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Abstract

In order to achieve higher resolutions, current earth-
observation satellites use larger lightweight primary mirrors
that can deform over time, impacting on image quality. We
evaluated the possibility of compensating these deformations
directly in the satellite by combining a deformable mirror
with a Shack-Hartman wavefront sensor (SHWFS). The per-
formance of the SHWFS depends entirely on the accuracy
of the shift estimation algorithm employed, which should be
computationally cheap to be executed on-board. We analyzed
the problem of fast accurate shift estimation in this context
and propose a new algorithm, based on a global optical flow
method that estimates the shifts in linear time. In our exper-
iments, our method proved to be more accurate and stable,
as well as less sensitive to noise than all current state-of-the-
art methods, permitting a more precise on-board wavefront
estimation.

1 Introduction

Adaptive optics (AO) is a well-known technology to sense
and correct wavefront distortions. This technology is used
in astronomy to produce sharper images from heavily aber-
rated wavefronts originated by atmospheric turbulence. This
correction is usually performed through a deformable mirror
which adapts to the measured wavefront correcting the dis-
tortion [48]. Since AO also allows to improve the performance
of aberrated optical systems, it is widely used in several other
contexts such as ophthalmology [47], microscopy [6] and free-
space laser communication systems [45] among others [44].
A key component of an adaptive optics system is the wave-
front sensing mechanism, i.e., the device used to precisely
measure the distortion. A Shack-Hartmann wavefront sensor
(SHWEFS) is one such device. It uses an array of lenslets to
measure the deformation of the incoming wavefront. The shift
of each lenslet focal plane image is proportional to the mean
slope of the wavefront in the subaperture onto this lenslet.
It yields a discrete local approximation of the slope of the
wavefront (Fig. . This deformation is usually measured by
imaging a point source such as a star, and measuring the rel-
ative displacement between a reference image and all other
subimages to compute the local gradient of the wavefront.
Recently, the community evaluated the possibility of cor-
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Figure 1: A Shack-Hartmann Wavefront Sensor measures the
wavefront by computing the local shifts between the detected
spots (in green) and the reference crosses (in black), which
would occur if no deformation were present.

recting wavefront deformations on earth-observation satellites
[26, M1l 5] caused by the deformation of the primary mirror.
In this setting, the problem of atmospheric turbulence is neg-
ligible. Indeed, in astronomical observations from the earth,
the angle of view is extremely narrow. As a result, the light
wavefront crosses a narrow solid angle of atmosphere and its
perturbations due to turbulence have a great impact on im-
age quality. In earth observation from a satellite, however,
the angle of view is much larger, so the perturbations due to
turbulence are relatively much smaller.

However, the correction of optical aberration is becom-
ing more and more important for high resolution earth-
observation satellites. Indeed, in order to increase the spa-
tial resolution of satellite images, i.e., its ground sample dis-
tance, a larger primary mirror is required to gain a higher
angular resolution. Large mirrors must be thicker to avoid
deformations which increases dramatically their weight and
renders launching costs prohibitive. For this reason large yet
lighter mirrors have to be considered. Their drawback is that
time-varying deformations due to thermal effects and vibra-
tion severely deteriorate the image quality [8]. To correct
these deformations, a SHWFS device could be used to mea-
sure them by observing the earth, together with a deformable
mirror to compensate for these deformations. As opposed to
adaptive optics where the distortion has to be compensated
in real-time due to the fast changes in the atmosphere, in
our case the compensation for the mirror deformation is less
frequent, roughly on timescales of seconds.

Coming from control theory, two schemes exist for perform-
ing wavefront correction. While in an open loop adaptive



optics system the wavefront error is measured before it has
been corrected by the wavefront corrector, in a closed loop
system the measured wavefront deformation is the residual
error after the correction of the previous estimation has been
performed. The difference between both operational modes
is important because in a closed loop system, the wavefront
aberrations measured will be small, permitting to assume a
maximum shift between images of up to a few pixels. In this
article we assume a closed loop system.

Another important factor that affects the accuracy of wave-
front sensing is the phenomenon of scintillation and phase
anisoplanatism, which results in more complex patterns than
simple global shifts between subapertures. The influence of
this phenomenon was widely studied in the context of adap-
tive optics [28] [30} 46]. However, in remote sensing, because
the phase aberration is produced at the telescope pupil, all
parts of the image are affected by it in the same way, neglect-
ing its incidence [2§].

Finally, once the shift estimation is performed, several
methods can be used to reconstruct the wavefront from its
local gradient estimations, namely the iterative zonal method
[41], the vector-matrix-multiply (VMM) method [I5] and the
Fourier Transform Reconstruction (FTR) method [27]. The
latter is recommended when the number of actuators is high,
however, the VMM method obtains more accurate results un-
der a SHWFS configuration using less than 12 x 12 subaper-
tures [33].

As mentioned before, wavefront sensing in astronomy is
usually performed using the stars. When observing the earth
from space this task becomes more challenging.

Extended scene vs point source observation. For an
earth observation satellite, the SHWFS is used on extended
scenes instead of point sources such as stars. This setup is
called scene-based wave-front sensing (SBWF'S), or extended-
scene wave-front sensing (ESWFS). Because the scene is ex-
tended, a field stop has to be installed in front of the SHWF'S,
as seen in Fig. [1} so that the images given by the lenslet array
do not overlap in the lenslet focal plane [20]. This yields a grid
of images, each one corresponding to one sub-aperture, which
are shifted versions of the same scene. Accurately measuring
these shifts permits to estimate the gradient of the wavefront.
As a drawback, since we are dealing with landscapes larger
than the captured image, achieving high accuracy on the shift
estimation task gets challenging. Worse still, in most wave-
front sensors, the extent of the source object normally reduces
the contrast of the signal, thwarting accurate shift measure-
ments [35].

Difference in subimage SNRs due to pupil occlusions.
For long focal length telescopes commonly used on earth-
observation satellites, the Korsch concept is the most com-
mon. The pupil of a Korsch telescope is generally occluded in
the center by a secondary mirror. The arms used to hold this
mirror also occlude the pupil. In these regions, the lenslets
suffer a loss in the incoming signal, proportional to their per-
centage of occlusion. This configuration is depicted in Fig.
An example of a SHWFS output in the CRT sensor is
shown in Fig. From this figure, it can be seen how the
SNR on the partially occluded lenslets is significantly lower.
Limited on-board computational capacity. An im-
portant distinction when performing wavefront sensing from
earth-observation satellites is its limited computational ca-
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(a) Occlusion schema in a
12 x 12 SHWFS.

(b) Images obtained on an ex-
tended landscape.

Figure 2: Example of a SHWF'S occlusion scheme under a Ko-
rsch telescope. Both the secondary mirror and the arms used
to hold it are clearly visible. For each lenslet, the decrease of
the incoming signal is proportional to its occlusion.

pacity. Due to this constraint, several shift estimation meth-
ods proposed for SHWEFS are not suitable on-board due to
their high complexity.

Unusable observations. Another difference when observ-
ing extended scenes, as opposed to the use of SHWFS with
point sources, is the need to predict if the current scene per-
mits to accurately estimate the wavefront aberration. Scenes
such as clouds, sea or any textureless landscape can thwart
all shift measurement methods, leading to poor wavefront es-
timation.

Contributions. Based on these differences, we present a
new shift estimation method in the context of SHWFS used
on extended scenes. Our contribution is threefold. We shall
start with a review of the state-of-the-art on wavefront correc-
tion using SHWFS on extended scenes. Second, we propose
the use of an iterative global optical flow method for shift
estimation which presents several advantages over the con-
ventional correlation methods. Third, we propose a fast and
effective method for scene preselection that adds almost no
further computational cost to the overall estimation using the
proposed algorithm.

This article is organized as follows. In section [2] we review
the state-of-the-art on shift estimation applied for SHWFS
on extended scenes. In section [3] we present our optical flow
method and its usage for wavefront correction from earth-
observation satellites. In section [] we focus on scene pre-
selection methods. In section [5| we study the influence of the
parameters on the proposed method, and thoroughly compare
its performance with the state-of-the-art. We involve ground
truth simulations provided by CNES and our own simulator.
Section [l is a conclusion.

2 State-of-the-art review

Since the Shack-Hartmann wavefront sensor was introduced
in the late 1960s [25], several algorithms were proposed to
estimate the shifts using point sources such as stars. How-
ever, only few authors have studied the problem when the
source is extended, as when observing the earth from space.
Broadly, they can be categorized in correlation methods work-
ing in the spatial [21], 20, 8] or in the frequency domain



[26, 37, [39], 17, [18], phase correlation methods that estimate
the shift directly in the frequency domain [I7, [42], iterative
methods [37, B9 that improve on previous approaches by pro-
gressively estimating the shift, and maximum likelihood (ML)
approaches [I4] that incorporate a specific noise model to the
problem and compute ML estimate as the solution of an op-
timization problem.

2.1 Correlation-based Methods

These methods compute a correlation score on a grid C(4, j)
and interpolate it to determine the subpixel location of the
peak. The methods mainly differ in the choices of correlation
score and interpolation strategy.

Spatial domain correlation-based methods. Michau et
al. [21] were among the first to propose an experimental im-
plementation for using a SHWF'S on extended sources larger
than the wavefront sensor field of view. Their method com-
putes the discrete cross-correlation between the images and a
reference subimage chosen from the central region of the wave-
front sensor image pattern. To estimate the subpixel shifts,
the correlation peak location is computed as the centroid of
the pixels with a correlation higher than half the maximal
observed correlation.

Lofdahl [I8] tested several shift estimation algorithms
for Shack-Hartmann wavefront sensors observing the sun.
By testing with several possible sources of errors such as
noise, blur and bias mismatch, he evaluated five different
correlation-based methods to obtain the correlation score
C(i,7). Among the evaluated correlation algorithms, the best
all-around performer proved to be the classical least squares
approach or squared difference function (SDF). Another pro-
posed correlation score is the Covariance Function in the Im-
age domain (CFI) using trend-corrected versions of both im-
ages. Indeed, Smithson & Tarbell [43] showed that a linear
trend in intensity shifts the covariance peak from the correct
position, so a fitted plane has to be subtracted from both im-
ages beforehand. For the SHWFS case, this reduces to simply
subtracting the mean value for each image. They also tested
other two methods based on the absolute difference between
both images (ADF), and its square (ADF?) in order to better
locate the minimum at the sub-pixel level.

To achieve subpixel precision, they evaluated four interpo-
lation strategies to look for the minimum value on the corre-
lation grid C(imin, jmin). The four algorithms they evaluated
can be described as fitting a conic section to the 3 x 3-element
submatrix s centered in the sample minimum C(imin, jmin)-
The evaluated algorithms differ on the number of pixels used
and on whether the fitting is done in 2D or in each di-
mension separately. The 1D quadratic interpolation (1QI)
fits a parabola in each dimension independently, while the
2D quadratic interpolation (2QI) fits the conic to the 3 x 3
neighborhood. They also evaluated a 1D Least Square (1LS)
method on both dimensions, which averages the three val-
ues on one dimension and then applies least squares on the
other, and a 2D Least Square (2LS) variant which includes
the corner values in the procedure.

Frequency domain correlation-based methods.
Poyneer [26] studied the wavefront estimation problem

using a SHWFS by observing the Earth from space using
lightweight optics. By assuming periodicity on the input
images, the author points out that minimizing the MSE
between both images becomes equivalent to maximizing their
periodic convolution, which is efficiently computed in the
frequency domain using the cross-correlation theorem. To
get subpixel precision the maximum at integer coordinates
is refined by independently fitting a parabola on each
dimension.

Lofdahl also evaluated a frequency-domain method [I8]
which, similarly to [26], computes the covariance in the
Fourier domain (CFF). However, both images are previously
normalized to zero mean and windowed with a 2D Hamming
window or a flat-top window to avoid ringing caused by the
periodization. Again, the subpixel maximum is obtained by
fitting a parabola to the grid.

2.2 Phase Correlation

The phase-correlation method was widely studied in the im-
age processing domain [42,[12]. Let I(7,j) be an M x N image,
due to the Fourier shift theorem we know that

F{I(i— Dy, j—Ay)} =1 (u,v)exp (—j% (“]@m +”§y)> (1)

then by computing the cross-power spectrum between both
images and extracting the phase for each frequency, the ma-
trix ¢, called the phase correlation matrix, is given by

g (€)(w0) = otu.0) =20 (U + 252) . @

The shifts can therefore be computed directly in the fre-
quency domain by fitting a plane passing through the origin
of ¢(u,v). Due to aliasing, some of these frequencies may
be corrupted and distort the shift estimation. To avoid this
problem Knutsson et al. [I7] discard most of the corrupted
frequencies from ¢ retaining only the two or four lowest fre-
quencies. This estimate has the advantage of being the least
sensitive to aliasing [42] hence the most reliable. Moreover
assuming small shifts (smaller than half pixel) no phase un-
wrapping is required [I3]. The accuracy of these methods
however, suffers considerably in low SNR situations [20].

2.3 Iterated Estimation

Since correlation-based shift estimation has a bias propor-
tional to the shift magnitude [23], then compensating the
shift by resampling one of the images and iterating should
progressively reduce this bias (see section 3).

Sidick et al. [37] proposed Adaptive Cross-Correlation
(ACC) that estimates the shift using an approach similar
to Knutsson [I7] and uses this estimation to resample the
second image in the frequency domain to iterate the proce-
dure. Due to potential ringing artifacts on the image bound-
aries after the resampling procedure, the shift is estimated
using the central part of both images with size N/2, involv-
ing one fourth of the image pixels in the computation. To
make the shift estimation more accurate, it uses eight fre-
quency components ¢(n,m) with 0 < m,n < 2 to perform



the least-squares fitting, excluding the center. This proce-
dure is made iterative by accumulating both v and v shift es-
timates, until a predefined amount of iterations is reached or
until A, = [A2 + A2]1/2 the increase of both shift estimates,
is lower than a predefined tolerance value. This technique is
then applied for every sub-aperture Iy (i, j).

This algorithm was evaluated on simulated scenes by vary-
ing the shift between them [37] and by using a real SHWFS
configuration testbed [38] produced in the Jet Propulsion
Laboratory at NASA [22]. By relaxing the tolerance param-
eter of their iterative scheme, it achieves errors of the order
of 0.05 pixels by using between 3 and 6 iterations.

This method presents two problems. Since it discards half
of each image to perform the shift estimation, it usually fails
when image contents appear away from the center. Also,
as in [I7], the shift estimation step of the method suffers
severely in low SNR scenarios. Due to this reason, the authors
updated the method in [39] by replacing this step with the
periodic-correlation technique of Poyneer [26]. This method,
named Adaptive Periodic Correlation (APC), is more tolerant
to noise than ACC.

2.4 Maximum Likelihood Estimator

Gratadour et al. [I4] studied the performance of the MLE
within an adaptive optics context. Assuming that the two
images Iy and I; are unknown and contaminated with Gaus-
sian noise their method reduces to minimizing

>k (o (k) I (k) = [o(z — 21)] 1 (k) 3)

with respect to the shift z1, where o2(k) is the noise vari-
ance at pixel k and [|;7; a sampling operator that performs
Fourier resampling, which is done by computing the inverse
FFT of . To guarantee that the images can be resampled
in the Fourier domain they are pre-filtered using a low-pass
filter. This minimization is performed using an a conjugate
gradient method. Although it improves over the typical cross-
correlation, it has high computational cost prohibiting its im-
plementation on satellites [20] 26].

3 Accurate shift estimation using

optical flow in the context of a
SHWEF'S

In order to estimate the shift between two sub-apertures, we
propose to use a gradient-based shift estimator (GBSE) based
on the optical flow equation. The idea behind this method-
ology, as proposed originally by Lucas and Kanade [I9], is
to relate the difference between two successive frames to the
spatial intensity gradient of the first image. Given the two
images Ir(z,y) = I(z — vy, y — v,) where v, and v, are the
unknown shift coefficients, the first order Taylor approxima-
tion yields

aIl(xay) +

ol (z,y)
ox Yy :

dy

Il(xvy)_IQ(xay)zvx . (4)

To estimate the global optical flow between I; and I, the
Lucas-Kanade algorithm assumes a constant flow for every

pixel, which allows the construction of an overdetermined sys-
tem of constraint equations Av = b, where A is composed of
spatial intensity derivatives and b has temporal derivatives.
Emulating Simoncelli [40], in order to increase the accuracy
of the method by minimizing noise or aliasing influence, we
looked for two kernel functions: an anti-symmetric kernel d
to estimate the image gradients and a symmetric kernel k to
prefilter the images. Using both kernels, matrix A and vector
b become

(A 11)(p1) (dyxI1)(p1) (kx (L —12))(p1)

A= b=

(kx(I1—12))(pn)

(5)
where p; with ¢ = 1...n represents the ith pixel and n the
image size. The shift is obtained by Moore-Penrose pseudo-

. N

Uy

where I, I, stands for d, * I; and d, * I respectively, and
I, = kx (I; — I1) is the derivative over time.

It is no coincidence that the results of the method depend
on the inversion of this second moment matrix. As will be
shown later, the determinant of this matrix is crucial for de-
termining the limits on the estimation performance. This
matrix will be used to discard ill-posed cases before actually
performing the shift estimation. The classic rejection case
is when the gradient is mostly oriented in a single direction.
This unsolvable situation is known as the aperture problem.
Its detection by using the Cramer-Rao lower bounds is de-
tailed in section El

It is important to remark that by centering the Taylor de-
velopment at 0 and taking up to the first order term, the
method gets systematically biased and becomes less precise
as the shift gets higher, i.e., estimated shifts larger than one
pixel would not be correctly estimated. Furthermore, the
noise in the input images is completely ignored by the algo-
rithm, which also impacts on its performance. Both these bias
sources are studied in detail in [31 23] and will be addressed
next.

(dx*fl)(pn) (d, *1'1)(;0")

>
21y
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Z Itlw
> 1y
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3.1 Iterative gradient-based shift estimator

Instead of dealing with the bias explicitly, it was shown in
Pham et al. [23] that both bias sources depend linearly on
the shift magnitude. This justifies the use of an iterative
method, which is able to significantly reduce the bias, pro-
vided an appropriate resampling method is used. Algorithm/[i]
performs k iterations, computing the shift v[¢] by solving @
(findshift), and iterates by reinterpolating the original im-
age I (Resample) using the total accumulated shift w. It
is a variant of the Lucas-Kanade algorithm [I9] known as In-
verse Compositional Algorithm [3], in which the gradients of
the reference image are static throughout the iterations, so
(ATA)~! is only computed once.

In the next sections we will see that the gradient discretiza-
tion used by findshift and the choice of interpolation method
for image resampling are crucial for the precision of the GBSE
method.



Algorithm 1 Iterative GBSE method.

1: procedure ILK(I, I5) > Receives a pair of images
2 i+ 0; I]0] + I; w <+ 0;

3 while : < k do

4 v[i] < findshift(Iy, I[i]) > (6)
5: w 4+ w + vli] > Accumulate total shift
6 LI[i 4+ 1] + Resample(Is, —w) > Use the original

I

3’

i1+ 1

return w > Return accumulated shift

i

o
5
o

<

dy dx

+

Figure 3: Used pixels (gray background) for fast gradient
estimation methods and their exact localization (red dots).
Left: Centered differences. Center: 1D backward difference
for both 0z and dy. Right: 2D backward difference.

3.2 Gradient computation and image pre-
filtering

Gradient computation for optical flow methods has been thor-
oughly studied [40, 10} [32]. Since our shift estimation is fo-
cused on accuracy and the image size on SHWFS is typically
small (usually smaller than 50 x 50 pixels), using a large ker-
nel for computing image derivatives implies loosing valuable
boundary values. This constrains the kernel to be compact
yet precise and robust to noise. In fact, the impact on the
accuracy and the robustness to noise of the gradient compu-
tation is a key factor to the final performance of the GBSE
method.

Because the method should be computationally fast, only
simple schemes could be afforded. A straightforward can-
didate is the centered differences kernel [1,0,—1], however
since the central pixel is ignored in the computation, its pre-
cision could be improved by taking contiguous pixels. For
this reason, a backward difference kernel [1, —1] would seem
more appropriate. However, the corresponding center of this
derivative differs for each component as seen from the middle
image of Fig.

A more precise gradient estimation method, illustrated on
the right of Fig. computes the derivatives by performing
convolution with d, and d, given by

SEENS

-1/2
and computes the vector b in by prefiltering both I; and
I5 using the half pixel bilinear shift kernel

k= | |

This gradient estimation procedure called hypomode [34], de-
spite being simplistic usually improves the accuracy obtained
by GBSE methods using finite difference gradient estimation.
This is because it slightly blurs the input images, which alle-
viates both aliasing and noise.
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Figure 4: Gradient estimation methods comparison for three
different maximum shifts (0.1, 0.5 and 2 pixels). Left: Highly
contrasted image (simple case). Right: Gradients mainly
distributed on a single direction (challenging case). Noise
std. dev. according to 12-bit images.

We also considered the normalized 2D Gaussian smooth-
ing kernel k = g(z,y,0,) with standard deviation o4, and
its derivatives d, = —a%g(x,y,ag) and d, = —U%g(x,y,ag).
The parameter o, controls the amount of blur, thus using a
small value would be less tolerant to noise, while a high value
could remove textures useful for the shift estimation. In our
experiments, we evaluated using o, = {0.3,0.6, 1} with sup-
ports of 3,5 and 7 pixels respectively.

As seen from both Fig. and Fig. the fastest and
most accurate gradient estimator for small shifts (=~ 0.1) is
the hypomode. Therefore it should be considered when the
underlying deformations are small enough (which could hap-
pen on a closed loop system with frequent mirror corrections).
However, if the maximum shift caused by the wavefront aber-
ration is larger than half a pixel, computing the Gaussian
derivatives with o4 = 0.6 offers the best balance between ac-
curacy and tolerance against noise, as seen from figures
and 4] In fact, using o = 0.6 gives better results than
using o0 = 0.3. This is because a higher ¢ removes more noise
from the derivatives, and blurring the images impacts less on
the accuracy than neglecting the noise. Finally, it should be
noted that although taking ¢ = 1 usually offers poor accu-
racy with small image sizes, its tolerance to noise becomes
a decisive factor as the noise increases (as seen in figures

and .
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Figure 5: Example of FFT resampling with and without im-
age symmetrization. Resampling with DFT produces ringing
due to the discontinuities at the periodized boundaries. No
visible ringing is observed after resampling with symmetriza-
tion.

3.3 Interpolation methods for image resam-
pling

In order to iterate the method, the second image needs to be
shifted, as indicated in step 6 of Algorithm[l]} To this end, five
different interpolation methods were evaluated, namely bilin-
ear, bicubic [I6] and cubic spline [9], together with resam-
pling using the Fourier shift theorem [4], which is evaluated
with and without image periodization. Image periodization
prevents the generation of ringing artifacts due to the discon-
tinuities at the image boundaries. It amounts to resampling
with DFT a mirrored version of the image which has no dis-
continuities when periodization is assumed (see Fig.

The choice of interpolation method is critical for the over-
all method accuracy. However precision comes at a higher
processing cost. We evaluated the different interpolations
by simulating a landscape with noise of o, = 80, displace-
ments between subapertures of up to 2 pixels, and computing
gradients by using Gaussian derivatives with o, = 0.6. For
each method we computed the average error and standard
deviation over 200 independent random realizations, using
the GBSE method with 2 and 3 iterations. Results in Fig.
[6] show a non-negligible performance difference between the
methods. In terms of average error, both DFT-based methods
achieve the best results, however no significant improvement
is obtained by performing periodization, although a minimal
reduction in the standard deviation is observed. The splines
interpolation yields slightly less accurate results, however it
should be considered if fast DFT hardware cannot be installed
on board. Finally, both bicubic and bilinear interpolation
perform significantly worse than the rest, although bicubic
interpolation results had less variability with respect to other
approaches. Lastly using three iterations does not improve
considerably over using two, not justifying the increase in
computational cost. However, although not shown in this ex-
periment, this difference gets higher as the noise increases,
which justifies its use.

3.4 Image intensities equalization

One requirement of the GBSE algorithm is to work on images
with similar intensities. Since occluded sub-apertures receive
less light, their intensities differ from the reference image.
To this end, all subimages are equalized by normalizing their
mean with the highest mean among all subapertures.

Interpolation 2(top) and
T T T

I I [ 1 DFT wisym
— [
— [ splines
[ bicubic
f f f f f f f f f f f f f
L L L L L L L L L L L L L

0 00025 0.005 0.0075 0.01 00125 0015 00175 002 00225 0025 0.0275 0.03 0.0325 0.035
Avg. error in pixels

Figure 6: Comparison of evaluated interpolation methods us-
ing 2 and 3 iterations and Gaussian derivatives with o4 = 0.6.
Image noise was fixed to o, = 80 and the maximum displace-
ment was set to 2 pixels.

When the point spread function (PSF) of each sub-aperture
is known, another equalization strategy before shift estima-
tion between a subaperture and the reference is to convolve
both images with the PSF of the other one [5]. Our focus
being on the shift estimation method, we chose to perform
the equalization by the simple procedure explained above. It
is computationally cheaper, yet obtains excellent results.

3.5 Multiscale implementation

The GBSE algorithm can be easily adapted to work in an
open loop environment where aberrations are potentially
larger, leading to larger shifts between subapertures. As men-
tioned before, if the shift is larger than one pixel, the GBSE
method fails. However, by building a pyramid representation
of the input images, @ can be applied on each scale to esti-
mate the shift between images, and this estimated shift can
in turn be used to resample the second image on the following
level of the pyramid. If more accuracy is desired, Algorithm ]
can be used to better estimate the shift at each scale. We
compute the pyramid using an approximate dyadic Gaussian
pyramid [7]. Starting from the coarse image at scale n > 1,
the method is summarized in Algorithm

Algorithm 2 Multiscale GBSE method.

1: procedure MSSE(I;,I;) > Receives a pair of images

2: Illn — BuzldPyramzd(Il, TL) D> Burt&Adelson’s Gaussian
Pyramid [7]

3: Izln — BuildPyTamid(Iz, n) D> i.e., IMPYRAMID function
from Matlab

4: 14-n; w<+ 0 > n: number of scales, w: accumulated
shift

5: while 7 >1 do

6: v(i) < ILK(I{,I}) or findshift(I},15) > Alg.[for
@

7: w4 2w+ 20(7)

8: I3 « Resample(I5", —w)

9 1 —i—1

10:  v(1) = findshift(I},12)

11: return w + v(1) > Return accumulated shift




4 Scene preselection and robustness
estimation

Before evaluating the deformation of the incoming wavefront,
it is crucial to determine if the current landscape, i.e., what
the satellite is observing at the moment, is suitable for per-
forming wavefront sensing. This problem has been studied by
Sidick et al. [38] and by Poyneer [26] who proposed several
fail-safe criteria to determine if a SH image is acceptable.

In this context, we propose to perform two distinct valida-
tions to ensure an accurate wavefront correction. While the
first one is based on calculating the lowest theoretical achiev-
able error through the Cramer-Rao lower bound (CRLB)
given by the noise and the image contents, the second val-
idation, called the eigenratio test, measures the gradient dis-
tribution along the image through the ratio of the eigenvalues
of the structure tensor. Both validations are complementary
and should be verified together.

CRLB test The best achievable accuracy, given the cur-
rent landscape and the underlying noise, can be estimated by
the Cramer-Rao lower bound. In the last decade, three main
works have addressed the calculation of the error on the esti-
mated shift caused by the noise. Robinson and Milanfar [31]
used the Cramer-Rao lower bound to derive a performance
limit for image registration. The CRLB imposes a lower limit
on the mean squared error for any estimate of a deterministic
parameter. Pham et al. [23] continued on the same idea to
derive a theoretical limit for image registration, followed by a
study of the bias for the gradient based 2D shift estimation.
Recently, Aguerrebere et al. [I] performed an in depth study
of performance limits within a multi-image alignment context
and derived several Cramer-Rao lower bounds depending on
the conditioning of the problem.

By assuming that the noise is independent, homoscedastic,
Gaussian and with the same variance o2 on both images, and
denoting by S the set of all pixels in the image, the Cramer-
Rao bound for any unbiased 2D shift estimator is

o ZSIZ > U%Zslg

>
var(vg) > Dot var(vy) > Dot

(9)

where Det = Y o I2> 612 — (Y4 IIIy)Q. We can therefore
define a parameter Acrrp, the maximum allowed error in
pixels, that determines whether the current landscape is ac-
ceptable for performing wavefront estimation, by verifying
(var(vg) + var(vy))'/? < Acrrp- (10)
Yet, I,I, represent the gradient obtained from the un-
known noiseless image I. Thus this bound is only useful for
a theoretical study. In practice, however, the required values
can be approximated using the method of [24], where they
estimate the second moment matrix of image I; from noisy
versions I; and I>. Another possibility would be to approxi-
mate these sums by computing the expected value using the
derivative definition and a noise variance estimation. For ex-
ample set I,.(i,j) = I(i 4+ 1,7) — I(i,7) and let I = I +n be
the observed noisy image where n has distribution N(0,02).
Since all n(i, j) are independent, by the law of large numbers

we have

S B =S Lon)? =3 B> Lngt Y n2 = 3 1242|502,
S S S S S

S

It follows that we can estimate ¢ I2 from the noisy image

I by
S 2~ I —2(8|on.
S S

The other terms can be computed using similar calculations.

The CRLB defined in @D expresses a direct relationship
between the accuracy of the estimation and the SNR ratio,
measured as a ratio of the noise to the square of the gradient.
Furthermore, it follows from the form of the denominator of
these expressions that if there is a strong correlation between
I, and I, the vertical and horizontal partial derivatives, then
Det will be zero or very close to zero. The formulas show
that this entails a high variance for the estimation of the
translation. This is the so called Aperture Problem [36]. In
that case the true motion is irrecoverable.

It must be noted that the Cramer-Rao bounds are derived
for an unbiased 2D shift estimation. For the case of biased es-
timators, the bound is even higher. Also, the hypothesis made
about the noise being white Gaussian and homoscedastic does
not hold in a SHWFS context used from earth-observation
satellites. However, the noise model for the sensor is usually
known beforehand, therefore allowing its variance to be sta-
bilized by applying a variance stabilization transform (VST)
such as the well-known Anscombe transform [2].

Finally, for the case of SHWFS, since shifts between im-
ages are independent, the limit on the registration accuracy
is imposed by estimating the shift between two frames.

(11)

Eigenratio test As noted by [I], the CRLB is less precise
where it is most needed, namely when the signal is dominated
by noise. Indeed, in that case the numerator and denominator
of @ cannot be estimated reliably, being both the difference
of equivalent terms. This is why we will be forced to recur to
more robust safety computations.

We propose to rapidly discard a landscape for a shift es-
timation by involving the eigenratio score of the second mo-
ment matrix 7 = ATA of (6). The matrix 7 is also the
structure tensor with unit weights associated to the image I.
The eigenvalues A1, A2 of 7 and their corresponding eigenvec-
tors e, eo summarize the distribution of the image gradient
VI = (I;,1,). Namely, if \; > Xo, then e; (or —e;) is the
direction that is maximally aligned with the gradient within
the image. More generally, the value of Ay , for k& € {1,2},
is the average of the square of the directional derivative of I
along e;. The relative discrepancy between the two eigenval-
ues is an indicator of the degree of anisotropy of the gradient
in the image, measuring how strongly it is biased towards
a particular direction (and its opposite). Then by calculat-
ing the ratio A2/A1, we obtain a number between 0 and 1,
characterizing the dominance of a particular direction for the
gradients of the image. Empirically it was verified that a ra-
tio Ao /A1 < 0.2 effectively degrades the shift estimation task,
and this metric could be used to discard badly conditioned
situations.

To compute this ratio, since 7 = AT A is positive definite
and symmetric, then both of its eigenvalues A1 and A, are real
and non-negative and its computation is straightforward.
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Figure 7: CRLB and eigenratios respectively for six examples

of landscapes. Green represents valid and red implies failure.
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5 Results

5.1 Scene pre-selection evaluation

Figures[7a]and [7h] display two examples of SH landscapes that
do not validate the eigenratio test. In these images there is a
strong dominant gradient direction that complicates the shift
estimation. The aperture problem is visually obvious in both
cases. Figures [T and [7d] present a high CRLB. The first
one corresponds to a project where the images are composed
by only noise, while the second example has a higher SNR,
however the noise is still considerable. Finally, two examples
of valid landscapes are shown in figures [Te] and [7f] which were
validated by both proposed tests.

5.2 Comparison with state-of-the-art meth-
ods

5.2.1 The CNES simulated database

CNES (French space agency) provided realistic simulations
of several SHWF'S landscapes obtained from earth-observing
satellites with their corresponding ground truth. The pro-
vided images were 37 x 37 pixels from a 12 x 12 grid following
the occlusion schema of Fig. 2a The simulated wavefront
aberrations translated into displacements no larger than half
a pixel. For each provided landscape, three different SNR
settings were simulated. Fig. [§] displays some example land-
scapes.

Every described state-of-the-art algorithm and our pro-
posed method using different interpolation/gradient estima-
tion approaches was tested against the whole dataset. In ta-
ble[T] the errors in pixels are displayed for the best performing
methods. These are the method from Michau et al. [21], the
SDF method performing 2D quadratic interpolation (SDF-
2QI) from Lofdahl [I§], the periodic convolution approach
from Poyneer [26] and the iterative APC method from Sidick
et al. [39]. For the proposed GBSE approach, three variants
are considered with increasing computational cost. A fourth
variant using the Gaussian derivative estimation method was
included for comparison purposes.

The errors obtained for figures and are close to
the theoretical limits predicted by their CRLB. On the other
side, the error obtained with Fig. and its CRLB implies
that a strong improvement is possible. Line 4, correspond-
ing to Fig. is an example where every method fails to
achieve accurate results, possibly due to the noise and the
lack of texture, which is revealed by a lower bound consid-
erably higher than for most other cases. Fig. shows an
example of a landscape where the Poyneer method [26] as well
as PCC [39] are clearly improved by the proposed approach.
Fig. proves that the aperture problem hinders most shift
estimation methods, as evidenced by their resulting errors.

P'" P
<« Yl
l i(10) '

Figure 8: Examples of landscapes from the CNES database.

Table 1: CRLB, EigenRatio (ER) and errors (in pixels) for
selected sample landscapes of the CNES database. El

CRLB ER [8 [0 [6 [B9 lit 2itL 3itS lit o=0.
(1) 0014 066 0.019 0.121 0.026 0.0564 0.030 0.017 0.016 0.022
(2) 0.006 0.44 0.029 0.106 0.038 0.158 0.014 0.008 0.008 0.013
(3) 0.006 0.19 0.048 0.096 0.105 0.092 0.035 0.036 0.036  0.040
(4) 0.041 059 0.127 0.113 0.090 0.794 0.070 0.064 0.069  0.078
(5) 0.011 0.77 0.039 0.113 0.069 0.070 0.026 0.016 0.016  0.022
(6) 0.030 0.01 0.081 0.099 0.083 0.081 0.053 0.043 0.040 0.042
(7) 0.019 0.69 0.023 0.111 0.048 0.134 0.034 0.021 0.021  0.025
(8) 0.026 0.63 0.045 0.114 0.039 0.083 0.048 0.032 0.031  0.037
(9) 0.010 0.34 0.043 0.113 0.029 0.042 0.028 0.015 0.014 0.021
(10) 0.027 0.61 0.065 0.112 0.051 0.645 0.046 0.037 0.043  0.047
Avg. 0029 132 0.146 0.111 0491 0.478 0.047 0.039 0.039 0.043
Valid 0.011 64 0.024 0.110 0.048 0.057 0.027 0.018 0.017 0.022
Time 0.296 0.025 0.084 0.221 0.034 0.165 0.311  0.052

%Rows in green represent landscapes considered valid (CRLB <
0.02 and ER>0.2), while invalid landscapes are shown in red. Bold
indicates lowest error. Averages correspond to the whole dataset,
and its ER column displays the amount of landscapes processed. The
Valid row represents the averages over all valid landscapes. The first
column links each row with the landscapes shown in Fig. Columns
18], [211, and refer to SDF-2QI, Michau et al., Poyneer
and APC methods respectively. The variants of our approach 1it,
2it L, 3it S represent Alg. using the hypomode derivative with
1, 2 (bilinear interpolation) and 3 (spline interpolation) iterations
respectively. The last column stands for one iteration and Gaussian
derivative with 6=0.6

The PCC algorithm particularly failed under the landscape
present in Fig. although the reason is not evident. Finally,
line 9 (Fig. shows a case where the SDF-2QI method was
outperformed by all variants of the proposed approach.

5.2.2 Simulated experiments

Experimental Setup. We used a simulator to evaluate the
performance of the proposed method. Given a 12-bit input
image, a set of images was generated matching a SHWF'S con-
figuration provided by CNES. A 12 x 12 lenslet grid occluded
as shown in Fig. was assumed. For each lenslet a ground
truth shift was randomly generated. Since we were simulat-
ing in a closed loop environment, the maximum displacement
was kept to half a pixel. Each sub-aperture image was then
obtained by DFT resampling the input image, extracting a
37 x 37 pixels subimage, multiplying by the occlusion factor,
and lastly adding noise.

The error for each method was computed as the mean error
for all valid sub-apertures. A sub-aperture was considered
invalid and therefore discarded if it was occluded on more
than 60% of its surface. The error for each sub-aperture was
the Euclidean distance between the measured and the ground
truth shift. To evaluate the robustness to image content, we
used three subimages: a highly contrasted one that should



Figure 9: Top: Input image used for the simulations. Bot-
tom: For each level of noise o, = {1,100,200} (vertically
separated), two different sub-apertures are shown: no oc-
clusion and 57% occluded (horizontally separated). The dy-
namic ranges were stretched for viewing purposes.

not present any difficulty for shift estimation, a slightly more
challenging one with its gradient mainly distributed on a sin-
gle direction, and one from the sea with almost no signal
(there are just a few pixels of land on the bottom). Differ-
ent amounts of additive white Gaussian noise were simulated
(with standard deviation o, € [1,...,150]), and all methods
were evaluated on 100 noise realizations. Fig. [J] shows the
subimages affected by three noise levels. Signal dependent
noise was handled by application of a variance stabilization
transform. Finally, the processing time of each method was
measured using a non-optimized Matlab implementation on
an Intel Xeon E5-2650 CPU.

We tested several variants of the proposed GBSE method.
Each one was composed by an interpolation method for re-
sampling selected among the five methods proposed (see sec-
tion , a gradient estimation method chosen between the
hypomode or one of the three Gaussian derivatives with
oy, = {0.3,0.6,1} (section , and using up to three it-
erations per shift estimation. Also, different variants using
the multiscale approach were evaluated (section up to 3
scales, where for each scale, an iterative GBSE algorithm was
used with up to 3 iterations. From these methods we retained
the best performing non-iterative method (k=1 and no re-
sampling) which uses 0,=0.6 for the gradient computation,
and the best one with 3 iterations which uses DFT resampling
with image periodization and o4, =0.3. We compared them
with all state-of-the-art algorithms presented in section[2] For
practical reasons, we only display the best performing ones,
namely, the ACC [37] and the APC [39] methods from Sidick
presented in section and the Poyneer [26] and Lofdahl
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Figure 10: Performance for non-iterative and iterative meth-
ods compared to the best variant of the proposed GBSE ap-
proach. Top: First test image. Bottom: Second test image.
Left: Non-iterative methods. Right: Iterative methods.

SDF-2QI algorithm [I8] presented in section The SDF-
2QI algorithm computes the squared sum difference function
and searches its maximum by using 2D quadratic interpola-
tion. All other presented methods were also evaluated but
discarded due to lower accuracies.

Results in a closed loop system. We compared iterative
and non-iterative algorithms separately. The average errors
and the standard deviations for non-iterating methods on the
first image type are shown in Fig. [10| (top left), together with
the processing time. The non-iterative GBSE version using
Gaussian derivatives with ¢ = 0.6 outperforms both Poyneer
and SDF-2QI (which perform similarly in this image). GBSE
is also more stable (less variability) and faster. In Fig. [10|(top
right) both iterative methods ACC and APC were compared
with GBSE using 3 iterations, DFT resampling and the hy-
pomode derivative. Again the proposed method proves to be
the most accurate and more stable. Even more, this method
is the best also compared to non-iterated methods. Notice
the high impact of noise on the ACC method. It is more
precise than both non-iterating methods for low (o < 20).
Nevertheless, it diverges for stronger noise. This problem is
well-known for phase-correlation methods [26].

The results for the second image type (bottom of Fig.
are similar to the first one, although the average errors are
higher. While the SDF-2QI performs slightly worse, the
Poyneer method is considerably worse. This is due to discrep-
ancies at the image boundaries resulting from the periodic-
ity assumption of the periodic convolution used by Poyneer.
This also explains why both ACC and PCC methods behave
so poorly on this image. This also implies that computing
the shift in the spatial domain is usually more stable than
doing so in the frequency domain, unless some windowing is
performed, which is prohibitive on such small images where
the objects are sometimes close to the image boundaries. Yet
again, the proposed methods are more precise, stable and
with less variability than the state-of-the-art. The third im-
age type did not pass the verification step and all the methods
failed, so its results are omitted.

Results under larger displacements. The same experi-
ment was performed by simulating wavefront aberrations hav-
ing displacements of up to 4 pixels, to evaluate robustness
against high frequency aberrations. In Fig. the average
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Figure 11: Average error and standard deviations of se-
lected methods and two variants of the proposed GBSE ap-
proach when simulating wavefront aberrations yielding dis-
placements of up to 4 pixels. Left: First test image. Right:
Second test image.

error together with the standard deviations are shown for the
most representative methods. Due to the larger underlying
displacements, multiscale approaches achieve better results as
the noise increases, reproducing the results of [29]. In fact, a
multiscale approach becomes mandatory if fewer than two it-
erations are performed, and the best performing method used
three scales (where a single iteration was used in the coarsest
scale, two iterations with FFTP interpolation in the second
scale and three iterations with FFTP interpolation in the fi-
nal finer scale). Although this method proved to be the most
accurate in our tests, it also requires more computational re-
sources as evidenced by its running time. However, using the
iterative non-multiscale approach with three iterations and
FFT interpolation showed comparable results while requiring
fewer processing time. Nevertheless, the method proposed by
Poyneer should be considered when lower processing times are
required. Indeed, as expected, non-iterated versions of the
GBSE algorithm failed when estimating the shift with large
underlying displacements. Let us add the caveat that when
measuring the aberration using the second slightly challeng-
ing landscape (green rectangle in Fig E[)7 the Poyneer method
obtained inaccurate results even under high SNR conditions.

6 Conclusion

A new method for accurate sub-pixel shift-estimation, based
on an iterative global optical flow method, was proposed in
the context of a SHWFS on extended scenes for on-board
aberration correction on earth-observation satellites. Using a
telescope simulator developed by CNES, we showed that the
proposed algorithm is more accurate, stable, robust to noise,
and with lower variability than the current state-of-the-art,
permitting a more precise wavefront estimation. By perform-
ing on-board real-time mirror correction, this opens the way
to cheaper high resolution earth-observation satellites.

It should be noted that although this method was con-
ceived for on-board earth-observation satellites, it could also
be used in a ground-based wavefront sensing context. Indeed,
for ground-based applications, the demanding processing time
requirements existing in satellites are considerably reduced,
in which case, due to the availability of more computational
resources, the proposed method could still be applicable us-
ing more iterations and/or scales. Therefore, it is envisaged
to test the proposed algorithm for the case of atmospheric
turbulence correction on extended sources.
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