2.1). The intermediate filtered signals c(i) are computed in a larger
domain than {−ñ, . . . , K − 1 + ñ}. This works with any extension.

• Approach 2 (See Section 3.2.2). The extension, expressed as a boundary condition, is chosen so
that it is transmitted after the application of each exponential filter h(zi). The intermediate
filtered signals c(i) (and the B-spline coefficients c) verify the same boundary condition and
only need to be computed in {0, . . . , K − 1}.

4Otherwise the extension is obtained by iterating the boundary condition.

108



Theory and Practice of Image B-Spline Interpolation

In the rest of this section, we first detail the general method for computing an exponential
filter application on a finite domain. Then we propose two algorithms, corresponding to both above-
mentioned approaches, for computing the B-spline coefficients of a finite signal with a given precision.
Finally we present the simple algorithm for performing the indirect B-spline transform, i.e., for
evaluating the interpolated values.

3.1 Application of the Exponential Filters

Let s ∈ RZ be an infinite discrete signal. Let −1 < α < 0 and Lini < Lend. The application of
the exponential filter h(α) = −αl(α) ∗ k(α) to the signal s is computed in the domain of interest
{Lini, . . . , Lend} as follows.

Causal filtering. To simplify the notation we set s(α) = k(α) ∗ s so that h(α) ∗ s = −αl(α) ∗ s(α).
Given the initialization

s
(α)
Lini

=
(
k(α) ∗ s

)
Lini

=
+∞∑
i=0

αisLini−i, (38)

the application of the causal filter k(α) to s can be computed recursively from i = Lini + 1 to i = Lend

according to the recursion formula
s
(α)
i = si + αs

(α)
i−1. (39)

Anti-causal filtering initialization. With a simple partial fraction decomposition we can rewrite
H(z;α), the Z-transform of h(α) introduced in (17), as

H(z;α) =
α

α2 − 1

(
1

1− αz−1
+

1

1− αz
− 1

)
. (40)

Thus h(α) can also be written as

h(α) =
α

α2 − 1

(
k(α) + l(α) − δ0

)
, (41)

and we have
h(α) ∗ s =

α

α2 − 1

(
k(α) ∗ s+ l(α) ∗ s− s

)
. (42)

This last formula provides5 an expression for the initialization of the (renormalized) anti-causal
filtering, (

h(α) ∗ s
)
Lend

=
α

α2 − 1

(
s
(α)
Lend

+
(
l(α) ∗ s

)
Lend
− sLend

)
, (43)

where (
l(α) ∗ s

)
Lend

=
+∞∑
i=0

αisLend+i. (44)

Anti-causal filtering. The renormalized anti-causal filtering is computed recursively from i =
Lend − 1 to i = Lini according to the following formula,(

h(α) ∗ s
)
i

=
(
−αl(α) ∗ s(α)

)
i

(45)

= −α
(
s
(α)
i + α

(
l(α) ∗ s(α)

)
i+1

)
(46)

= α
((
h(α) ∗ s

)
i+1
− s(α)i

)
. (47)

5It also provides another way of applying the exponential filter that is not considered because of its higher com-
plexity.
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Approximation of the initialization values. The two infinite sums in (38) and (44) cannot be
computed numerically. Let N be a non-negative integer. The initialization values are approximated
by truncating the sums at index N so that

(
k(α) ∗ s

)
Lini
'

N∑
i=0

αisLini−i, (48)

and (
l(α) ∗ s

)
Lend
'

N∑
i=0

αisLend+i. (49)

Algorithm. The general method for computing the application of the exponential filter h(α) to a
discrete signal in a finite domain is summarized in Algorithm 3. Note that it is sufficient to know
the signal in the domain {Lini−N, . . . , Lend +N}. It consists of 6(N + 1) + 4(Lend−Lini) operations.

Algorithm 3: Application of the exponential filter h(α) to a discrete signal

Input : A pole −1 < α < 0, a range of indices Lini < Lend, a truncation index N and a
discrete signal s (whose values are known in {Lini −N, . . . , Lend +N})

Output: The filtered signal h(α) ∗ s at indices {Lini, . . . , Lend}
1 Compute s

(α)
Lini

using (48)

2 for i = Lini + 1 to Lend do

3 Compute s
(α)
i using (39)

4 end

5 Compute
(
l(α) ∗ s

)
Lend

using (49)

6 Compute
(
h(α) ∗ s

)
Lend

using (43)

7 for i = Lend − 1 to Lini do
8 Compute

(
h(α) ∗ s

)
i

using (47)

9 end

3.2 Prefiltering of a Finite Signal

Define (µj)1≤j≤ñ by6 
µ1 = 0

µk =

(
1 + 1

log |zk|
∑k−1

i=1
1

log |zi|

)−1
, 2 ≤ k ≤ ñ.

(50)

Let ε > 0. Define for 1 ≤ i ≤ ñ,

N (i,ε) =

 log
(
ερ(n)(1− zi)(1− µi)

∏ñ
j=i+1 µj

)
log |zi|

+ 1, (51)

where

ρ(n) =

(
ñ∏
j=1

1 + zj
1− zj

)2

. (52)

6The definition of (µj)1≤j≤ñ is justified in Appendix C.3.

110



Theory and Practice of Image B-Spline Interpolation

We propose two algorithms for computing the B-spline coefficients of a finite signal with precision ε.
In both cases they are computed by successively applying the exponential filters to the intermediate
filtered signals using Algorithm 3 with the truncation indices (N (i,ε))1≤i≤ñ. The difference between
both algorithms lies in the computation domains. The choice for the truncation indices guarantees
a precision ε for n ≤ 16, as stated in the next theorem.

Theorem 1. Assume n ≤ 16. Let ε > 0 and f be a finite signal of length at most 4 (arbitrarily
extended to Z). The computation of the B-spline coefficients of f using Algorithm 4 or Algorithm 5
with the truncation indices (N (i,ε))1≤i≤ñ has a precision of ε, i.e., the error committed is less than
ε‖f‖∞.

Proof. See Appendix C.1.

Notice that N (i,ε) = O(log ε), which shows that the truncation indices remain moderate even for
high precision specification ε. However, a problematic factor is log |zi| in the denominator, which
increases the indices when zi is close to −1. This is not unexpected, since a root with modulus close
to 1 involves a slowly decaying exponential filter.

3.2.1 Approach 1: Extended Domain

The first approach for computing the prefiltering coefficients with precision ε consists in computing
the intermediate filtered signals c(i) in a larger domain than {−ñ, . . . , K − 1 + ñ}. For 0 ≤ j ≤ ñ
define

L
(n,ε)
j = ñ+

ñ∑
i=j+1

N (i,ε), (53)

which can be computed recursively using{
L
(n,ε)
ñ = ñ,

L
(n,ε)
j = L

(n,ε)
j+1 +N (j+1,ε), j = ñ− 1 to 0.

(54)

The input signal f = c(0) is first extended to {−L(n,ε)
0 , . . . , K − 1 + L

(n,ε)
0 }. Then, for i = 1 to ñ, c(i)

is computed in {−L(n,ε)
i , . . . , K − 1 +L

(n,ε)
i } from the values of c(i−1) in {−L(n,ε)

i−1 , . . . , K − 1 +L
(n,ε)
i−1 }

using Algorithm 3 with truncation index N (i,ε). The prefiltering algorithm on a larger domain is
presented in Algorithm 4.

3.2.2 Approach 2: Transmitted Boundary Condition

The second approach for computing the prefiltering coefficients with precision ε consists in extending
the input signal with a boundary condition that is transmitted after the application of the exponential
filters. Assume that the c(i) for 0 ≤ i ≤ ñ share the same boundary condition. Then, c(i) can be
computed at any index from the values of c(i−1) in {0, . . . , K−1} using Algorithm 3 (with truncation
index N (i,ε)). Indeed, we notice that the initialization values in (48) and (49) only depend on the
values of c(i−1) in {0, . . . , K − 1}. The prefiltering algorithm with a transmitted boundary condition
is described in Algorithm 5.

Note that the initialization values in (38) and (44) can be expressed as weighted sums of the c
(i−1)
k

for k ∈ {0, . . . , K − 1}, where the weights depend on k, the poles zi and the boundary condition.
For specific boundary conditions the weights, and therefore the initialization values, can be exactly
computed. However these explicit expressions are not used in practice because they involve sums
of K terms, i.e., more computation.
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Algorithm 4: Prefiltering algorithm on a larger domain

Input : A finite discrete signal f of length K, a boundary extension, a B-spline interpolation
order n ≤ 16 and a precision ε

Output: The B-spline coefficients c of order n at indices {−ñ, . . . , K − 1 + ñ} with precision ε
1 Precomputations

2 Compute the poles (zi, z
−1
i )1≤i≤ñ and the normalization coefficient γ(n) = 1

b
(n)
ñ

(Appendix A).

3 for 1 ≤ i ≤ ñ do
4 Compute the truncation index N (i,ε) using (51)
5 end

6 Define L
(n,ε)
ñ = ñ

7 for j = ñ− 1 to 0 do

8 Compute L
(n,ε)
j = L

(n,ε)
j+1 +N (j+1,ε)

9 end
10 Prefiltering the signal:

11 Set c
(0)
k = fk for k ∈ {−L(n,ε)

0 , . . . , K − 1 + L
(n,ε)
0 } using the boundary extension

12 for i = 1 to ñ do

13 Compute c
(i)
k =

(
h(zi) ∗ c(i−1)

)
k

for k ∈ {−L(n,ε)
i , . . . , K − 1 +L

(n,ε)
i } using Algorithm 3 with

truncation index N (i,ε)

14 end

15 Renormalize c = γ(n)c(ñ)

Algorithm 5: Prefiltering algorithm with a transmitted boundary condition

Input : A finite discrete signal f of length K, a boundary condition that is transmitted, a
B-spline interpolation order n ≤ 16 and a precision ε

Output: The B-spline coefficients c of order n at indices {0, . . . , K − 1} with precision ε
1 Precomputations:

2 Compute the poles (zi, z
−1
i )1≤i≤ñ and the normalization coefficient γ(n) = 1

b
(n)
ñ

(Appendix A).

3 for 1 ≤ i ≤ ñ do
4 Compute the truncation index N (i,ε) using (51)
5 end
6 Prefiltering of the signal:

7 Set c
(0)
k = fk for k ∈ {0, . . . , K − 1}

8 for i = 1 to ñ do

9 Compute c
(i−1)
k for k ∈ {−N (i,ε), . . . ,−1} ∪ {K, . . . ,K − 1 +N (i,ε)} using the boundary

condition
10 Compute c

(i)
k =

(
h(zi) ∗ c(i−1)

)
k

for k ∈ {0, . . . , K − 1} using Algorithm 3 with truncation

index N (i,ε)

11 end

12 Renormalize c = γ(n)c(ñ)

Particular cases. Among the four classical boundary extensions presented in Table 1, the periodic,
half-symmetric and whole-symmetric boundary conditions are transmitted after the application of an
exponential filter. For the periodic extension the filtered signal by any filter always remains periodic.
For the half-symmetric and whole-symmetric extensions it is a consequence of the symmetry of
the exponential filters. However, this property is not satisfied for the constant extension, so that
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Algorithm 5 is not applicable in this case.

For the three boundary conditions that are transmitted, the anti-causal initialization value in (43)
can be computed without using (49) as follows. Let s be a finite signal of length K and −1 < α < 0.
We recall that for the two symmetrical extensions the signal is extended to Z by periodization.

• Periodic extension. As s is a K-periodic signal then s(α) = k(α) ∗ s is also K-periodic. Noting
N the truncation index, we can write

(
l(α) ∗ s(α)

)
K−1 '

N∑
i=0

s
(α)
K−1+iα

i (55)

= s
(α)
K−1 + α

N−1∑
i=0

s
(α)
K+iα

i (56)

= s
(α)
K−1 + α

N−1∑
i=0

s
(α)
i αi. (57)

It yields, (
h(α) ∗ s

)
K−1 ' −α

(
s
(α)
K−1 + α

N−1∑
i=0

s
(α)
i αi

)
. (58)

• Half-symmetric extension. For i ≥ 0 we have sK+i = sK−1−i so that we can write

(
l(α) ∗ s

)
K−1 = sK−1 + α

+∞∑
i=0

sK+iα
i (59)

= sK−1 + α
+∞∑
i=0

sK−1−iα
i (60)

= sK−1 + αs
(α)
K−1. (61)

It yields with (43), (
h(α) ∗ s

)
K−1 =

α

α− 1
s
(α)
K−1 =

α

α− 1

(
k(α) ∗ s

)
K−1 . (62)

• Whole-symmetric extension. For i ≥ 0 we have sK+i = sK−2−i so that we can write

(
l(α) ∗ s

)
K−1 = sK−1 + α

+∞∑
i=0

sK+iα
i (63)

= sK−1 + α
+∞∑
i=0

sK−2−iα
i (64)

= sK−1 + αs
(α)
K−2. (65)

It yields with (43),(
h(α) ∗ s

)
K−1 =

α

α2 − 1

(
s
(α)
K−1 + αs

(α)
K−2

)
=

α

α2 − 1

((
k(α) ∗ s

)
K−1 + α

(
k(α) ∗ s

)
K−2

)
. (66)
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In practice, when one of these three boundary conditions is used in Algorithm 5, a slightly different
version of Algorithm 3 is called in Line 9. The boundary extension is added to the input list and the
computation of

(
h(α) ∗ s

)
K−1 (see Line 5 and Line 6) is done using (58), (62) or (66) according to

the extension case. Note that the anti-causal initialization value admits an exact expression for the
two symmetric extensions. As presented in Appendix D exact expressions also hold for the causal
initializations of the three extensions and for the anti-causal initialization with periodic extension.
However they are not considered because they involve more computations.

3.3 Indirect B-spline Transform: Computation of the Interpolated Value

The indirect B-spline transform reconstructs the signal values from the B-spline representation. Given
the B-spline coefficients c in {−ñ, . . . , K − 1 + ñ}, the interpolated value ϕ(n)(x) can be computed
with precision ε, using (3), as the convolution of

∑K−1+ñ
i=−ñ ciδi with the compactly supported function

β(n). The computation of the indirect B-spline transform at location x ∈ [0, K − 1] is presented in
Algorithm 6. Assume the B-spline coefficients are computed with precision ε using either Algorithm 4
or Algorithm 5 then ϕ(n)(x) is also computed with precision ε because

∑
k∈Z β

(n)(x − k) ≤ 1. We
recall that in Algorithm 5 the B-spline coefficients are known in {−ñ, . . . ,−1} ∪ {K, . . . ,K − 1 + ñ}
thanks to the boundary condition.

Algorithm 6: Indirect B-spline transform

Input : A finite discrete signal f of length K, a B-spline interpolation order n, the
corresponding B-spline coefficients c in {−ñ, . . . , K − 1 + ñ} and x ∈ [0, K − 1]

Output: The interpolated value ϕ(n)(x)
1 x0 ← dx− (n+ 1)/2e
2 Initialize ϕ(n)(x)← 0
3 for k = 0 to max(n, 1) do
4 Update ϕ(n)(x)← ϕ(n)(x) + ckβ

(n)(x− (x0 + k))
5 end

The computation of (3) at a point x involves only a finite sum. Noting r = (n+ 1)/2 the radius
of the support of β(n), we have for n ≥ 1

β(x− k) > 0⇔ −r < x− k < r

⇒ dx− re ≤ k ≤ bx+ rc.

In general, we have bx+ rc − dx− re+ 1 = 2r = n+ 1 except when x± r is an integer. In the latter
case, we have only 2r− 2 terms since β(n)(x− .) vanishes at the bounds k = x± r. For n = 0, β(n) is
special because it does not vanish at the bounds of its support, and in that case up to 2 terms are
involved. In any case, we have at most max(1, n) + 1 terms.

4 Extension to Higher Dimensions

The one-dimensional B-spline interpolation theory (Section 2) and practical algorithms (Section 3) are
easily extended to higher dimensions by using tensor-product basis functions. The multi-dimensional
prefiltering is performed by applying the unidimensional prefiltering successively along each dimen-
sion. The indirect B-spline transform is efficiently computed as the convolution with a separable and
compactly supported function.
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4.1 Definitions

Note d the dimension. The Normalized B-spline function of order n is defined in dimension d as
follows.

Definition 4. The Normalized B-spline function of order n and dimension d, noted β(n,d), is defined
for x = (x1, . . . , xd) ∈ Rd by

β(n,d)(x) =
d∏
j=1

β(n)(xj). (67)

Then, the B-spline interpolate of order n of a discrete signal f ∈ RZd
can be naturally defined as

follows.

Definition 5. The B-spline interpolate of order n of a discrete signal f ∈ RZd
is the function

ϕ(n) : Rd 7→ R defined for x ∈ Rd by

ϕ(n)(x) =
∑
i∈Zd

ciβ
(n,d)(x− i), (68)

where the B-spline coefficients c = (ci)i∈Zd are uniquely defined by the interpolation condition

ϕ(n)(k) = fk, ∀k ∈ Zd. (69)

4.2 Prefiltering Decomposition

The B-spline interpolation in dimension d is also a two-step interpolation method. The prefiltering
step is decomposed as follows. Define b(n,d) =

∏d
j=1 b

(n,d,j) where for 1 ≤ j ≤ d and k = (k1, . . . , kd) ∈
Zd, b(n,d,j)k = bkj . Then, the interpolating condition is rewritten as

f = c ∗ b(n,d). (70)

Using the separability of b(n,d) and Z-transform based arguments as in Section 2.2.2, the prefiltering
can be expressed as the filtering

c =
(
b(n,d)

)−1 ∗ f, (71)

where for k = (k1, . . . , kd) ∈ Zd

((
b(n,d)

)−1)
k

=
d∏
j=1

((
b(n)
)−1)

kj
. (72)

The prefiltering filter
(
b(n,d)

)−1
being separable, the B-spline coefficients c can be computed by

filtering f successively along each dimension by
(
b(n)
)−1

. In other words, the multi-dimensional
prefiltering is decomposed in successive unidimensional prefilterings along each dimension.

4.3 Algorithms in 2D

A particular and interesting case is given by d = 2 where the finite discrete signals to be interpo-
lated are images. The B-spline coefficients are obtained by applying successively the unidimensional
prefiltering on the columns and on the rows.
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More precisely, let g ∈ RZ2
and (i, j) ∈ Z2. We denote Cj(g) ∈ RZ the j-th column of g so

that Cj(g)i = gi,j. Similarly, we denote Ri(g) ∈ RZ the i-th row of g so that Ri(g)j = gi,j. Define
ccol(f) ∈ RZ2

, the unidimensional prefiltering of the columns of f , by their columns

Cj(ccol(f)) = Cj(f) ∗ (b(n))−1. (73)

Then, the B-spline coefficients c are given by the unidimensional prefiltering of the lines of ccol i.e.

Ri(c) = Ri(ccol(f)) ∗ (b(n))−1. (74)

In practice the images are finite and an arbitrary extension has to be chosen. Let f be an image
of size K×L. In order to compute interpolated values in [0, K−1]× [0, L−1] the B-spline coefficients
c of f have to be computed in {−ñ, . . . , K−1+ ñ}×{−ñ, . . . , L−1+ ñ}. According to (73) and (74)
it is done by applying Algorithm 4 or Algorithm 5 successively on the columns and on the rows.

Theorem 2. Assume n ≤ 16. Let ε > 0 and f be a finite image of size at most 4 along each dimen-

sion (arbitrarily extended to Z2). Denote ε′ = ερ(n)

2
. The computation of the B-spline coefficients of f

by applying Algorithm 4 or Algorithm 5 successively on the columns and on the rows with truncation
indices (N (i,ε′))1≤i≤ñ (as in Algorithm 8) have a precision of ε.

Proof. See Appendix C.2

Theorem 2 provides a control of the error that is committed during the two-dimensional prefilter-
ing. Note that to insure a precision ε using Algorithm 4, ccol(f) has to be computed in {−ñ, . . . , K−
1+ ñ}×{−L(n,ε′)

0 , . . . , L−1+L
(n,ε′)
0 } i.e. for the columns indexed by j ∈ {−L(n,ε′)

0 , . . . , L−1+L
(n,ε′)
0 }.

In Figure 3 is displayed, for the four classical boundary conditions, the extended image used during
the prefiltering (using Algorithm 4) for a precision of ε = 10−8 i.e. 8 digits and n = 11. The image

is extended of L
(n,ε′)
0 = 125 pixels from its boundary.

The two-dimensional indirect B-spline transform is efficiently performed, as described in Algo-
rithm 7, as a convolution with the separable and compactly supported function β(n,2). Finally, the
two-dimensional B-spline interpolation of an image is presented in Algorithm 8.

5 Numerical Implementation Details

In this section we explain how computations are performed in practice. For any order n, algorithms
for computing the poles along with the normalization constant and evaluating the B-spline function
are detailed.

5.1 Provided Implementation

In the provided implementation of Algorithm 8, the 2D B-spline interpolation can be performed for
0 ≤ n ≤ 16. The order limitation is due to numerical errors in the computation of the poles and the
kernel evaluation. We replace β(n) by n!β(n) and γ(n) by

γ
′(n) =

γ(n)

n!
=

{
2n n even

1 n odd.
, (75)

This prevents numerical errors that could occur when n is large because of the useless renormalization
by n!. The following entities are precomputed:

• the poles (zi)1≤i≤ñ as described in Apprendix A,
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(a) Constant (b) Periodic

(c) Half-symmetric (d) Whole-symmetric

Figure 3: Extended image used during the prefiltering using Algorithm 4 for ε = 10−8 i.e. 8 digits and n = 11. The image

is extended of L
(n,ε′)
0 = 125 pixels from its boundary.

• the normalized B-spline coefficients (Cl,j)0≤l≤ñ,0≤j≤n as described in Section 2.3,

• the normalization constant γ
′(n) defined in (75),

• the truncation indices (N (i,ε′))1≤i≤ñ defined in (51) with ε′ = ρ(n)ε
2

.

The first three items are tabulated for n ≤ 11. For information purposes, B(n), γ(n), γ
′(n) and the

corresponding poles are displayed in Table 2 for 2 ≤ n ≤ 7. Note that the computations are performed
in double-precision floating-point format to prevent from round-off error. Multi-channel images,
and in particular color images, are handled by applying the prefiltering algorithm on each channel
independently, which gives the multi-channel B-spline coefficients. Then, the interpolated values are
computed by applying the indirect B-spline transform to the multi-channel B-spline coefficients.
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Algorithm 7: Two-dimensional indirect B-spline transform

Input : An image f of size K × L, a B-spline interpolation order n, the corresponding
B-spline coefficients c in {−ñ, . . . , K − 1 + ñ} × {−ñ, . . . , L− 1 + ñ} and a location
(x, y) ∈ [0, K − 1]× [0, L− 1]

Output: The interpolated value ϕ(n)(x, y)
1 x0← dx− (n+ 1)/2e
2 for k = 0 to max(1, n) do
3 Tabulate xBuf[k]← β(n)(x− (x0 + k))
4 end

5 Initialize ϕ(n)(x, y)← 0
6 for l = 0 to max(1, n) do
7 y0← dy − (n+ 1)/2e
8 Initialize s← 0
9 for k = 0 to max(1, n) do

10 Update s← s+ cx0+k,y0+l xBuf[k]
11 end

12 Update ϕ(n)(x, y)← ϕ(n)(x, y) + s β(n)(y − (y0 + l))

13 end

Algorithm 8: Two-dimensional B-spline interpolation

Input : An image f of size K × L, an extension method, a B-spline interpolation order
n ≤ 16, a precision ε and a list of pixel locations
(xj, yj)1≤j≤J ∈ ([0, K − 1]× [0, L− 1])J

Output: The interpolated values (ϕ(n)(xj, yj))j∈J (with precision ε)

1 Compute ε′ = ρ(n)e
2

.
2 Compute with precision ε′ the unidimensional prefiltering of the columns of f , noted ccol,

using Algorithm 4 or Algorithm 5
3 Compute with precision ε′ the unidimensional prefiltering of the rows of ccol, noted c, using

Algorithm 4 or Algorithm 5
4 for j = 1 to J do
5 Compute, from the B-spline coefficient c, the interpolated value ϕ(n)(xj, yj) using

Algorithm 7
6 end

Homographic transformation. In the field of computer vision homographies [7, 13] are widely
used to relate images of a scene assimilable to planar surfaces (or when the camera motion is a
rotation around the optical center). As a fundamental application of Algorithm 8 we provide an
implementation of homographic (or projective) transformation of images. Given a 2D homography
h and an image f of size K × L, the homographic transformation of f by h is the image fh of size
K ′ × L′ verifying

∀(i, j) ∈ {0, . . . , K ′ − 1} × {0, . . . , L′ − 1}, (fh)i,j = f
(
h−1(i, j)

)
. (76)

It is done by applying Algorithm 8 at locations (h−1(i, j))(i,j)∈{0,...,K′−1}×{0,...,L′−1}. In the provided
implementation the output image has the same size as the input, i.e., K ′ = K and L′ = L. If the
location h−1(i, j) does not belong to [0, K − 1]× [0, L− 1] the value (fh)i,j is arbitrarily set to 0 to
avoid extrapolation. The implementation inputs are:

• an image f ,
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n B(n) poles
2 (z−1 + 6 + z)/8 −0.1715728752538099
3 (z−1 + 4 + z)/6 −0.26794919243112281
4 (z−2 + 76z−1 + 230z + 76z + 1)/384 −0.36134122590021989

−0.013725429297339109
5 (z−2 + 26z−1 + 66z + 26z + 1)/120 −0.4305753470999743

−0.043096288203264443
6 (z−3 + 722z−2 + 10543z−1 + 23548 + 10543z + 722z2 + z3)/46080 −0.48829458930303893

−0.081679271076238694
−0.0014141518083257976

7 (z−3 + 120z−2 + 1191z−1 + 2416 + 1191z + 120z2 + z3)/5040 −0.53528043079643672
−0.12255461519232777
−0.0091486948096082266

Table 2: B(n) and the (approximate values of the) poles for 2 ≤ n ≤ 7.

• a homography h,

• a B-spline order n ∈ {0, . . . , 16},

• one of the four classical extensions of Table 1,

• a desired precision ε,

• a choice between the two proposed prefiltering algorithms (larger or exact domain).

5.2 Online Demo

This article is accompanied by an online demo where the user can upload an image and apply to
it an homographic transformation. The choice of the homography is made by selecting the images
of the four corners of the image. In Figure 4 we display an example of the online demo use which
corresponds to the homographic transformation of the 512× 512 Lena image by the homography h
defined by 

h(0, 0) = (25, 13)

h(0, 511) = (11, 500)

h(511, 0) = (480, 12)

h(511, 511) = (468, 482).

(77)

We recall that the pixels outside [0, 511]2 are arbitrarily set to 0.

6 Experiments

In this section we make several experiments using Algorithm 8. The input image used is a standard
test image, Lena, a gray-level image of size 512× 512.

6.1 Computational Cost

The computational cost of the B-spline interpolation depends on the order n, the size of the input
signal (and its dimension), the desired precision ε and the number of interpolated values. The
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Figure 4: Example of the online demo use. The Lena image is transformed by the homography h defined in (77). We use
order 11, the half-symmetric boundary condition, ε = 10−6 and the exact domain.

total length of the extension has a dependency with respect to n and ε that is not straightforward
so that it is difficult to express the complexity of the prefiltering step in general. It is given by

2L
(n,ε)
0 = 2

(
ñ+

∑ñ
i=1N

(i,ε)
)

in dimension one and 2L
(n,ε′)
0 in dimension two. We display in Table 3

and Table 4 the values of 2L
(n,ε)
0 and 2L

(n,ε′)
0 for different order and precision values. We notice that

the values are slightly greater in dimension two. Assuming that the length of the extension has the
same order of magnitude as the input length we obtain in dimension one and two the complexities,
independent of ε, presented in Table 5. The complexity of the indirect B-spline transform corresponds
to the computation of a single interpolated value.

We verified empirically how the computation time of each step depends on the B-spline order n for
a homographic transformation. As it depends neither on the extension choice nor on the homography,
we took the half-symmetric extension and the identity. In Figure 5 we display the computation times
for ε = 10−6. The prefiltering in the larger domain is more costly than the prefiltering in the same
domain and the difference increases with the order. However in any case the prefiltering cost remains
negligible with respect to the indirect B-spline transform cost. The strong increase between n = 11
and n = 12 in the indirect B-spline transform cost comes from the non-tabulation of the kernel.
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n \ ε 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

2 8 12 14 16 20 22 24 28 30 32 34
3 12 14 18 22 26 28 32 36 40 42 46
4 18 24 30 36 40 46 52 58 62 68 74
5 22 28 34 42 48 56 62 70 76 84 90
6 30 38 46 56 66 74 82 90 100 110 118
7 32 42 54 64 76 84 96 106 116 126 138
8 40 54 66 78 90 104 116 130 140 154 166
9 46 58 72 90 102 116 130 144 162 172 188
10 54 68 88 104 118 134 152 168 186 202 218
11 58 76 94 110 132 148 168 188 204 222 242

Table 3: Total length of extension 2L
(n,ε)
0 for unidimensional signals in function of the order n and the precision ε.

n \ ε 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

2 10 14 16 18 20 24 26 28 32 34 36
3 14 18 22 24 28 32 36 38 42 46 48
4 20 26 30 38 42 48 52 60 64 70 76
5 24 32 38 44 52 58 64 72 80 86 92
6 32 40 48 58 68 76 86 94 106 112 120
7 36 48 56 68 78 88 98 110 120 132 142
8 44 56 70 80 96 110 120 132 144 158 172
9 50 64 78 92 106 122 134 150 164 180 192
10 56 76 90 108 126 140 158 172 190 206 222
11 64 82 100 118 138 154 172 190 210 228 246

Table 4: Total length of extension 2L
(n,ε′)
0 for two-dimensional signals in function of the order n and the precision ε.

1D 2D
Prefiltering O(nK) O(2nKL)
Indirect B-spline transform O(n2) O(n3)

Table 5: Complexity of the B-spline interpolation algorithms for a signal of length K or an image of size K ×L using order
n. The complexity of the indirect B-spline transform corresponds to the computation of a single interpolated value.

6.2 Computation Error

The computation error committed during the prefiltering step is estimated by checking if the inter-
polation condition (69) is verified. In practice it is done by comparing the initial image f with its
homographic transformation by the identity fId.

We lead the computations for:

• the four boundary extensions of Table 1,

• any order n ∈ {2, . . . , 16},

• any precision ε ∈ {10−2, . . . , 10−12},

• the two prefiltering algorithms (only on the larger domain for the constant extension).

In all cases the computation error is less than ε i.e. ‖f − fId‖∞ ≤ ε. It empirically shows that the
result of Theorem 2 is verified.
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Figure 5: Computation time of the different B-spline interpolation steps for a homographic transformation of the 512× 512
gray-level image Lena with ε = 10−6. The jump between n = 11 and n = 12 is due to the kernel not being tabulated in
the code above order 11.

Which precision ε should be used? There is no recommended choice for ε because it depends
on the context of application. There is clearly a trade-off between precision and computational cost.
As the prefiltering step cost is negligible with respect to the indirect B-spline transform cost (see
previous section) when a large amount of pixel values are interpolated, the computational cost aspect
should not be taken into account by the user. For instance if the interpolated values are stored in
single-precision floating-point format, the value ε = 10−6 should be considered.

6.3 Zoom at the Boundary

By zooming at one of the boundaries of an image using the B-spline interpolation we are able to
highlight the influence of the boundary extension. We performed a zoom by a factor 20 using various
orders and boundary conditions. It is computed using ε = 10−6 and the prefiltering is done on
a larger domain. In Figure 6 we display a small part of size 256 × 256 of the zoomed images that
corresponds to the center of the right boundary. We see more and more details as the order increases.
The boundary condition influence can be seen by comparing the right part of images. As an example
we display in Figure 7 the comparison between the small images corresponding to order 16.

6.4 Evolution of the Results with the Order of Interpolation

In this part, we analyze experimentally the evolution of the B-spline interpolation results with the
order n. It is commonly admitted that the results of the cubic (n = 3) B-spline interpolation
are sufficient and that increasing the order does not lead to significant improvements. We show
the contrary and recommend, except when efficiency is primordial, to use a higher order B-spline
interpolation. In the following, the computations are done using ε = 10−6 and the prefiltering on a
larger domain.

6.4.1 Comparison to the Shannon-Whittaker Interpolation

The B-spline interpolation approaches the Shannon-Whittaker interpolation when the order goes to
infinity [2]. We empirically highlight this result by comparing the homographic transformations of
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(a) Order 0 and order 1

(b) Order 3

(c) Order 16

Figure 6: Zoom by a factor 20 (crop of size 256 × 256 centered in the middle of the right boundary) using B-spline
interpolation for various orders and boundary conditions. It is computed using ε = 10−6 and the prefiltering on a larger
domain. From the left to the right we use the constant, half-symmetric, whole-symmetric and periodic extension. For
orders 0 and 1 the result are the same with the four extensions. We see more and more details as the order increases. The
boundary condition influence can be seen by comparing the right part of images. The affine transformation y = 9x− 1080
is applied to these images before visualization.

(a) Half-symmetric (b) Difference with
constant

(c) Difference with
whole-symmetric

(d) Difference with pe-
riodic

Figure 7: Comparison between the results of Figure 6 for order 16. The difference is made with the half-symmetric extension
result. The affine transformation y = 22x+ 154 is applied to the difference images before visualization.
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the Lena image by h (defined by (77)) obtained using respectively the B-spline interpolation and
the Shannon-Whittaker interpolation. The comparison is done by computing the root mean square
error (RMSE) between the central parts of the two resampled images. As the boundary extension
choice has no influence we choose the periodic extension. The Shannon-Whittaker interpolate is then
a trigonometric polynomial whose coefficients are obtained thanks to the discrete Fourier transform
(DFT) coefficients [1]. It is sampled at locations h−1(i, j) using the nonequispaced fast Fourier
transform (NFFT) algorithm [10], which is a much slower algorithm than the B-spline interpolation.
The decay of the error difference with the order n is visible in Figure 8.
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Figure 8: Decay of the difference between the Shannon-Whittaker interpolation and the B-spline interpolation for n ∈
{0, . . . , 16}.

6.4.2 Consistency of the B-spline Interpolation

In order to study the consistency of the B-spline interpolation we applied ten shifts of 0.1 pixels (in
the horizontal direction) and then one shift of −1 pixel. The consistency measurement is then given
as the RMSE between the central parts of the initial and output images. As in practice the boundary
condition influence on this measurement is negligible, we arbitrarily chose to use the half-symmetric
boundary condition. The decay of the consistency measurement with the order n is displayed in
Figure 9. It justifies the choice of a high order B-spline interpolation (n = 11 for instance) while it is
commonly admitted that the cubic B-spline interpolation is sufficient. Note that the computational
error is negligible with respect to the model error. In Figure 10 we display for n ∈ {0, 1, 3, 16} the
central parts of the difference images and the corresponding discrete Fourier transform modulus. The
differences are localized in the high frequencies were the model error is higher. For n = 0 it’s exactly
the gradient of the image.

124



Theory and Practice of Image B-Spline Interpolation

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Order

C
o
n
s
is

te
n
c
y
 m

e
a
s
u

re
m

e
n

t 
(R

M
S

E
)

Figure 9: Decay of the error for the interpolation order n ∈ {0, . . . , 16} when performing ten successive translations by
0.1 pixel of an image and finally compensating with a −1 pixel translation. It justifies the choice of a high order B-spline
interpolation (n = 11 for instance) while it is commonly admitted that the cubic B-spline interpolation is sufficient. Note
that the computational error is negligible with respect to the model error.

(a) Order 0 (b) Order 1

(c) Order 3 (d) Order 16

Figure 10: Central parts of the difference images for the consistency tests and the corresponding (unnormalized) discrete
Fourier transform modulus (in logarithmic scale u 7→ log(1 + u)) for n ∈ {0, 1, 3, 16}. The differences are localized in the
high frequencies were the model error is higher. For n = 0 it is exactly the gradient of the image. We added 128 to the
difference images and multiplied the spectrum modulus by 30 before visualization.
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6.4.3 Comparison between Different Orders

We also compared the B-spline interpolation results for different orders. As in Section 6.4.1, we
computed the homographic transformations of the Lena image by h (defined by (77)) for different
orders. The resampled images are compared to the one corresponding to the maximal order available,
i.e., n = 16. The comparison is done by computing the RMSE between the central parts of the
images. As the boundary extension choice has no influence we chose the half-symmetric extension.
The decay of the difference with the order n is visible in Figure 11. The average difference for the
cubic B-spline is around one gray level and is three times smaller for order 11. In Figure 12 we
display for n ∈ {1, 3, 11, 15} the central parts of the resampled images and of the difference images
(with the corresponding discrete Fourier transform modulus). As the order increases the resampled
image becomes sharper. The interpolation kernel becomes closer to the cardinal sine so that less
high-frequency content is attenuated.

0 2 4 6 8 10 12 14 16

Order

0

1

2

3

4

5

6

D
if
fe

re
n

c
e

 w
it
h
 o

rd
e

r 
1

6
 (

R
M

S
E

)

Figure 11: Decay of the difference between the B-spline interpolation of order n ∈ {0, . . . , 16} and the one of order 16. The
comparison is done by computing the RMSE between the central parts of the images. As the boundary extension choice
has no influence we chose the half-symmetric extension. The average difference for the cubic B-spline is around one gray
level and is three times smaller for order 11.
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(a) Order 1

(b) Order 3

(c) Order 11

(d) Order 15

Figure 12: Comparison between resampled images obtained using n ∈ {0, 1, 3, 15} and the one using n = 16. Only the
central parts of the resampled image (left) and of the difference image (center) are shown. The right image is 30 times
the (unnormalized) discrete Fourier transform modulus (in logarithmic scale u 7→ log(1 + u)) of the difference. The affine
transformation y = 50x+ 128 is applied to the difference images before visualization. As the order increases the resampled
image becomes sharper. The interpolation kernel becomes closer to the cardinal sine so that less high-frequency content is
attenuated.
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7 Conclusion

In this paper we presented the theory and practice to perform B-spline interpolation for any order,
in particular in the case of images. It is based on the seminal two-step method proposed by Unser
et al. in 1991 that uses linear filtering and for which the computational error is not controlled and
the boundary extension is fixed.

The two proposed prefiltering algorithms require additional computations to handle correctly any
boundary extension. We proved theoretically and experimentally that the computational errors are
controlled (up to dimension two). The first algorithm is general and works for any boundary extension
while the second is applicable under specific assumptions. The global interpolation algorithm remains
efficient because the computational cost increases slowly with the precision (which can be set to the
single precision in most of the applications).

In an experimental part we showed that increasing the order of the B-spline interpolation improves
the interpolation quality. When efficiency is not primordial, a high order B-spline interpolation must
be preferred to cubic B-spline interpolation.

In addition, we provide a detailed description, and the corresponding implementation, of how to
evaluate the B-spline kernel and to compute the B-spline interpolator parameters. As a fundamental
application we also provide an implementation of homographic transformation of images using B-
spline interpolation.
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A Practical Computation of the Poles and the Normaliza-

tion Constant

A.1 Computation of the Polynomial Coefficients

As expressed in (25), the prefiltering step requires the knowledge of the normalization constant
γ(n) = 1

b
(n)
ñ

and of the poles of order n introduced in (13). Theses poles correspond to the roots in

]− 1, 0[ of the (palindromic) polynomial B̃(n) of degree 2ñ defined for z ∈ C by

B̃(n)(z) = zñB(n)(z) = b
(n)
0 zñ +

ñ∑
i=1

b
(n)
i (zñ+i + zñ−i). (78)

The coefficients (b
(n)
k )0≤k≤ñ =

(
β(n)(k)

)
0≤k≤ñ being given, the poles can be approximated numerically

using a polynomial equation solver. The coefficients themselves can be computed directly thanks
to the explicit formula given in (27) but a more efficient computation based on a recursive formula
which only involves simple additions and multiplications is preferred. Indeed, for m ≥ 1 βm verifies
the following identity (proven in Section A.3) for x ∈ R,

mβ(m)(x) =

(
m+ 1

2
+ x

)
β(m−1)

(
x+

1

2

)
+

(
m+ 1

2
− x
)
β(m−1)

(
x− 1

2

)
. (79)

Setting for simplicity d
(m)
k = β(m)

(
k + 1

2

)
for k ∈ Z, we have

mb
(m)
k =

(
m+ 1

2
+ k

)
d
(m−1)
k +

(
m+ 1

2
− k
)
d
(m−1)
k−1 (80)

md
(m)
k =

(
m+ 2

2
+ k

)
b
(m−1)
k+1 +

(m
2
− k
)
b
(m−1)
k . (81)

Define m̃ =
[
m
2

]
. As b

(m)
m̃+1 = 0 and d

(m)
−1 = d

(m)
0 we can compute the coefficients (b

(n)
k )0≤k≤ñ recursively

using Algorithm 9. In particular, it is possible to obtain an explicit expression of γ(n) = 1

b
(n)
ñ

as a

Algorithm 9: Polynomial coefficients computation

Input : The B-spline order n
Output: The coefficients (b

(n)
k )0≤k≤ñ of B̃(n)

1 Initialize with b
(0)
0 = 1 and d

(0)
0 = 1

2

2 for m = 1 to n− 1 do
3 Define m̃ =

[
m
2

]
4 for k = 0 to m̃ do

5 Compute b
(m)
k using (80)

6 Compute d
(m)
k using (81)

7 end

8 end
9 for k = 0 to ñ do

10 Compute b
(n)
k using (80)

11 end

function of n.

129



Thibaud Briand, Pascal Monasse

A.2 Explicit Expression of the Normalization Constant

Proposition 2. We have

γ(n) =

{
2nn! n even

n! n odd.
(82)

Proof. Assuming n ≥ 2 and applying (80) to k = ñ and m = n we get

b
(n)
ñ =

1

n

(
n+ 1

2
− ñ

)
d
(n−1)
ñ−1 . (83)

Similarly, applying (81) to k = ñ− 1 and m = n− 1 we get

d
(n−1)
ñ−1 =

1

n− 1

(
n+ 1

2
− ñ

)
b
(n−2)
ñ−1 . (84)

As ñ− 1 = ñ− 2 we obtain the recursive equation

b
(n)
ñ =

1

n(n− 1)

(
n+ 1

2
− ñ

)2

b
(n−2)
ñ−2

. (85)

Now let n ≥ 0. Noting that b
(0)

0̃
= b

(1)

1̃
= 1 and

m+ 1

2
− m̃ =

{
1
2

m even

1 m odd,
(86)

we finally have the following explicit expression for b
(n)
ñ ,

b
(n)
ñ =

{
1

2nn!
n even

1
n!

n odd.
(87)

It is a direct consequence of Proposition 2 that γ(n)B̃(n) is a polynomial with integer coefficients.
Indeed, let j ∈ Z. Combining (27) at location x = j with (82), we obtain b

(n)
j = b

(n)
ñ a

(n)
j where

a
(n)
j =

{∑n+1
i=0

(
n+1
i

)
(−1)i (2(j − i) + n+ 1)n+ , n even∑n+1

i=0

(
n+1
i

)
(−1)i

(
j − i+ n+1

2

)n
+
, n odd.

(88)

Thus a
(n)
j =

b
(n)
j

b
(n)
ñ

∈ Z. Actually it is a non-negative integer since β(n) is non-negative. This property

justifies why the expression of B(n) in Table 2 only involves integers. However it is not used in
practice because the renormalization by γ(n) may introduce numerical errors for n large.

A.3 Proof of the Recursive Identity (79)

For n = 1, the verification of (79) is straightforward using the explicit expression

β(1)(x) =

{
1− |x|, |x| ≤ 1

0, |x| > 1.
(89)
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To proceed with a recursive proof, assume the identity is verified up to n ≥ 1. Then we can write

β(n+1)(x) =

∫ 1/2

−1/2
β(0)(y)β(n)(x− y) dy, (90)

and integrating by parts we get

β(n+1)(x) =
[
yβ(n)(x− y)

]1/2
−1/2 +

∫ 1/2

−1/2
yβ(n)′(x− y) dy

=
1

2

(
β(n)(x+

1

2
) + β(n)(x− 1

2
)

)
+

∫
R
β(0)(y)yβ(n)′(x− y) dy. (91)

For n = 1, β(1)′ is defined everywhere except at x ∈ {−1, 0, 1}, but from the point of view of
integration we can ignore this defect and write

β(1)′(x) =


1, −1 < x < 0

−1, 0 < x < 1

0, |x| > 1,

= β(0)(x+
1

2
)− β(0)(x− 1

2
). (92)

Now for n ≥ 2, using (1) we have

β(n)′(x) =
(
β(n−2) ∗ β(1)′

)
(x) =

∫
β(n−2)(y)β(1)′(x− y) dy

=

∫
β(n−2)(y)β(0)(x+

1

2
− y) dy −

∫
β(n−2)(y)β(0)(x− 1

2
− y) dy

= β(n−1)(x+
1

2
)− β(n−1)(x− 1

2
), (93)

so that according to (92), this equation is also valid for n = 1.7 Therefore∫
β(0)(y)yβ(n)′(x− y) dy =

∫
β(0)(y)y

(
β(n−1)(x+

1

2
− y)− β(n−1)(x− 1

2
− y)

)
dy. (94)

But the recursivity assumption at location x− y can be rewritten

y

(
β(n−1)(x+

1

2
− y)− β(n−1)(x− 1

2
− y)

)
= x

(
β(n−1)(x+

1

2
− y)− β(n−1)(x− 1

2
− y)

)
+
n+ 1

2

(
β(n−1)(x+

1

2
− y) + β(n−1)(x− 1

2
− y)

)
− nβ(n)(x− y). (95)

Combining (94) and (95), and then coming back to (91), we can write

β(n+1)(x) =

(
n+ 1

2
+

1

2

)(
β(n)(x+

1

2
) + β(n)(x− 1

2
)

)
+ xβ(n)(x+

1

2
)− xβ(n)(x− 1

2
)− nβ(n+1)(x), (96)

which yields after rearrangement of the terms

(n+ 1)β(n+1)(x) =

(
(n+ 1) + 1

2
+ x

)
β(n)(x+

1

2
) +

(
(n+ 1) + 1

2
− x
)
β(n)(x− 1

2
), (97)

exactly (79) at n+ 1.

7This could also be shown more concisely using distributions by the observation that β(0)′ = δ−1/2 − δ1/2.
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B Explicit Formula for the B-spline Function

We show by induction on order n the explicit formula (27) of the B-spline function β(n). For n = 1,
we have the four cases for the right hand side of (27):

0 + 0 + 0 = 0 if x < −1 since x− i+ 1 < 0 for i = 0, 1, 2.

(x+ 1)+ + 0 + 0 = x+ 1 if − 1 ≤ x ≤ 0.

(x+ 1)− 2x+ 0 = 1− x if 0 ≤ x ≤ 1.

(x+ 1)− 2x+ (x− 1) = 0 if 1 ≤ x.

We recognize the function max(0, 1− |x|). On the other hand, we have

β(1)(x) =

∫
β(0)(y)β(0)(x−y) dy =

(∫ min(1/2,x+1/2)

max(−1/2,x−1/2)
dy

)
+

= (1+min(0, x)−max(0, x))+ = (1−|x|)+,

which justifies (27) for n = 1. To proceed with the induction, let us first consider the function
pn(x) = (x)n+ and compute

pn ∗ β(0)(x) =

∫ +∞

0

ynβ(0)(x− y) dy =

∫ (x+1/2)+

(x−1/2)+
yn dy =

1

n+ 1

(
(x+

1

2
)n+1
+ − (x− 1

2
)n+1
+

)
.

Now, assuming (27) holds for some n ≥ 1, we get

β(n+1)(x) =
1

n!

n+1∑
i=0

(−1)i
(
n+ 1

i

)
pn ∗ β(0)

(
x− i+

n+ 1

2

)

=
1

(n+ 1)!

n+1∑
i=0

(−1)i
(
n+ 1

i

)((
x− i+

(n+ 1) + 1

2

)n+1

+

−
(
x− (i+ 1) +

(n+ 1) + 1

2

)n+1

+

)

=
1

(n+ 1)!

n+1∑
i=0

(−1)i
(
n+ 1

i

)(
x− i+

(n+ 1) + 1

2

)n+1

+

+

1

(n+ 1)!

n+2∑
i=1

(−1)i
(
n+ 1

i− 1

)(
x− i+

(n+ 1) + 1

2

)n+1

+

=
1

(n+ 1)!
(−1)0

(
n+ 2

0

)(
x− 0 +

(n+ 1) + 1

2

)n+1

+

+

1

(n+ 1)!

n+1∑
i=0

(−1)i
((

n+ 1

i

)
+

(
n+ 1

i− 1

))(
x− i+

(n+ 1) + 1

2

)n+1

+

+

1

(n+ 1)!
(−1)n+2

(
n+ 2

n+ 2

)(
x− (n+ 2) +

(n+ 1) + 1

2

)n+1

+

=
1

(n+ 1)!

n+2∑
i=0

(−1)i
(
n+ 2

i

)(
x− i+

(n+ 1) + 1

2

)n+1

+

.

The third equality is obtained by changing index i to i + 1, and the last one using the identity(
n+1
i

)
+
(
n+1
i−1

)
=
(
n+2
i

)
. Thus, we get the explicit formula (27) at index n+ 1.
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C Truncation Indices

C.1 Proof of Theorem 1

In Algorithm 4 and Algorithm 5, the output error comes from the truncation of the initialization
sums during the application of the exponential filters. Each truncation introduces an error that
propagates to the following computations. To prove Theorem 1 we state and prove a more general
theorem which provides a control of the error incurring after each application of an exponential filter.

Given N , a non-negative integer, Lini < Lend two integers, and s ∈ RZ, we define the truncated
signal TN,Lini,Lend

(s) by

∀k ∈ Z, TN,Lini,Lend
(s)k =

{
sk Lini −N ≤ k ≤ Lend +N,

0 otherwise.
(98)

We recall that f denotes the input finite signal of length K and ε > 0 the output precision.
Instead of computing the intermediate filtered signals (c(i))0≤i≤ñ, in Algorithm 4 and Algorithm 5 we
compute the (p(i))0≤i≤ñ defined by{

p(0) = f,

p(i) = h(zi) ∗ T
N(i,ε),L

(i,ε)
ini ,L

(i,ε)
end

(p(i−1)) for 1 ≤ i ≤ ñ,
(99)

where

L
(i,ε)
ini =

{
−L(n,ε)

i in Algorithm 4,

0 in Algorithm 5,
(100)

and

L
(i,ε)
end =

{
K − 1 + L

(n,ε)
i in Algorithm 4,

K − 1 in Algorithm 5.
(101)

For 0 ≤ i ≤ ñ, we can write p(i) = c(i) + e(i) where e(i) is the error committed at step i. Finally
the computed coefficients are p = γ(n)p(ñ) = c(ñ) + γ(n)e(ñ). Note that the filtered signals are implic-
itly extended outside their computational domains (by zeros in Algorithm 4 and by the boundary
condition in Algorithm 5).

Lemma 1. Let s ∈ RZ and −1 < α < 0. Let g ∈ RZ be a perturbation. Let N be a non-negative
integer and Lini < Lend be two integers. Define s′ = TN,Lini,Lend

(s+g) and the error e = h(α) ∗ (s′−s).
Then,

‖e‖∞ ≤ Cα
(
(1− α) ‖g‖∞ + |α|N+1

(
1 + |α|Lend−Lini

)
‖s‖∞

)
, (102)

where

Cα =
−α

(1− α2)(1 + α)
. (103)

Proof of Lemma 1. With (41) we can write

e =
α

α2 − 1

k(α) ∗ (s′ − s)︸ ︷︷ ︸
causal part

+ l(α) ∗ (s′ − s)︸ ︷︷ ︸
anticausal part

−(s′ − s)

 (104)

Now, let us evaluate ei for Lini ≤ i ≤ Lend. First, by definition of s′, (s′ − s)i = gi. Then we deal
with the causal and anti-causal part of (104).
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Causal part. With the adequate change of indices we have(
k(α) ∗ (s′ − s)

)
i

=
∞∑
j=0

αj(s′ − s)i−j (105)

=
i∑

j=−∞

αi−j(s′ − s)j (106)

= αi

(
i∑

j=Lini−N

α−jgj −
Lini−N−1∑
j=−∞

α−jsj

)
. (107)

Anticausal part. Similarly we have(
l(α) ∗ (s′ − s)

)
i

=
∞∑
j=0

αj(s′ − s)i+j (108)

=
∞∑
j=i

αj−i(s′ − s)j (109)

= α−i

(
Lend+N∑
j=i

αjgj −
∞∑

j=Lend+N+1

αjsj

)
. (110)

Finally,

ei =
α

α2 − 1

αi
i−1∑

j=Lini−N

α−jgj + α−i
Lend+N∑
j=i

αjgj︸ ︷︷ ︸
previous error

−αi
Lini−N−1∑
j=−∞

α−jsj − α−i
∞∑

j=Lend+N+1

αjsj︸ ︷︷ ︸
initialization error

 . (111)

By the triangular inequality we obtain the four upper-bounds∣∣∣∣∣
i−1∑

j=Lini−N

α−jgj

∣∣∣∣∣ ≤ |α|N−Lini
1− |α|−(i−Lini+N)

1− |α|−1
‖g‖∞ = −α |α|

−i − |α|N−Lini

1 + α
‖g‖∞, (112)

∣∣∣∣∣
Lend+N∑
j=i

αjgj

∣∣∣∣∣ ≤ |α|i1− |α|Lend+N−i+1

1− |α|
‖g‖∞ =

|α|i − |α|Lend+N+1

1 + α
‖g‖∞, (113)

∣∣∣∣∣
Lini−N−1∑
j=−∞

α−jsj

∣∣∣∣∣ ≤ |α|N+1−Lini

1 + α
‖s‖∞, (114)

∣∣∣∣∣
∞∑

j=Lend+N+1

αjsj

∣∣∣∣∣ ≤ |α|N+1+Lend

1 + α
‖s‖∞. (115)

Thus,

|ei| ≤ Cα
(
‖g‖∞

[
1− α

(
1− |α|N−Lini+i − |α|N+Lend−i

)]
+ ‖s‖∞|α|N+1

(
|α|i−Lini + |α|Lend−i

))
(116)

Using the relation |α|i−Lini + |α|Lend−i ≤ 1 + |α|Lend−Lini and by removing the negative terms we get
the following upper-bound that is independent of i,

‖e‖∞ ≤ Cα
(
(1− α) ‖g‖∞ + |α|N+1

(
1 + |α|Lend−Lini

)
‖s‖∞

)
. (117)
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For 0 ≤ i ≤ ñ, define D(i) and ε(i) by

D(i) =
i∏

j=1

−zj
(1 + zj)2

, (118)

and

ε(i) = ερ(n)D(i)

ñ∏
j=i+1

µj. (119)

We recall that the (µj)1≤j≤ñ are defined in (50). Lemma 1 provides a control of the error when an
exponential filter is applied to a signal whose values may be perturbed by a small error and where
the initialization sums are truncated. We deduce from it the following theorem.

Theorem 3. Assume n ≤ 16 and K ≥ 4. For 0 ≤ i ≤ ñ, we have

‖e(i)‖∞ ≤ ε(i)‖f‖∞. (120)

To prove this theorem we need the two following lemmas.

Lemma 2. For 0 ≤ l ≤ ñ, we have

‖c(l)‖∞ ≤ D(l)‖f‖∞. (121)

Proof of Lemma 2. Let s ∈ RZ and −1 < α < 0. Applying the triangular inequality in (42) we get

‖h(α) ∗ s‖∞ ≤
α

α2 − 1

1− α
1 + α

|s|∞ =
−α

(1 + α)2
‖s‖∞. (122)

The result is proven by successively applying this inequality to c(j) and zj for 1 ≤ j ≤ l.

Define θ : (x,m) ∈]− 1, 0[×N 7→ − log(1+|x|m)
log |x| .

Lemma 3. For x > −0.75 and m ≥ 4 we have θ(x,m) < 1.

Proof of Lemma 3. θ is a decreasing function with respect to its variables and θ(−0.75, 4) < 1.

Proof of Theorem 3. The result is proved by induction.

• Base case. For i = 0 we have e(0) = 0 and because µ1 = 0, ε(0) = 0. Thus, ‖e(0)‖∞ = ε(0)‖f‖∞.

• Inductive step. For 1 ≤ i ≤ ñ, assume ‖e(i−1)‖∞ ≤ ε(i−1)‖f‖∞. Then we prove that ‖e(i)‖∞ ≤
ε(i)‖f‖∞ as follows.

Applying Lemma 1 to s = c(i−1), α = zi, g = e(i−1), N = N (i,ε), Lini = L
(i,ε)
ini and Lend = L

(i,ε)
end

we get

‖e(i)‖∞ ≤ Czi

(
(1− zi)‖e(i−1)‖∞ + |zi|N

(i,ε)+1
(

1 + |zi|L
(i,ε)
end −L

(i,ε)
ini

)
‖c(i−1)‖∞

)
. (123)

Using the induction hypothesis and Lemma 2 with l = i− 1 we have

‖e(i)‖∞ ≤ η(i,ε)‖f‖∞, (124)

where
η(i,ε) = Czi

(
(1− zi)ε(i−1) + |zi|N

(i,ε)+1
(

1 + |zi|L
(i,ε)
end −L

(i,ε)
ini

)
D(i−1)

)
. (125)
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Noting that for n ≤ 16 the poles are greater than −0.75, we have by definition of N (i,ε) and
with Lemma 3 applied to x = zi > −0.75 and m = L

(i,ε)
end − L

(i,ε)
ini ≥ 4,

N (i,ε) + 1 ≥
log
(
ερ(n)(1− zi)(1− µi)

∏ñ
j=i+1 µj

)
log |zi|

+ 1 (126)

≥
log
(
ερ(n)(1− zi)(1− µi)

∏ñ
j=i+1 µj

)
log |zi|

+ θ
(
zi, L

(i,ε)
end − L

(i,ε)
ini

)
(127)

≥
log
(
ερ(n)(1− zi)(1− µi)

∏ñ
j=i+1 µj

)
− log

(
1 + |zi|L

(i,ε)
end −L

(i,ε)
ini

)
log |zi|

. (128)

The previous relation is equivalent to

|zi|N
(i,ε)+1

(
1 + |zi|L

(i,ε)
end −L

(i,ε)
ini

)
≤ ερ(n)(1− zi)(1− µi)

ñ∏
j=i+1

µj (129)

=
(1− zi)ε(i)

D(i)
− (1− zi)ε(i−1)

D(i−1) . (130)

Finally,

η(i,ε) ≤ Czi
D(i−1)

D(i)
(1− zi)ε(i) =

−zi(1 + zi)
2(1− zi)

−zi(1− z2i )(1 + zi)
ε(i) = ε(i), (131)

and using (124) we obtain ‖e(i)‖∞ ≤ ε(i)‖f‖∞.

Theorem 3 is more general than Theorem 1 because it provides a control of the error at each step.

Lemma 4. We have

ρ(n)D(ñ) =
1

γ(n)
. (132)

Proof of Lemma 4. With the recursive definition of β(n) in (1) we have for n ≥ 1,

∑
k∈Z

β(n)(k) =
∑
k∈Z

∫
R
β(n−1)(x)β(0)(k − x)dx =

∫
R
β(n−1)(x)dx = 1. (133)

Noticing that
∑

k∈Z β
(n)(k) = B(n)(1) and with (14) it can be rewritten has

γ(n) =
ñ∏
j=1

(1− zj)2

−zj
. (134)

By definition of D(ñ) and ρ(n) we have the result.

From Lemma 4 we deduce that ε(ñ) = ε
γ(n) . In particular with i = ñ in Theorem 3, we have

‖e(ñ)‖ ≤ ε(ñ)‖f‖∞ = ε
γ(n)‖f‖∞ which proves Theorem 1.
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Remarks:

• In practice the error decreases exponentially with the distance to the boundaries. Thus, the
upper-bounds in the proof of Theorem 3 are not tight. The theoretical precision overestimates
the experimental error. In addition, in Algorithm 4 we do not initialize at the same places so
that the propagation error between steps could be neglected.

• For really small values of ε (e.g. ε < 10−12), the machine precision should be considered. Thus
the experimental error may be higher in this case.

• In our implementation the order is limited to 16 because of the poles computation. For higher
order Theorem 3 may remain true provided the signals are large enough.

C.2 Proof of Theorem 2

Theorem 2 can be proven as a direct consequence of Theorem 1.

We recall that f denotes the input finite image of size at most 4 along each dimension and ε > 0
the output precision. Instead of computing ccol(f) by applying Algorithm 4 or Algorithm 5 on the
columns of f with truncation indices N (n,ε′), we actually compute pcol(f) = ccol(f) + ecol(f) where
ecol(f) ∈ RZ2

is an unidimensional prefiltering error. Then, by applying Algorithm 4 or Algorithm 5
on the rows of pcol(f) we obtain

p = c+ erow + erow+col, (135)

where erow is the error that comes from the prefiltering along the rows of pcol(f) and erow+col is the
prefiltering along the rows of ecol(f). The output error e = erow + erow+col is proven to be smaller
than ε as follows. On the one hand,

‖erow+col‖∞ ≤
Lemma 2

γ(n)D(ñ)‖ecol‖∞ ≤
Theorem 1

ε′γ(n)D(ñ)‖f‖∞. (136)

On the other hand,

‖erow‖∞ ≤
Theorem 1

e′‖ccol(f)‖∞ ≤
Lemma 2

ε′γ(n)D(ñ)‖f‖∞. (137)

Finally,

‖e‖∞ ≤ 2ε′γ(n)D(ñ) =
Lemma 4

ε, (138)

which proves Theorem 2.

C.3 Choice of the µi

To prove Theorem 3 we did not use the value of µi for 2 ≤ i ≤ ñ. Any (µj)2≤j≤ñ ∈]0, 1[ñ−1 is
acceptable to guarantee the output precision ε but the choice has an influence on the truncation
indices N (i,ε) and thus on the complexity of the algorithms. Indeed, a small value for µi leads to less
computations for the step i but more computations for steps j < i. We set µ1 = 0 because e(0) = 0.

We select µ = (µj)2≤j≤ñ ∈]0, 1[ñ−1 that minimizes the function

Ψ : ν = (νj)2≤j≤ñ ∈]0, 1[ñ−1 7→
ñ∑
i=1

log
(

(1− νi)
∏ñ

j=i+1 νj

)
log |zi|

, (139)
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with the notation ν1 = 0. In other words it is selected so that
∑ñ

i=1N
(i,ε) is small8. Ψ is a derivable

function that admits a unique minimizer µ that is given by the Euler condition ∇Ψ(µ) = 0. For
2 ≤ k ≤ ñ we have

∂Ψ

∂νk
(µ) =

−1

1− µk
1

log |zk|
+

1

µk

k−1∑
i=1

1

log |zi|
= 0, (140)

i.e.
1

µk
= 1 +

1

log |zk|
∑k−1

i=1
1

log |zi|

, (141)

which corresponds to the definition given in (50). The values of (µi)2≤i≤ñ are displayed in Table 6
for 4 ≤ n ≤ 9.

n (µi)2≤i≤ñ
4 µ2 = 0.8081702588338142
5 µ2 = 0.7886523126940346
6 µ2 = 0.7775037872839968

µ3 = 0.9217057449487258
7 µ2 = 0.7705847640302491

µ3 = 0.9069526580525736
8 µ2 = 0.7660491039752506

µ3 = 0.8982276825918423
µ4 = 0.9583935084163903

9 µ2 = 0.7628638545450653
µ3 = 0.8921921530329509
µ4 = 0.9478524258426756

Table 6: Values of (µi)2≤i≤ñ for 4 ≤ n ≤ 9.

D Exact Expressions for Initialization Values

Consider an extension that can be expressed as a boundary condition and that is transmitted during
the prefiltering (as in Section 3.2.2). Let s be a finite signal of length K which is extended to Z and
−1 < α < 0. The initialization values in (38) and (44) may admit exact expressions that depends
on K, α and on the extension. In the following we obtain exact expressions for the three boundary
conditions proposed in Table 1 that are transmitted.

D.1 Causal Initialization

Accordingly to the case we obtain an exact expression of the causal initialization value (k(α) ∗ s)0 as
follows. Note that it only depends on (sk)0≤k≤K−1.

• Periodic extension. Grouping terms by blocks of length K we have

(k(α) ∗ s)0 =
+∞∑
i=0

αis−i =
+∞∑
l=0

αlK
K−1∑
i=0

αis−i−lK . (142)

8The minimality is not guaranteed because of the integral part in the definition of N (i,ε).
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Using the K-periodicity of the extended signal we obtain the relation s−i−lK = sK−i for all
(i, l) ∈ Z2. Finally, we have

(k(α) ∗ s)0 =
+∞∑
l=0

αlK
K−1∑
i=0

αisK−i (143)

=
1

1− αK
K−1∑
i=0

αisK−i, (144)

where we recall that sK = s0.

• Half-symmetric extension. Grouping terms by blocks of length 2K we have

(k(α) ∗ s)0 = s0 + α

+∞∑
i=0

αis−i−1 = s0 + α

+∞∑
l=0

α2lK

2K−1∑
i=0

αis−i−2lK−1. (145)

Using the 2K-periodicity of the extended signal we obtain the relation s−i−2lK = s−i for all
(i, l) ∈ Z2 which gives

2K−1∑
i=0

αis−i−2lK−1 =
2K−1∑
i=0

αis−i−1 =
K−1∑
i=0

αis−i−1 + αK
K−1∑
i=0

αis−i−K−1. (146)

For i ∈ {0, . . . , K−1} the symmetry around −1
2

can be written as s−i−1 = si and the symmetry
around −K − 1

2
can be written as s−i−K−1 = s−K+i = s−(K−1−i)−1 = sK−1−i. Noting that∑∞

l=0 α
2lK = 1

1−α2K , we finally have

(k(α) ∗ s)0 = s0 +
α

1− α2K

K−1∑
i=0

αi(si + αKsK−1−i). (147)

• Whole-symmetric extension. Using the symmetry around 0 and grouping terms by blocks of
length 2K − 1 we have

(k(α) ∗ s)0 =
+∞∑
i=0

αis−i =
+∞∑
i=0

αisi =
+∞∑
l=0

α(2K−1)l
2K−2∑
i=0

αisi+(2K−1)l. (148)

Using the (2K − 1)-periodicity of the extended signal we obtain the relation si+(2K−1)l = si for
all (i, l) ∈ Z2 which gives

2K−2∑
i=0

αisi+(2K−1)l =
2K−2∑
i=0

αisi =
K−1∑
i=0

αisi + αK
K−2∑
i=0

αisK+i. (149)

For i ∈ {0, . . . , K − 2} the symmetry around K − 1 can be written as sK+i = sK−2−i. Noting
that

∑∞
l=0 α

(2K−1)l = 1
1−α2K−1 , we finally have

(k(α) ∗ s)0 =
α

1− α2K−1

(
K−1∑
i=0

αisi + αK
K−2∑
i=0

αisK−2−i

)
. (150)
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D.2 Anti-causal Initialization

Exact expressions for the anti-causal initialization values (h(α) ∗ s)K−1 are provided in Section 3.2.2
for the two symmetric extensions. For the periodic extension we obtain an exact expression by
performing similar computations as in Section 3.2.2 but without truncating the sums. Note that it
only depends on (s

(α)
k )0≤k≤K−1.

Assume s is a K-periodic signal. Grouping terms by blocks of length K we have

(
l(α) ∗ s(α)

)
K−1 =

+∞∑
i=0

αis
(α)
K−1+i (151)

= s
(α)
K−1 + α

+∞∑
i=0

αis
(α)
K+i (152)

= s
(α)
K−1 + α

+∞∑
l=0

αlK
K−1∑
i=0

αis
(α)
lK+i. (153)

As s(α) = k(α) ∗ s is also K-periodic we have for all (i, l) ∈ Z2, s
(α)
lK+i = s

(α)
i . Noting that

∑∞
l=0 α

lK =
1

1−αK and h(α) = −αl(α), we finally have

(h(α) ∗ s)K−1 = −α

(
s
(α)
K−1 +

α

1− αK
K−1∑
i=0

αis
(α)
i

)
. (154)
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