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Abstract

The human visual system has the remarkably ability to
be able to effortlessly learn novel concepts from only a few
examples. Mimicking the same behavior on machine learn-
ing vision systems is an interesting and very challenging
research problem with many practical advantages on real
world vision applications. In this context, the goal of our
work is to devise a few-shot visual learning system that
during test time it will be able to efficiently learn novel cat-
egories from only a few training data while at the same
time it will not forget the initial categories on which it was
trained (here called base categories). To achieve that goal
we propose (a) to extend an object recognition system with
an attention based few-shot classification weight generator,
and (b) to redesign the classifier of a ConvNet model as the
cosine similarity function between feature representations
and classification weight vectors. The latter, apart from uni-
fying the recognition of both novel and base categories, it
also leads to feature representations that generalize better on

“unseen” categories. We extensively evaluate our approach on
Mini-ImageNet where we manage to improve the prior state-
of-the-art on few-shot recognition (i.e., we achieve 56.20%
and 73.00% on the 1-shot and 5-shot settings respectively)
while at the same time we do not sacrifice any accuracy
on the base categories, which is a characteristic that most
prior approaches lack. Finally, we apply our approach on
the recently introduced few-shot benchmark of Bharath and
Girshick [4] where we also achieve state-of-the-art results.

1. Introduction

Over the last few years, deep convolutional neural net-
works [9, 21, 23, 5] (ConvNets) have achieved impressive
results on image classification tasks, such as object recogni-
tion [18] or scene classification [27]. In order for a ConvNet
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to successfully learn to recognize a set of visual categories
(e.g., object categories or scene types), it requires to man-
ually collect and label thousands of training examples per
target category and to apply on them an iterative gradient
based optimization routine [10] that is extremely computa-
tionally expensive, e.g., it can consume hundreds or even
thousands of GPU hours. Moreover, the set of categories that
the ConvNet model can recognize remains fixed after train-
ing. In case we would like to expand the set of categories
that the ConvNet can recognize, then we need to collect train-
ing data for the novel categories (i.e., those that they were
not in the initial training set) and restart the aforementioned
computationally costly training procedure this time on the
enhanced training set such that we will avoid catastrophic
interference. Even more, it is of crucial importance to have
enough training data for the novel categories (e.g., thousands
of examples per category) otherwise we risk overfitting on
them.

In contrast, the human visual system exhibits the remark-
ably ability to be able to effortlessly learn novel concepts
from only one or a few examples and reliably recognize them
later on. It is assumed that the reason the human visual
system is so efficient when learning novel concepts is that it
exploits its past experiences about the (visual) world. For ex-
ample, a child, having accumulated enough knowledge about
mammal animals and in general the visual world, can easily
learn and generalize the visual concept of “rhinoceros” from
only a single image. Mimicking that behavior on artificial vi-
sion systems is an interesting and very challenging research
problem with many practical advantages, such as developing
real-time interactive vision applications for portable devices
(e.g., cell-phones).

Research on this subject is usually termed few-shot learn-
ing. However, most prior methods neglect to fulfill two very
important requirements for a good few-shot learning system:
(a) the learning of the novel categories needs to be fast, and
(b) to not sacrifice any recognition accuracy on the initial
categories that the ConvNet was trained on, i.e., to not “for-
get” (from now on we will refer to those initial categories by
calling them base categories). Motivated by this observation,



in this work we propose to tackle the problem of few-shot
learning under a more realistic setting, where a large set
of training data is assumed to exist for a set of base cate-
gories and, using these data as the sole input, we want to
develop an object recognition learning system that, not only
is able to recognize these base categories, but also learns
to dynamically recognize novel categories from only a few
training examples (provided only at test time) while also not
forgetting the base ones or requiring to be re-trained on them
(dynamic few-shot learning without forgetting). Compared
to prior approaches, we believe that this setting more closely
resembles the human visual system behavior (w.r.t. how it
learns novel concepts). In order to achieve our goal, we
propose two technical novelties.

Few-shot classification-weight generator based on at-
tention. A typical ConvNet based recognition model, in
order to classify an image, first extracts a high level feature
representation from it and then computes per category clas-
sification scores by applying a set of classification weight
vectors (one per category) to the feature. Therefore, in order
to be able to recognize novel categories we must be able
to generate classification weight vectors for them. In this
context, the first technical novelty of our work is that we
enhance a typical object recognition system with an extra
component, called few-shot classification weight generator
that accepts as input a few training examples of a novel
category (e.g., no more than five examples) and, based on
them, generates a classification weight vector for that novel
category. Its key characteristic is that in order to compose
novel classification weight vectors, it explicitly exploits the
acquired past knowledge about the visual world by incorpo-
rating an attention mechanism over the classification weight
vectors of the base categories. This attention mechanism
offers a significant boost on the recognition performance
of novel categories, especially when there is only a single
training example available for learning them.

Cosine-similarity based ConvNet recognition model.
In order for the few-shot classification weight generator to
be successfully incorporated into the rest of the recognition
system, it is essential the ConvNet model to be able to simul-
taneously handle the classification weight vectors of both
base and novel categories. However, as we will explain in the
methodology, this is not feasible with the typical dot-product
based classifier (i.e., the last linear layer of a classification
neural network). Therefore, in order to overcome this seri-
ous issue, our second technical novelty is to implement the
classifier as a cosine similarity function between the feature
representations and the classification weight vectors. Apart
from unifying the recognition of both base and novel cat-
egories, features learned with the cosine-similarity based
classifier turn out to generalize significantly better on novel
categories than those learned with a dot-product based clas-
sifier. Moreover, we demonstrate in the experimental section

that, by simply training a cosine-similarity based ConvNet
recognition model, we are able to learn feature extractors
that when used for image matching they surpass prior state-
of-the-art approaches on the few-shot recognition task.

To sum up, our contributions are: (1) We propose a few-
shot object recognition system that is capable of dynamically
learning novel categories from only a few training data while
at the same time does not forget the base categories on which
it was trained. (2) In order to achieve that we introduced two
technical novelties, an attention based few-shot classification
weight generator, and to implement the classifier of a Con-
vNet model as a cosine similarity function between feature
representations and classification vectors. (3) We extensively
evaluate our object recognition system on Mini-ImageNet,
both w.r.t. its few-shot object recognition performance and
its ability to not forget the base categories, and we report
state-of-the-art results that surpass prior approaches by a
very significant margin. (4) Finally, we apply our approach
on the recently introduced fews-shot benchmark of Bharath
and Girshick [4] where we achieve state-of-the-art results.

In the following sections, we provide related work in §2,
we describe our few-shot object learning methodology in §3,
we provide experimental results in §4, and finally we con-
clude in §5.

2. Related work
Recently, there is resurgence of interest on the few-shot

learning problem. In the following we briefly discuss the
most relevant approaches to our work.

Meta-learning based approaches. Meta-learning ap-
proaches typical involve a meta-learner model that given a
few training examples of a new task it tries to quickly learn a
learner model that “solves” this new task [20, 24, 1, 13, 19].
Specifically, Ravi and Larochelle [16] propose a LSTM [6]
based meta-learner that is trained given as input a few train-
ing examples of a new classification task to sequentially
generate parameter updates that will optimize the classifi-
cation performance of a learner model on that task. Their
LSTM also learns the parameter initialization of the learner
model. Finn et al. [3] simplified the above meta-learner
model and only learn the initial learner parameters such that
only a few gradient descent steps w.r.t. those initial parame-
ters will achieve the maximal possible performance on the
new task. Mishra et al. [12] instead propose a generic tem-
poral convolutional network that given as input a sequence
of a few labeled training examples and then an unlabeled
test example, it predicts the label of that test example. Our
system also includes a meta-learner network component, the
few-shot classification weight generator.

Metric-learning based approaches. In general, metric
learning approaches attempt to learn feature representations
that preserve the class neighborhood structure (i.e., features
of the same object are closer than features of different ob-



jects). Specifically, Koch et al. [8] formulated the one-shot
object recognition task as image matching and train Siamese
neural networks to compute the similarity between a training
example of a novel category and a test example. Vinyals et
al. [25] proposed Matching Networks that in order to classify
a test example it employs a differentiable nearest neighbor
classifier implemented with an attention mechanism over
the learned representations of the training examples. Pro-
totypical Networks [22] learn to classify test examples by
computing distances to prototype feature vectors of the novel
categories. They propose to learn the prototype feature vec-
tor of a novel category as the average of the feature vectors
extracted by the training examples of that category. A similar
approach was proposed before by Mensink et al. [11] and
Prototypical Networks can be viewed as an adaption of that
work for ConvNets. Despite their simplicity, Prototypical
Networks demonstrated state-of-the-art performance. Our
few-shot classification weight generator also includes a fea-
ture averaging mechanism. However, more than that, it also
explicitly exploits past knowledge about the visual world
with an attention based mechanism and the overall frame-
work allows to perform unified recognition of both base and
novel categories without altering the way base categories are
learnt and recognized.

In a different line of work, Bharath and Girshick [4] pro-
pose to use during training a l2 regularization loss on the
feature representations that forces them to better generalize
on “unseen” categories. In our case, the cosine-similarity
based classifier, apart from unifying the recognition of both
base and novel categories, it also leads to feature represen-
tations that are able to better generalize on “unseen” cate-
gories. Also, their framework is able to recognize both base
and novel categories as ours. However, to achieve that goal
they re-train the classifier on both the base categories (with
a large set of training data) and the novel categories (with
few training data), which is in general slow and requires
constantly maintaining in disc a large set of training data.

3. Methodology
As an input to our object recognition learning sys-

tem we assume that there exists a dataset Dtrain =⋃Kbase

b=1 {xb,i}
Nb
i=1 of Kbase base categories, where Nb is the

number of training examples of the b-th category and xb,i is
its i-th training example. Using this as the only input, the
goal of our work is to be able to both learn to accurately
recognize base categories and to learn to perform few-shot
learning of novel categories in a dynamic manner and with-
out forgetting the base ones. An overview of our framework
is provided in Figure 1. It consists of two main components,
a ConvNet-based recognition model that is able to recognize
both base and novel categories and a few-shot classification
weight generator that dynamically generates classification
weight vectors for the novel categories at test time:

Feature Extractor

Dynamic Few-Shot Learning without Forgetting

Classifier

Classification 
weight vectors

Base Novel 

Few-shot 
classification weight 

generator

Test image

Training data for 
base categories

Few training data 
of novel category

Probability 
scores of 
base & novel 
categories 

Training procedure

Figure 1: Overview of our system. It consists of: (a) a ConvNet
based recognition model (that includes a feature extractor and a
classifier) and (b) a few-shot classification weight generator. Both
are trained on a set of base categories for which we have available
a large set of training data. During test time, the weight generator
gets as input a few training data of a novel category and the classi-
fication weight vectors of base categories (green rectangle inside
the classifier box) and generates a classification weight vector for
this novel category (blue rectangle inside the classifier box). This
allows the ConvNet to recognize both base and novel categories.

ConvNet-based recognition model. It consists of (a) a
feature extractor F (.|θ) (with learnable parameters θ) that
extracts a d-dimensional feature vector z = F (x|θ) ∈ Rd

from an input image x, and (b) a classifier C(.|W ∗), where
W ∗ = {w∗k ∈ Rd}K∗k=1 are a set of K∗ classification weight
vectors - one per object category, that takes as input the
feature representation z and returns aK∗-dimensional vector
with the probability classification scores p = C(z|W ∗) of
theK∗ categories. Note that in a typical convolutional neural
network the feature extractor is the part of the network that
starts from the first layer and ends at the last hidden layer
while the classifier is the last classification layer. During
the single training phase of our algorithm, we learn the
θ parameters and the classification weight vectors of the
base categories Wbase = {wk}Kbase

k=1 such that by setting
W ∗ =Wbase the ConvNet model will be able to recognize
the base object categories.

Few-shot classification weight generator. This com-
prises a meta-learning mechanism that, during test time,
takes as input a set ofKnovel novel categories with few train-
ing examples per category Dnovel =

⋃Knovel

n=1 {x′n,i}
N ′n
i=1,

where N ′n is the number of training examples of the n-th
novel category and x′n,i is its i-th training example, and is
able to dynamically assimilate the novel categories on the
repertoire of the above ConvNet model. More specifically,
for each novel category n ∈ [1, Nnovel], the few-shot classi-
fication weight generator G(., .|φ) gets as input the feature
vectors Z ′n = {z′n,i}

N ′n
i=1 of its N ′n training examples, where

z′n,i = F (x′n,i|θ), and the classification weight vectors of the
base categories Wbase and generates a classification weight
vector w′n = G(Z ′n,Wbase|φ) for that novel category. Note
that φ are the learnable parameters of the few-shot weight



generator, which are learned during the single training phase
of our framework. Therefore, if Wnovel = {w′n}

Knovel
n=1

are the classification weight vectors of the novel categories
inferred by the few-shot weight generator, then by setting
W ∗ = Wbase ∪Wnovel on the classifier C(.|W ∗) we en-
able the ConvNet model to recognize both base and novel
categories.

A key characteristic of our framework is that it is able to
effortlessly (i.e., quickly during test time) learn novel cate-
gories and at the same time recognize both base and novel
categories in a unified manner. In the following subsections,
we will describe in more detail the ConvNet-based recogni-
tion model in §3.1 and the few-shot weight generator in §3.2.
Finally, we will explain the training procedure in §3.3.

3.1. Cosine-similarity based recognition model

A crucial difference of our ConvNet based recognition
model compared to a standard one is that it should be able
to dynamically incorporate at test time a variable number of
novel categories (through the few-shot weight generator).

The standard setting for classification neural networks
is, after having extracted the feature vector z, to estimate
the classification probability vector p = C(z|W ∗) by first
computing the raw classification score sk of each category
k ∈ [1,K∗] using the dot-product operator sk = zᵀw∗k,
where wk is the k-th classification weight vector in W ∗,
and then applying the softmax operator across all the K∗

classification scores, i.e., pk = softmax(sj), where pk
is the k-th classification probability of p. In our case the
classification weight vectors w∗k could come both from the
base categories, i.e., w∗k ∈Wbase, and the novel categories,
i.e., w∗k ∈Wnovel. However, the mechanisms involved dur-
ing learning those classification weights are very different.
The base classification weights, starting from their initial
state, are slowly modified (i.e., slowly learned) with small
SGD steps and thus their magnitude changes slowly over
the course of their training. In contrast, the novel classifica-
tion weights are dynamically predicted (i.e., quickly learned)
by the weight generator based on the input training feature
vectors and thus their magnitude depends on those input
features. Due to those differences, the weight values in those
two cases (i.e., base and novel classification weights) can be
completely different, and so the same applies to the raw clas-
sification scores computed with the dot-product operation,
which can thus have totally different magnitudes depending
on whether they come from the base or the novel categories.
This can severely impede the training process and, in general,
does not allow to have a unified recognition of both type of
categories. In order to overcome this critical issue, we pro-
pose to modify the classifier C(.|W ∗) and compute the raw
classification scores using the cosine similarity operator:

sk = τ · cos(z, w∗k) = τ · zᵀw∗k , (1)

where z = z
‖z‖ and w∗k =

w∗k
‖w∗k‖

are the l2-normalized vec-

tors (from now on we will use the overline symbol z to
indicate that a vector z is l2-normalized), and τ is a learn-
able scalar value1. Since the cosine similarity can be im-
plemented by first l2-normalizing the feature vector z and
the classification weight vector w∗k and then applying the
dot-product operator, the absolute magnitudes of the classifi-
cation weight vectors can no longer affect the value of the
raw classification score (as a result of the l2 normalization
that took place).

In addition to the above modification, we also choose to
remove the ReLU non-linearity [14] after the last hidden
layer of the feature extractor, which allows the feature vector
z to take both positive and negative values, similar to the
classification weight vectors. Note that the removal of the
ReLU non-linearity does not make the composition of the
last hidden layer with the classification layer a linear oper-
ation, since we l2-normalize the feature vectors, which is
a non-linear operation. In our initial experiments with the
cosine similarity based classifier we found that such a modifi-
cation can significantly improve the recognition performance
of novel categories.

We note that, although cosine similarity is already well
established as an effective similarity function for classifying
a test feature by comparing it with the available training
features vectors [25, 11, 17], in this work we use it for a
different purpose, i.e., to replace the dot-product operation
of the last linear layer of classification ConvNets used for
applying the learnable weights of that layer to the test feature
vectors. The proposed modification in the architecture of
a classification ConvNet allows to unify the recognition of
base and novel categories without significantly altering the
classification pipeline for the recognition of base categories
(in contrast to [11, 17]). To the best of our knowledge,
employing the cosine similarity operation in such a way
is novel in the context of few shot learning. Interestingly,
concurrently to us, Qi et al. [15] also propose to use the
cosine similarity function in a similar way for the few-shot
learning task. In a different line of work, very recently
Chunjie et al. [2] also explored cosine similarity for the
typical supervised classification task.

Advantages of cosine-similarity based classifier. Apart
from making possible the unified recognition of both base
and novel categories, the cosine-similarity based classifier
leads the feature extractor to learn features that generalize
significantly better on novel categories than features learned
with the dot-product based classifier. A possible explanation
for this is that, in order to minimize the classification loss of
a cosine-similarity based ConvNet model, the l2-normalized
feature vector of an image must be very closely matched with

1 The scalar parameter τ is introduced in order to control the peakiness
of the probability distribution generated by the softmax operator since the
range of the cosine similarity is fixed to [−1, 1]. In all of our experiments
τ is initialized to 10.



the l2-normalized classification weight vector of its ground
truth category. As a consequence, the feature extractor is
forced to (a) learn to encode on its feature activations exactly
those discriminative visual cues that also the classification
weight vectors of the ground truth categories learn to look
for, and (b) learn to generate l2-normalized feature vectors
with low intraclass variance, since all the feature vectors that
belong to the same category must be very closely matched
with the single classification weight vector of that category
(see also §1 of supplementary material for t-SNE scatter
plots of the cosine similarity based and dot product based
features). Moreover, our cosine-similarity based classifi-
cation objective resembles the training objectives typically
used by metric learning approaches [7]. In fact, it turns out
that our feature extractor trained solely on cosine-similarity
based classification of base categories, when used for image
matching, it manages to surpass all prior state-of-the-art
approaches on the few-shot object recognition task.

3.2. Few-shot classification weight generator

The few-shot classification weight generator G(., .|φ)
gets as input the feature vectors Z ′ = {z′i}N

′

i=1 of the N ′

training examples of a novel category (typically N ′ ≤ 5)
and (optionally) the classification weight vectors of the base
categories Wbase. Based on them, it infers a classification
weight vector w′ = G(Z ′,Wbase|φ) for that novel cate-
gory. Here we explain how the above few-shot classification
weight generator is constructed.

Feature averaging based weight inference. Since, as
we explained in section § 3.1, the cosine similarity based
classifier of the ConvNet model forces the feature extractor
to learn feature vectors that form compact category-wise
clusters and the classification weight vectors to learn to be
representative feature vectors of those clusters, an obvious
choice is to infer the classification weight vector w′ by aver-
aging the feature vectors of the training examples (after they
have been l2-normalized): w′avg = 1

N ′

∑N ′

i=1 z
′
i. The final

classification weight vector in case we only use the feature
averaging mechanism is: w′ = φavg �w′avg , where � is the
Hadamard product, and φavg ∈ Rd is a learnable weight vec-
tor. Similar strategy has been previously proposed by Snell
et al. [22] and has demonstrated very good results. However,
it does not fully exploit the knowledge about the visual world
that the ConvNet model acquires during its training phase.
Furthermore, in case there is only a single training example
for the novel category, the averaging cannot infer an accurate
classification weight vector.

Attention-based weight inference. We enhance the
above feature averaging mechanism with an attention based
mechanism that composes novel classification weight vectors
by “looking” at a memory that contains the base classifica-
tion weight vectors Wbase = {wb}Kbase

b=1 . More specifically,
an extra attention-based classification weight vector w′att is

computed as:

w′att =
1

N ′

N ′∑
i=1

Kbase∑
b=1

Att(φqz
′
i, kb) · wb, (2)

where φq ∈ Rd×d is a learnable weight matrix that trans-
forms the feature vector z′i to query vector used for querying
the memory, {kb ∈ Rd}Kbase

b is a set of Kbase learnable
keys (one per base category) used for indexing the memory,
and Att(., .) is an attention kernel implemented as a cosine
similarity function2 followed by a softmax operation over
the Kbase base categories. The final classification weight
vector is computed as a weighted sum of the average based
classification vector w′avg and the attention based classifica-
tion vector w′att, w

′ = φavg �w′avg +φatt�w′att, where �
is the Hadamard product, and φavg , φatt ∈ Rd are learnable
weight vectors.

Why using an attention-based weight composition?
Thanks to the cosine-similarity based classifier, the base
classification weight vectors learn to be representative fea-
ture vectors of their categories. Thus, the base classification
weight vectors also encode visual similarity, e.g., the classi-
fication vector of a mammal animal should be closer to the
classification vector of another mammal animal rather than
the classification vector of a vehicle. Therefore, the classifi-
cation weight vector of a novel category can be composed
as a linear combination of those base classification weight
vectors that are most similar to the few training examples
of that category. This allows our few-shot weight generator
to explicitly exploit the acquired knowledge about the vi-
sual word (here represented by the base classification weight
vectors) in order to improve the few-shot recognition per-
formance. This improvement is very significant especially
in the one-shot recognition setting where averaging cannot
provide an accurate classification weight vector.

3.3. Training procedure

In order to learn the ConvNet-based recognition model
(i.e. the feature extractor F (.|θ) as well as the classi-
fier C(.|W ∗)) and the few-shot classification weight gen-
erator G(., .|φ), we use as the sole input a training set
Dtrain =

⋃Kbase

b=1 {xb,i}
Nb
i=1 of Kbase base categories. We

split the training procedure into 2 stages and at each stage
we minimize a different cross-entropy loss of the following
form:

1

Kbase

Kbase∑
b=1

1

Nb

Nb∑
i=1

loss(xb,i, b), (3)

where loss(x, y) is the negative log-probability −log(py)
of the y-th category in the probability vector p =
C(F (x|θ)|W ∗). The meaning of W ∗ is different on each of
the training stages, as we explain below.

2The cosine similarity scores are also scaled by a learnable scalar pa-
rameter γ in order to increase the peakiness of the softmax distribution.



1st training stage: During this stage we only learn the
ConvNet recognition model without the few-shot classifica-
tion weight generator. Specifically, at this stage we learn the
parameters θ of the feature extractor F (.|θ) and the base clas-
sification weight vectors Wbase = {wb}Kbase

b=1 . This is done
in exactly the same way as for any other standard recognition
model. In this case W ∗ is equal to the base classification
weight vectors Wbase.

2nd training stage: During this stage we train the learn-
able parameters φ of the few-shot classification weight gener-
ator while we continue training the base classification weight
vectors Wbase (in our experiments during that training stage
we freezed the feature extractor). In order to train the few-
show classification weight generator, in each batch we ran-
domly pickKnovel “fake” novel categories from the base cat-
egories and we treat them in the same way as we will treat the
actual novel categories after training. Specifically, instead
of using the classification weight vectors in Wbase for those
“fake” novel categories, we sample N ′ training examples
(typically N ′ ≤ 5) for each of them, compute their feature
vectors Z ′ = {z′i}N

′

i=1, and give those feature vectors to the
few-shot classification weight generator G(., .|φ) in order to
compute novel classification weight generators. The inferred
classification weight vectors are used for recognizing the
“fake” novel categories. Everything is trained end-to-end.
Note that we take care to exclude from the base classifica-
tion weight vectors that are given as a second argument to
the few-shot weight generator G(., .|φ) those classification
vectors that correspond to the “fake” novel categories. In
this case W ∗ is the union of the “fake” novel classification
weight vectors generated by G(., .|φ) and the classification
weight vectors of the remaining base categories. More im-
plementation details of this training stage are provided in §2
of supplementary material.

4. Experimental results
We extensively evaluate the proposed few-shot recogni-

tion system w.r.t. both its few-shot recognition performance
of novel categories and its ability to not “forget” the base
categories on which it was trained.

4.1. Mini-ImageNet experiments

Evaluation setting for recognition of novel categories.
We evaluate our few-shot object recognition system on the
Mini-ImageNet dataset [25] that includes 100 different cate-
gories with 600 images per category, each of size 84×84. For
our experiments we used the splits by Ravi and Laroche [16]
that include 64 categories for training, 16 categories for vali-
dation, and 20 categories for testing. The typical evaluation
setting on this dataset is first to train a few-shot model on the
training categories and then during test time to use the vali-
dation (or the test) categories in order to form few-shot tasks
on which the trained model is evaluated. Those few-shot

tasks are formed by first sampling Knovel categories and
one or five training example per category (1-shot and 5-shot
settings respectively), which the trained model uses for meta-
learning those categories, and then evaluating it on some test
examples that come from the same novel categories but do
not overlap with the training examples.

Evaluation setting for the recognition of the base cat-
egories. When we evaluate our model w.r.t. few-shot recog-
nition task on the validation / test categories, we consider
as base categories the 64 training categories on which we
trained the model. Since the proposed few-shot object recog-
nition system has the ability to not forget the base categories,
we would like to also evaluate the recognition performance
of our model on those base categories. Therefore, we sam-
pled 300 extra images for each training category that we
use as validation image set for the evaluation of the recog-
nition performance of the base categories and also another
300 extra images that are used for the same reason as test
image set. Therefore, when we evaluate our model w.r.t.
the few-shot learning task on the validation / test categories
we also evaluate w.r.t. recognition performance of the base
categories on the validation / test image set of the training
categories.

4.1.1 Ablation study

In Table 1 we provide an ablation study of the proposed
object recognition framework on the validation set of mini-
ImageNet. We also compare with two prior state-of-the-
art approaches, Prototypical Networks [22] and Matching
Nets [25], that we re-implemented ourselves in order to
ensure a fair comparison. The feature extractor used in all
cases is a ConvNet model that has 4 convolutional modules,
with 3 × 3 convolutions, followed by batch normalization,
ReLU nonlinearity3, and 2× 2 max-pooling. Given as input
images of size 84 × 84 it yields feature maps with spatial
size 5× 5. The first two convolutional layers have 64 feature
channels and the latter two have 128 feature channels.

Cosine-similarity based ConvNet model. First we ex-
amine the performance of the cosine-similarity based Con-
vNet recognition model (entry Cosine Classifier) without
training the few-shot classification weight generator (i.e.,
we only perform the 1st training stage as was described in
section 3.3). In order to test its performance on the novel
categories, during test time we estimate classification weight
vectors using feature averaging. We want to stress out that
in this case there are no learnable parameters involved in
the generation of the novel classification weight vectors and
also the ConvNet model it was never trained on the few-
shot recognition task. Despite that, the features learned by

3Unless otherwise stated, our cosine-similarity based models as well as
the re-implementation of Matching-Nets do not have a ReLU nonlinearity
after the last convolutional layer, since in both cases this modification
improved the recognition performance on the few-shot recognition task



the cosine-similarity based ConvNet model matches or even
surpasses the performance of the Matching-Nets and Proto-
typical Networks, which are explicitly trained on the few-shot
object recognition task. By comparing the cosine-similarity
based ConvNet models (Cosine Classifier entries) with the
dot-product based models (Dot Product entries) we observe
that the former drastically improve the few-shot object recog-
nition performance, which means that the feature extractor
that is learned with the cosine-similarity classifier gener-
alizes significantly better on “unseen” categories than the
feature extractor learned with the dot-product classifier. No-
tably, the cosine-similarity classifier significantly improves
also the recognition performance on the base categories.

Removing the last ReLU unit. In our work we propose
to remove the last ReLU non-linearity from the feature ex-
tractor when using a cosine classifier. Instead, keeping the
ReLU units (Cosine w/ ReLU entries) decreases the accuracy
on novel categories while increasing it on base categories.

Few-shot classification weight generator. Here we ex-
amine the performance of our system when we also incorpo-
rate on it the proposed few-shot classification weight gener-
ator. In Table 1 we provide two solutions for the few-shot
weight generator: the entry Cosine Classifier & Avg. Weight
Gen that uses only the feature averaging mechanism de-
scribed in section 3.2 and the entry Cosine Classifier & Att.
Weight Gen that uses both the feature averaging and the
attention based mechanism. Both types of few-shot weight
generators are trained during the 2nd training stage that is
described in section 3.3. We observe that both of them offer
a very significant boost on the few-shot recognition perfor-
mance of the cosine similarity based model (entry Cosine
Classifier). Among the two, the attention based solution
exhibits better few-shot recognition behavior, especially in
the 1-shot setting where it has more than 3 percentage points
higher performance. Also, it is easy to see that the few-shot
classification weight generator does not affect the recogni-
tion performance of the base categories, which is around
70.50% in all the cosine-similarity based models. Moreover,
by introducing the few-shot weight generator, the recogni-
tion performance in both type of categories (columns Both)
increases significantly, which means that the ConvNet model
achieves better behavior w.r.t. our goal of unified recognition
of both base and novel categories. The few-shot recogni-
tion performance of our full system, which is the one that
includes the attention based few-shot weight generator (entry
Cosine classifier & Att. Weight Gen), offers a very signifi-
cant improvement w.r.t. the prior state-of-the-art approaches
on the few-shot object recognition task, i.e., from 72.67% to
74.92% in the 5-shot setting and from 55.53% to 58.55% in
the 1-shot setting. Also, our system achieves significantly
higher performance on the recognition of base categories
compared to Prototypical Networks4.

4In order to recognize base categories with Prototypical Networks, the

Models 5-Shot learning – Knovel=5 1-Shot learning – Knovel=5
Novel Base Both Novel Base Both

Matching-Nets [25] 68.87± 0.38% - - 55.53± 0.48% - -
Prototypical-Nets [22] 72.67± 0.37% 62.10% 32.70% 54.44± 0.48% 52.35% 26.68%

Ours
Cosine Classifier 72.83± 0.35% 70.68% 51.89% 54.55± 0.44% 70.68% 39.17%
Cosine Classifier & Avg. Weight Gen 74.66± 0.35% 70.92% 60.26% 55.33± 0.46% 70.45% 48.56%
Cosine Classifier & Att. Weight Gen 74.92± 0.36% 70.88% 60.50% 58.55± 0.50% 70.73% 50.50%

Ablations
Dot Product 64.58± 0.38% 63.59% 31.80% 46.09± 0.40% 63.59% 24.76%
Dot Product & Avg. Weight Gen 60.30± 0.39% 62.15% 46.41% 44.31± 0.40% 61.99% 39.05%
Dot Product & Att. Weight Gen 67.81± 0.37% 62.11% 48.70% 53.88± 0.48% 62.28% 42.41%

Ablations
Cosine w/ ReLU. 71.04± 0.36% 72.51% 58.16% 52.91± 0.45% 72.51% 43.17%
Cosine w/ ReLU. & Avg. Weight Gen 71.30± 0.38% 72.47% 59.33% 53.19± 0.45% 71.70% 49.53%
Cosine w/ ReLU. & Att. Weight Gen 73.03± 0.38% 72.26% 61.05% 56.09± 0.54% 72.34% 51.25%

Table 1: Average classification accuracies on the validation set
of Mini-ImageNet. The Novel columns report the average 5-way
and 1-shot or 5-shot classification accuracies of novel categories
(with 95% confidence intervals), the Base and Both columns report
the classification accuracies of base categories and of both type of
categories respectively. In order to report those results we sampled
2000 tasks each with 15× 5 test examples of novel categories and
15× 5 test examples of base categories.
Models Feature

Extractor
5-Shot learning – Knovel=5 1-Shot learning – Knovel=5

Novel Base Both Novel Base Both

Matching-Nets [25] C64F 55.30% - - 43.60% - -
Ravi and Laroche [16] C32F 60.20± 0.71% - - 43.40± 0.77% - -
Finn et al. [3] C64F 63.10± 0.92% - - 48.70± 1.84% - -
Prototypical-Nets [22] C64F 68.20± 0.66% - - 49.42± 0.78% - -
Mishra et al. [12] RESNET 68.88± 0.92% - - 55.71± 0.99% - -

Ours C32F 70.27± 0.64% 61.08% 52.45% 54.33± 0.81% 61.09% 43.05%
Ours C64F 72.81± 0.62% 68.13% 57.72% 56.20± 0.86% 68.08% 48.09%
Ours C128F 73.00± 0.64% 70.90% 59.35% 55.95± 0.84% 70.72% 49.08%
Ours RESNET 70.13± 0.68% 80.16% 56.04% 55.45± 0.89% 80.24% 51.23%

Table 2: Average classification accuracies on the test set of Mini-
ImageNet. In order to report those results we sampled 600 tasks in
a similar fashion as for the validation set of Mini-ImageNet.

4.1.2 Comparison with state-of-the-art

Here we compare the proposed few-shot object recognition
system with other state-of-the-art approaches on the Mini-
ImageNet test set.

Explored feature extractor architectures. Because
prior approaches use several different network architectures
for implementing the feature extractor of the ConvNet model,
we evaluate our model with each of those architectures.
Specifically the architectures that we evaluated are: C32F
is a 4 module ConvNet network (which was described in
§ 4.1.1) with 32 feature channels on each convolutional layer,
C64F has 64 feature channels on each layer, and in C128F
the first two layers have 64 channels and the latter two have
128 channels (exactly the same as the model that was used
in § 4.1.1). With RESNET we refer to the ResNet [5] like
network that was used from Mishra et al. [12] (for more
details we refer to [12]).

In Table 2 we provide the experimental results. In all
cases, our models (that include the cosine-similarity based
ConvNet model and the attention-based few-shot weight

prototypes for the base categories are computed by averaging all the avail-
able training features vectors



Novel All All with prior
Approach N ′=1 2 5 10 20 N ′=1 2 5 10 20 N ′=1 2 5 10 20

Prior work
Prototypical-Nets [22] (from [26]) 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6 53.6 61.4 68.8 72.0 73.8
Matching Networks [25] (from [26]) 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5 54.5 60.7 68.2 72.6 75.6
Logistic regression (from [26]) 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9 52.9 60.4 68.6 72.9 76.3
Logistic regression w/ H [4] (from [26]) 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9 53.2 59.1 66.8 71.7 76.3
SGM w/ H [4] - - - - - 54.3 62.1 71.3 75.8 78.1 - - - - -
Batch SGM [4] - - - - - 49.3 60.5 71.4 75.8 78.5 - - - - -

Concurrent work
Prototype Matching Nets w/ H [26] 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5 56.4 63.3 70.6 74.0 76.2
Prototype Matching Nets [26] 43.3 55.7 68.4 74.0 77.0 55.8 63.1 71.1 75.0 77.1 54.7 62.0 70.2 73.9 75.9

Ours
Cosine Classifier & Avg. Weight Gen 45.23 56.90 68.68 74.36 77.69 57.65 64.69 72.35 76.18 78.46 56.43 63.41 70.95 74.75 77.00

± .25 ± .16 ± .09 ± .06 ± .06 ± .15 ± .10 ± .06 ± .04 ± .04 ± .15 ± .10 ± .06 ± .04 ± .03
Cosine Classifier & Att. Weight Gen 46.02 57.51 69.16 74.83 78.11 58.16 65.21 72.72 76.50 78.74 56.76 63.80 72.72 75.02 77.25

± .25 ± .15 ± .09 ± .06 ± .05 ± .15 ± .09 ± .06 ± .04 ± .03 ± .15 ± .10 ± .06 ± .04 ± .04

Table 3: Top-5 accuracy on the novel categories and on all categories (with and without priors) fot the ImageNet based few-shot benchmark
proposed in [4] (for more details about the evaluation metrics we refer to [26]). For each novel category we use N ′ = 1, 2, 5, 10 or 20
training examples. Methods with “w/ H” use mechanisms that hallucinate extra training examples for the novel categories. The second rows
in our entries report the 95% confidence intervals.

generator) achieve better few-shot object recognition perfor-
mance than prior approaches. Moreover, it is very important
to note that our approach is capable to achieve such excel-
lent accuracy on the novel categories while at the same time
it does not sacrifice the recognition performance of the base
categories, which is an ability that prior methods lack.

4.2. Few-shot benchmark of Bharath & Girshick [4]

Here we evaluate our approach on the ImageNet based
few-shot benchmark proposed by Bharath and Girshick [4]
using the improved evaluation metrics proposed by Wang
et al. [26]. Briefly, this benchmark splits the ImageNet cat-
egories into 389 base categories and 611 novel categories;
193 of the base categories and 300 of the novel categories
are used for cross validation and the remaining 196 base
categories and 311 novel categories are used for the final
evaluation (for more details we refer to [4]). We use the
same categories split as they did. However, because it was
not possible to use the same training images that they did for
the novel categories5, we sample ourselves N ′ training im-
ages per novel category and, similar to them, evaluate using
the images in the validation set of ImageNet. We repeat the
above experiment 100 times (sampling each time a different
set of training images for the novel categories) and report in
Table 3 the mean accuracies and the 95% confidence inter-
vals for the recognition accuracy metrics proposed in [26].

Comparison to prior and concurrent work. We com-
pare our full system (Cosine Classifier & Att. Weight Gen
entry) against prior work, such as Prototypical-Nets [22],
Matching Networks [25], and the work of Bharath and Gir-
shick [4]. We also compare against the work of Wang et

5It was not possible to establish a correspondence between the index
files that they provide and the ImageNet images

al. [26], which is concurrent to ours. We observe that in
all cases our approach achieves superior performance than
prior approaches and even exceeds (in all but one cases)
the Prototype Matching Net [26] based approaches that are
concurrent to our work.

Feature extractor: The feature extractor of all ap-
proaches is implemented with a ResNet-10 [5] network
architecture6 that gets as input images of 224 × 224 size.
Also, when training the attention based few-shot classifica-
tion weight generator component of our model (2nd training
stage) we found helpful to apply dropout with 0.5 probability
on the feature vectors generated by the feature extractor.

5. Conclusions
In our work we propose a dynamic few-shot object recog-

nition system that is able to quickly learn novel categories
without forgetting the base categories on which it was trained,
a property that most prior approaches on the few-shot learn-
ing task neglect to fulfill. To achieve that goal we propose a
novel attention based few-shot classification weight genera-
tor as well as a cosine-similarity based ConvNet classifier.
This allows to recognize in a unified way both novel and
base categories and also leads to learn feature representa-
tions with better generalization capabilities. We evaluate our
framework on Mini-ImageNet and the recently introduced
fews-shot benchmark of Bharath and Girshick [4] where
we demonstrate that our approach is capable of both main-
taining high recognition accuracy on base categories and to
achieve excellent few-shot recognition accuracy on novel
categories that surpasses prior state-of-the-art approaches by
a significant margin.

6Similar to what it is already explained, our model does not include the
last ReLU non-linearity of the ResNet-10 feature extractor
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