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ABSTRACT

Semantic segmentation is pivotal for remote sensing image
analysis. Although existing segmentation techniques perform
well on similar landscape images, their generalization capa-
bility on an entirely different landscape is extremely poor.
One of the primary reasons is that they partially or wholly,
neglect the underlying relationship that exist in the joint space
of input and output variables. Thus, effectively they lack to
impose structure in their output predictions which is neces-
sary for successful segmentation. In this paper, we address
this problem and propose a novel solution by modeling the
joint distribution of input-output variable which in turn en-
forces some structure in the initial segmentation mask. To
this end, we first detect erroneous labels, in the form of Error
maps, in the initial building masks. These Error maps are then
used to correct the corresponding erroneous labels through a
replacement technique. We evaluate our methodology on the
benchmark Inria Aerial Image Labeling dataset, which is a
large scale high resolution dataset for building footprint seg-
mentation. In contrast to previous methods, our predicted seg-
mentation masks are much closer to ground truth, owning to
the fact that they are able to effectively correct both the large
errors as well as the blobby effects. We lastly perform on
par with other state-of-the-arts, validating the efficacy of our
technique.

Index Terms— Deep learning, high-resolution imagery,
semantic segmentation, structured prediction, building foot-
print extraction.

1. INTRODUCTION

Recently, we have witnessed an explosion of petabytes of
high-resolution remote sensing datasets such as Sentinel 1-5
[2], SpaceNet [3] and Inria Aerial Image Labeling dataset
[1]. Till now, these datasets have been manually annotated by
experts. However, with the availability of such an enormous
amount of high-resolution data, it is truly herculean to label
all of them by hand. This necessitates the automatic segmen-
tation of these remote sensing images to quickly and effec-
tively detect varied points of interest such as roads, buildings,
forests in an image for tasks such as urban scene planning,

Fig. 1: The Network Architecture.

green cover monitory and other emergency relief operations
such as floods, forest fires and cyclones. Deep learning
methods have recently shown significant improvements on
automatic semantic labeling tasks for classical datasets such
as Vaihingen or Potsdam. [4, 5] fused semantic maps from
multiple sources through a residual correction technique.
Whereas, [6] corrected shifts in OSM maps through an iter-
ative refinement technique using Recurrent Neural networks.
In addition, [7] used boundary detections to improve the se-
mantic segmentation and report impressive performance on
Vaihingen dataset.

Interestingly, [1] showcased the drawback of models
trained over such classical datasets, by highlighting their lack
of generalization capability to other cities that are captured
under different conditions. They, henceforth build a new
dataset covering a much larger surface of the earth including
both densely populated urban landscape as well as sparse
alpine regions under varied illumination conditions. Subse-
quently, they split their train and test data such that they come
from different cities. Finally, they also addressed problem of
blobby-predictions i.e., curvy edges of building masks. By
fusing feature maps from different levels of convolution net-
work, both [1] and [8] combine low level edge information
with high level semantic rich information. For the same task,
[9] uses a multi-task loss in order to approximate the distance
transform and the semantic maps.

Lately, most of the aforementioned techniques have par-
tially or fully neglected the idea of enforcing structure in the
output label space. This mainly results in these blobby ef-



(a) Input Image (b) FCN-MLP [1] (c) Resnet50FCN (d) ResnetDR (e) GT

Fig. 2: Segmentation masks for different techniques along with the final ground truth (GT). WHile Resnet50FCN drastically improves over
FCN-MLP [1], our method (ResnetDR) further corrects the fuzzy or ”blobby” effects of Resnet50FCN (caused due to naive up-sampling) by
simply enforcing the underlying structure of building footprint shapes.

fects due to naive up-sampling during the segmentation masks
prediction. On the contrary, a few of those that do enforce
structure, either do it through a novice human assumption
about the structure of the output label space (in the form of
hand engineered CRF pairwise potentials as in [6]). Or they
rely on semantic maps from other sources to refine the initial
predicted labels [5, 4]. However, these refinements through
residual correction can only correct small errors (such as on
the boundaries) while leaving major segmentation errors in-
tact.

Built on these observations, we argue that we need to
learn a joint structure of input and output variables that can
effectively predict the replacements for major segmentation
errors and thus, rectify them. Inspired from [10], we hence-
forth, propose a joint input-output model which segments the
building footprints in high resolution imagery. While [10] ad-
dresses a continuous variable assignment task (disparity esti-
mation), we solve here a binary classification problem. Our
proposed method is buildup of two steps. Firstly, our model
predicts an error map E based upon the input image X and
initial segmentation Y . We then update the labels in regions
of high error probabilities with a new label prediction which
in turn relies on X , Y and E for its decision. Through the
error map E, we learn a joint distribution between input and
output variables which further helps in enforcing structure in
the final label prediction. As shown in Figure 2, our model
refines the blobby effect by learning the underlying structure
of the building footprints which is enforced using the error
maps. Finally, this leads our method to perform on par with
existing state-of-the-arts on Inria Image Labeling dataset [1].

2. PROPOSED FRAMEWORK AND
METHODOLOGY

Let’s assume our initial input image to be X = xC×H×Wi=1 ,
where C, H and W are the channel, height and width of X
respectively. Similarly, Y = y1×H×Wi=1 , be the initial seg-
mentation map. Our technique aims to model a joint rela-
tionship between input X and output variables (Y ) to rectify
and produce a much more refined version of Y . This can be
formulated as Y ′ = F (X,Y ) where Y ′ denote the updated

segmentation mask after replacing erroneous labels with new
labels.

As shown in Figure 1, our proposed methodology com-
prises of two major steps. First, we predict errors (E) occur-
ring in the initial building segmentation mask Y with the help
of input imageX . Next, we utilize these error maps to correct
those erroneous labels in Y , whose error probability is large
enough (in E) by replacing them with predicted labels. In the
following subsections, we explain these two steps in detail.

2.1. Error Detection

The error detection component (Fe) computes the probability
map (E) to detect the erroneous labels in the initial segmen-
tation mask Y , stated as:

E = Fe(X,Y ). (1)

In other words, Fe learns from the joint input output space of
X & Y to predict an error probability score map where each
pixel has a value between 0 and 1. Specifically, it predicts
whether or not a particular label yi is erroneous, if so, yi gets
replaced with a correct label in the next step. Fe can be easily
formulated as a deep neural network which requires as such
no explicit auxiliary loss and can be learnt under a single um-
brella of one loss between corrected segmentation and ground
truth segmentation.

2.2. Erroneous Label Replacement

The updated label Y ’ is a convex combination of the initial
segmentation mask Y and updates from the replacement com-
ponent denoted by Fr. It is given as:

Y ′ = E � Fr(X,Y,E) + (1− E)� Y, (2)

where � represents element-wise product. The error map E
generated from Fe acts as a gateway to restrict Fr so as to just
focus on the erroneous labels of Y and replace them with the
predicted ones. Similar to Fe, Fr can also be modeled using
any deep learning architecture. If we restrict theE probability
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Fig. 3: Qualitative Results. Red segments are ground truth, green are predictions while yellow represents overlap of ground truth and
predictions. The blue circles highlight regions with significant changes. We also showcase zoom-in for one of these regions as comparison.

maps to 0 and 1, the forward pass of Replacement happens as:

Y ′ =

{
Y, if Fe(X,Y ) = 0

Fr(X,Y,E), if Fe(X,Y ) = 1.
(3)

This shows that only erroneous labels are being replaced
while non-erroneous labels remain intact. For any end loss
function L between corrected segmentation mask Y ′ and
ground truth labels, its gradient becomes:

dL

dFr(.)
=

{
0, if Fe(X,Y ) = 0

dL
dY ′ , if Fe(X,Y ) = 1.

(4)

In a way, the gradients update Fr only for those regions where
erroneous labels are found in Y , thus restricting Fr to pay at-
tention and predict replacements only for these particular re-
gions. Additionally, passing Error maps to the Fr component,
helps it to rely on the correct labels to predict replacements for
the new erroneous labels. Altogether, Fr improves and makes
correction of these erroneous labels, by jointly reflecting upon
the Error maps, the input X and the initial segmentation Y .

3. TRAINING AND IMPLEMENTATION DETAILS

3.1. Dataset

We evaluated our method on the Inria Aerial Image Labeling
Dataset [1] which consists of Airborne imagery of urban set-
tlement over the United States and Austria. The entire dataset
consists of two classes namely, building and not building. All
the images are of size 5000 × 5000 and have a resolution of
30 cm with RGB bands. First 5 images from each class were
chosen for validation, while the rest were used for training.
For testing, we upload our test results to the project webpage.

3.2. Network Architecture

We initially train a Fully Convolutional Network [11] (FCN)
adapted to Resnet-50 [12] architecture to generate our ini-
tial segmentation mask Y . This model, which we name as
Resnet50FCN, is trained to reconstruct ground truth segmen-
tation masks with a given input image X and ground truth
labels. We henceforth treat Resnet50FCN as our baseline.

For detection, Fe is implemented by using 5 convolutional
layers (except last one, each is followed by batch-norm and
Relu). The last conv. layer is followed by a soft-max, thus
yielding us E between 0 and 1. To follow the input image
size, we add an up-sampling layer on top of the Error map E.

For replacement, Fr is implemented through compression
block (compresses to 1/64 of the input resolution) and de-
compression block (decompresses to 1/4 of input resolution).
These are essentially residual blocks with parameterized skip
connection between symmetric layers in decompression and
compression blocks respectively.

For additional implementation details of detection and re-
placement modules, we refer the reader to Section 3.2 of [10].

3.3. Training

Using an L1 loss between ground truth and predicted output
Y ′, we optimize using an adam solver [13], with β1 = 0.9 and
β2 = 0.99. The learning rate starting from 10−3 is decreases
to 3×10−4 at 12, 10−4 at 18, 3×10−5 at 24 and finally 105 at
28 epochs. We continue training until 32 epochs. Each epoch
consists of 500 batch iterations and each batch consists of 16
training samples where each sample is of size 1024 × 1024.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1. Quantitative Results

We show the quantitative results in Table 1 and Table 2 on
both the validation and test dataset respectively, where we



Method Austin Chicago Kitsap Co. West Tyrol Vienna Overall

FCN-MLP [1] IoU 61.20 61.30 51.50 57.95 72.13 64.67
Acc. 94.20 93.43 98.92 96.66 91.87 94.42

Multi-Task [9] IOU 76.76 67.06 73.30 66.91 76.68 73.00
Acc. 93.21 99.25 97.84 91.71 96.61 95.73

Resnet50FCN IoU 88.12 81.21 83.62 88.15 87.07 86.46
Acc. 97.02 93.04 99.3 98.28 94.65 96.46

ResnetDR IOU 89.42 83.56 84.57 89.07 88.30 87.90
Acc. 97.37 94.03 99.34 98.42 95.12 96.87

Table 1: Evaluation results on validation set

Method Bellin. Blooming. Inns. S.Fo Tyrol-E Overall

FCN-MLP [1] IoU 56.11 50.40 61.03 61.38 62.51 59.31
Acc. 95.37 95.27 95.37 87.00 96.61 93.93

Resnet50FCN IoU 63.34 63.20 76.07 74.91 77.58 72.07
Acc. 95.90 96.61 97.18 91.67 98.01 95.78

ResnetDR IOU 64.27 65.85 77.10 75.86 78.68 73.30
Acc. 95.99 96.also52 97.30 92.01 98.11 95.99

Table 2: Evaluation results on test set.

compare our method (ResnetDR) with the baseline (Resnet
50FCN) and other previous best performing results namely,
MLP [1] and Multi-Task Loss [9]. In both tables, we report
the Intersection over Union (IoU) and Accuracy score (Acc.)
of correct pixels in the segmentation mask 1. As shown in
Table 1, we outperformed the previous best method [9] on
the validation set by a margin of 14.90% on IoU. While on
our own baseline Resnet50FCN, we improve by a margin of
1.44%. On the test set too, we outperformed [1] by 14% and
our own baseline by 1.22%.

4.2. Qualitative Results

For qualitative analysis, we report our results in Figure 3
where green patch represents predictions for each model,
red the ground truth while yellow represents the overlay of
ground truth and predictions. We observe that while a major
improvement is seen from FCN-MLP to Resnet50FCN, it still
is not able to perfectly correct the blobby effects. ResnetDR
improves upon these blobby effects by not only refining the
boundaries of the segmentations but also regularizing them
to better reflect structure of building footprints. For e.g., in
Figure 3, in the Chicago case, we note that for the refinery
(zoom-in shown in d & e), ResnetDR yields a more structured
output in the form of parallel prediction edges. Similarly, for
Vienna and Tyrol, predictions shrinking-in / protruding-out
from the roofs of the houses for Resnet50FCN are constrained
in case of ResnetDR to follow the edges of the roof.

All these cases prove that our technique learns the un-
derlying structure of building footprints in the form of reg-
ularized and well-defined shapes with straight edges. Simul-
taneously, it learns to predict error maps that somewhat re-
fine these initial segmentation masks in order to enforce strict
rules that govern building footprint structures.

1Due to the unavailability of the results on test-set by [9], we haven’t
reported them in Table 2

5. CONCLUSIONS

We present a novel technique for structured semantic seg-
mentation of high resolution satellite imagery. To this end,
we propose to learn the joint space of input-output variables.
Subsequently, our method enforces structure in the form of
predicting a much more regularized building footprint and
hence, resolves to a large extent the problem of blobby effects
as reported in the past methods. We compare our technique
with the state-of-the-art methods on the Inria aerial image la-
beling dataset, where we perform on par with others.
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