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Abstract. Patch-based approaches are used in state-of-the-art methods
for image inpainting. This paper presents a new method for exemplar-
based image inpainting using transformed patches. The transformation
is determined for each patch in a fully automatic way from a surrounding
texture content. We build upon a recent affine invariant patch similarity
measure that performs an appropriate patch comparison by automati-
cally adapting the size and shape of the patches. As a consequence, it
intrinsically extends the set of available source patches to copy informa-
tion from. We incorporate this measure into a variational formulation
for inpainting and present a numerical algorithm for optimizing it. We
show that our method can be applied to complete a perspectively dis-
torted texture as well as to automatically inpaint one view of a scene
using other view of the same scene as a source. We present experimen-
tal results both for gray and color images, and a comparison with some
exemplar-based image inpainting methods.

1 Introduction

Image inpainting, also known as image completion, disocclusion or object
removal, refers to the recovery of occluded, missing or corrupted parts
of an image in a given region so that the reconstructed image looks
natural. It has become a key tool for digital photography and movie
post-production where it is used, for example, to eliminate unwanted
objects that may be unavoidable during filming.

Automatic image inpainting is a challenging task that has received signif-
icant attention in recent years from the image processing, computer vi-
sion, and graphics communities. Remarkable progress has been achieved
with the advent of exemplar-based methods, which exploit the self-simi-
larity of natural images by assuming that the missing information can be
found elsewhere outside the inpainting domain. Roughly speaking, these
methods work by copying patches taken from the known part of the im-
age and pasting them smartly in the inpainting domain. These methods
can obtain impressive results but many of them rely on the assumption
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Fig. 1. Self-similarity under different distortions. On the left: two views of the same
scene related by a projective transformation. On the right: self-similar texture under-
went a severe fish-eye lens distortion.

that the required information can be copied as it is, without any trans-
formations. Therefore, applicability of such methods is limited to the
scenes in which objects are in a fronto-parallel position with respect to
the camera.

In the image formation process, textured objects may appear distorted
by some complex transformation (see Fig. 1). This is a pervasive phe-
nomenon in our daily life. In fact, any person can mentally fill-in occluded
parts of an image, even if the missing information is available to them
under a different perspective. Our brain is able to appropriately trans-
form the available information to match the perspective of the occluded
region. For instance, in Fig. 1 one can easily infer what is hidden behind
the red rectangle in the graffiti scene on the left, or use the non-trivially
distorted context in the right image to fill-in the hole.

In this work we address this issue by transforming known patches before
pasting them in the inpainting domain. The transformation is determined
for each patch in a fully automatic way. Moreover, instead of searching for
an appropriate transformation in a high dimensional space, our approach
allows us to determine a single transformation from the surrounding
texture content. As opposed to some previous works which only consider
rotations and scalings, we can handle full affinities, which in principle
extends the applicability of the method to any transformation that can
be locally approximated by an affinity, such as perspective distortion.

We follow the approach recently proposed in [16], where affine covariant
structure tensor fields computed a priori in each image are used to define
an affine invariant similarity measure between patches. We incorporate
this measure into a variational inpainting formulation. The affine covari-
ant structure tensors determine elliptical patches at each location of the
image domain. Due to the affine covariance property of the structure
tensors, these patches transform appropriately when computed on an
affinely transformed version of the image. Fig. 2 illustrates the patches
defined by the affine covariant structure tensors of [16], computed for a
set of corresponding points in two images related by a homography. Note
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Fig. 2. Affine covariant neighborhoods (patches) computed at corresponding points in
two images taken from different viewpoints. Despite the change in appearance, patches
capture the same visual information.

that even though the transformation is not an affinity, the patches still
match, since a homography can be locally approximated by an affinity.
The paper is organized as follows. In Section 2 we review the related work.
Then in Section 3 we summarize the results of [16] which motivates the
definition of the similarity measure that we use. Section 4 is devoted to
the proposed inpainting method. Section 5 covers some implementation
details. In Section 6 we present experiments, asserting the validity of
our theoretical approach, together with a comparison with well-known
exemplar based methods. Finally, Section 7 concludes the paper.

2 Related work

Most inpainting methods found in the literature can be classified into two
groups: geometry- and texture-oriented, depending on how they charac-
terize the redundancy of the image.
The geometry-oriented methods formulate the inpainting problem as a
boundary value problem and the images are modeled as functions with
some degree of smoothness expressed, for instance, in terms of the curva-
ture of the level lines [29, 3, 28, 10], with propagation PDE’s [8], or as the
total variation of the image [11]. These methods perform well in propa-
gating smooth level lines or gradients, but fail in the presence of texture
or big inpainting domains.
Texture-oriented (also called exemplar-based) methods were initiated by
the work of Efros and Leung [15] on texture synthesis. In that work the
idea of self-similarity is exploited for direct and non-parametric sampling
of the desired texture. The self-similarity prior is one of the most influ-
ential ideas underlying the recent progress in image processing and has
been effectively used for different image processing and computer vision
tasks, such as denoising and other inverse problems [17, 9, 19, 34, 35]. It
has also found its application to inpainting: the value of each target pixel
x in the inpainting domain can be sampled from the known part of the
image or even from a vast database of images [22].
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The exemplar-based approach to inpainting has been intensively stud-
ied [13, 12, 38, 25, 2, 1]. However, many such methods are based on the
assumption that the information necessary to complete the image is
available elsewhere and can be copied without any modification but a
translation.

Some works consider a broader family of transformations. Drori et al. [14]
used heuristic criteria to vary the scale of patches. Mansfield et al. [27]
and Barnes et al. [7] extended the space of available patches by test-
ing possible rotations and scales of a source patch. The search in the
space of available patches is usually performed by a collaborative ran-
dom search. However, this implies that for each query patch, the position
of the matching patch as well as the parameters of the transformation
(scale, rotation angle, tilt, etc) must be determined. The high dimen-
sionality of the parameter space makes the search problem very compu-
tationally expensive and the excessive variability of candidates may lead
to unstable results. In order to restrict the search space, the authors
of [10] propose to combine an exemplar-based approach that includes all
rotated patches, with a geometric guide computed by minimizing Euler’s
elastica of contrasted level lines in the inpainted region.

Several authors [33, 23] have addressed this issue using some user interac-
tion to guide the search process. For example, the user provides informa-
tion about the symmetries in the image, or specifies 3D planes which are
then used for rectification and the rectified planes in turn are used to look
for correspondences. Recently, Huang et al. [24] proposed a method for
automatic guidance that searches for appropriately transformed source
patches. It starts by detecting planes and estimating their projection pa-
rameters, which are then used to transform the patches. This allows one
to handle perspective transformations, in situations when representative
planes can be detected.

Most of those works use a similarity measure, either explicitly or implic-
itly, to compute a matching cost between patches. We propose to use
an affine invariant similarity measure which automatically distorts the
patches being compared [16]. Our method considers a rich patch space
that includes all affine-transformed patches, furthermore, for each pair
of patches the transformations are uniquely determined using the im-
age content. This effectively limits the search space, making the method
more stable. Since the patch distortions depend on the texture content of
the image, our technique is related in that sense to a shape-from-texture
approach [20, 21, 5].

In this paper we extend the variational framework described in [38, 25, 1]
proposing a new energy and an optimization algorithm for affine invariant
exemplar-based inpainting.

Let us finally note that [36] proposed a self-similarity measure for im-
age inpainting, comparing dense SIFT descriptors on square patches of
a fixed size. However, the method is not fully affine invariant, for ex-
ample, neither the dense SIFT descriptors nor the square patches are
scale invariant. Several authors have addressed the affine distortion and
affine invariance problem in other contexts such as image comparison
[31], object recognition [30], and stereo [18].
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3 An affine invariant similarity measure

Non-local self-similarity is an accepted prior for natural images. To for-
malize it, a patch similarity or comparison measure is needed. Let us
consider the general problem of comparing patches on two images u :
Ωu → R and v : Ωv → R, Ωu, Ωv ⊆ R2 (for simplicity, we can as-
sume the image domains to be R2). A widely used comparison measure
between two patches centered respectively at x and y is the weighted
squared Euclidean distance

D(t, x, y) =

∫
R2

gt(h)(u(x+ h)− v(y + h))2 dh, (1)

where gt is a given window that we assume to be Gaussian of variance
t. The Gaussian gt represents a weighted characteristic function of both
patches being compared and determines the size of the patches or, in
other words, the scale.
In many occasions, similar patches exist in the image but have undergone
a transformation, for example due to a different position with respect to
the camera. The Euclidean distance is not appropriate for detecting these
similarities. Consider for example a simple case in which v is a rotated
version of image u. If the rotation is known, we should use the Euclidean
distance between patches in u and rotated patches in v, namely

DR(t, x, y) =

∫
R2

gt(h)(u(x+ h)− v(y +Rh))2 dh. (2)

In a more realistic scenario, one does not know the appropriate trans-
formation that matches both patches being compared and even whether
it exists. Some previous works addressed this issue by searching among
all possible transformations [7, 27] which involves probing of all the pa-
rameters (scale, rotation angle, etc). The high dimensionality of the pa-
rameter space makes the problem very difficult. In this paper we use an
affine invariant similarity measure, introduced in [16], that automatically
deduces this transformation from the local texture context.
The similarity measure defined in [16] is based on affine covariant struc-
ture tensor fields a priori computed in each image. It was derived as
an approximation to a more general framework introduced in [4], where
similarity measures between images on Riemannian manifolds are stud-
ied.
In the remainder of this section we present an alternative, self-contained
overview of this similarity measure. We first briefly discuss the concept of
affine covariant structure tensors. Then we describe an algorithm to com-
pute them. Finally, we show how they are used to define the affine invari-
ant similarity measure and establish the relation between our derivation
and the theory of [4, 16].

3.1 Affine Covariant Structure Tensors

Given a real-valued image u, we consider an image-dependent structure
tensor field Tu as a function that associates a structure tensor (a sym-
metric, positive semi-definite 2× 2 matrix) to each point x in the image
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domain. As before, for simplicity we assume the image domain to be R2.
The structure tensor field is said to be affine covariant if, for any affinity
A,

TuA(x) = ATTu(Ax)A, (3)

where uA(x) := u(Ax) denotes the affinely transformed version of u.
Given a structure tensor Tu(x) we can associate with it an elliptical
region of “radius” r centered at x

Bu(x, r) = {y : 〈Tu(x)(y − x), (y − x)〉 ≤ r2}. (4)

When the structure tensor is affine covariant, we have that

ABuA(x, r) = Bu(Ax, r).

This implies that the structure tensors can be used to define regions that
transform appropriately via an affinity (Fig. 2).
As shown in [16], given two affine covariant structure tensors we can
extract the affine transformation between the corresponding elliptical
patches up to some rotation. Indeed, for any affine transformation A,
there exists an orthogonal matrix R such that

A = Tu(Ax)−
1
2RTuA(x)

1
2 . (5)

This last equation provides an intuitive geometric relationship between
the structure tensors, the associated elliptical regions and the affinity.
Consider a point x and the corresponding affine covariant elliptic neigh-
borhood BuA(x). Mapping BuA(x) by the affinity yields Bu(Ax). The ap-

plication of A can be decomposed in three steps. First, applying TuA(x)
1
2 ,

we transform BuA(x) into a circle or radius r. We refer to the resulting
patch as a normalized patch. Then, a rotation is applied to the normal-

ized patch. Finally, Tu(Ax)−
1
2 maps the rotated normalized patch to the

elliptical neighborhood Bu(Ax).
To fully determine the affinity A, one needs to find the rotation R. Any
rotation would yield an affinity that maps the elliptical neighborhood
associated with TuA at x to the one associated with Tu at Ax. For a wrong
value of the rotation, the image content inside both neighborhoods will
not match. Therefore, the right value for the rotation can be computed by
aligning the image content of both patches. For this aim, we decompose
the rotation as

R = Ru(Ax)R−1
uA

(x), (6)

where Ru(Ax) and RuA(x) are estimated from the image content in
the patches. In practice, we calculate them by aligning the dominant
orientation of the normalized patches to the horizontal axis. To compute
the dominant orientation we use histograms of gradient orientations as
in the SIFT descriptors [26].

3.2 Computation of Affine Covariant Structure Tensors

The following iterative algorithm introduced in [16] allows us to com-
pute a dense field of affine covariant structure tensors and the associated
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Fig. 3. An affine invariant patch comparison which is achieved by normalizing the
patches to discs and aligning them with suitable rotations.

neighborhoods on an image u:

T (k)
u (x) =

∫
B

(k−1)
u (x,r)

Du(y)⊗Du(y) dy

Area(B
(k−1)
u (x, r))

, (7)

where u is the given image and B
(k)
u is the elliptical patch related to

T
(k)
u , defined by

B(k)
u (x, r) = {y : 〈T (k)

u (x)(y − x), (y − x)〉 ≤ r2} (8)

for k ≥ 1, and

B(0)
u (x, r) = {y : |Du(x)(y − x)| ≤ r} (9)

for k = 0.

Throughout this paper we follow the notation of [16] and denote by Tu(x)

the affine covariant structure tensor T
(k)
u (x) for a fixed value of k (k = 30

in all the experiments) and a given value of r (r > 0 is a free parameter
which is in range [250, 350] in our experiments). We denote by Bu(x) the

affine covariant neighborhood B
(k)
u (x, r).

Notice that the structure tensor (7) is guaranteed to be affine covariant
at any iteration of the scheme, therefore, the purpose of it is not to
enforce affine covariance property, but rather to diminish dependency on
the very first iteration.

3.3 An Affine invariant Patch Similarity

Previously in this section we were considering two images u and uA,
related by a global affinity. For the patch comparison problem we can
generalize our reasoning and consider two arbitrary images u and v.
Let x and y be two given points in images u and v respectively. The
structure tensors Tu(x) and Tv(y) define elliptical patches BTu(x) and
BTv (y) around these points. In order to compare the patches, equations
(5) and (6) suggest the following mapping between the elliptical patches:

P (x, y) = Tv(y)−
1
2Rv(y)R−1

u (x)Tu(x)
1
2 . (10)
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We can interpret P (x, y) as an affinity, mapping the elliptical patch asso-
ciated with Tu(x) into the one associated with Tv(y). If u in the vicinity of
x is an affinely transformed version of v in the vicinity of y, then P (x, y)
recovers the true affinity. An affine invariant patch similarity measure
could be built by computing the distance between the elliptical patch
at y and the elliptical patch at x transformed by P (x, y). In practice, it
is more convenient to transform both elliptical patches to the circle of
radius r (Fig. 3) and compare the aligned normalized patches:

Da(t, x, y) =∫
∆t

gt(h)

(
u(x+ T

− 1
2

u Ru(x)h)− v(y + T
− 1

2
v Rv(y)h)

)2

dh, (11)

where ∆t is a disc centered at the origin with radius proportional to the
scale t > 0 and big enough to contain the effective support of the weight-
ing function gt. The distance Da provides an affine invariant distance
between the patches pu(x) and pv(y). Here the patch pu(x) := pu(x, ·)
is defined by pu(x, h) := u(x + Tu(x)−

1
2 h), with h belonging to ∆t. We

will apply it in Section 4 to exemplar-based inpainting. Let us also re-
mark that formula (11) has the same complexity as the patch comparison
formula (1).

The similarity measure corresponding to (11) was derived in [16] as a
computationally tractable approximation of the linear case of the mul-
tiscale similarity measures introduced in [4]. There, the authors show
that all scale spaces of similarity measures D(t, x, y) satisfying a set of
appropriate axioms are solutions of a family of degenerate elliptic partial
differential equations (PDE) in the variables (x, y). Images are consid-
ered in those papers as Riemannian manifolds endowed with a metric
defined by a tensor field. If this tensor field is affine covariant, the result-
ing similarity measure is affine invariant. In this Riemannian framework
P (·, ·) defines an isometry between the tangent spaces in two manifolds.
The authors refer to it as the a priori connection, since it is related to the
notion of connection appearing in parallel transport (see [4] for details).

WKB approximation method, named after Wentzel, Kramers and Bril-
louin, was used in [16] to find the approximate solution to a linear partial
differential equation with spatially varying coefficients as a convolution
with a short-time space-varying kernel.

The affine invariant patch distance (11) is used in the following section
in a variational formulation for exemplar-based image inpainting and
Section 6 will present inpainting results for both gray and color images.
Let us note that for the color case we consider a generalization of (11) to
multi-channel images. Let −→u : Ωu → RM and −→v : Ωv → RM , Ωu, Ωv ⊆
R2 be multi-channel images (e.g., M = 3 for color images), then the
corresponding affine invariant similarity measure is defined as

Da,M(t, x, y) =∫
∆t

gt(h)

∥∥∥∥−→u (x+ T
− 1

2
u Ru(x)h)−−→v (y + T

− 1
2

v Rv(y)h)

∥∥∥∥2

2

dh, (12)
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where ‖ · ‖2 denotes the Euclidean norm of vectors in RM and the affine
covariant structure tensors and neighborhoods are computed using the
corresponding gray-value images associated to −→u and −→v by the iterative
algorithm of Section 3.2.

4 Inpainting formulation

Exemplar-based inpainting methods aim at filling-in the image so that
each patch in the inpainting domain is similar to some known patch.
This requires comparing known patches with partially or completely un-
known patches. For this we extend the variational framework described
in [38, 25, 1] by using the affine invariant similarity measure Da given in
(11). We formulate the problem of inpainting from affinely transformed
patches via the minimization of the following energy functional

E(u, ϕ) =

∫
Õ

Da (t, x, ϕ(x)) dx, (13)

where O ⊂ Ω ⊂ R2 is the inpainting domain, û : Ω \O → R is the known

part of the image, Õ includes all the centers of patches intersecting O
and Õc is its complement, that is, Õc contains centers of fully known
patches (see Fig. 4). The minimization of (13) aims at finding a visually
plausible completion u of û in the unknown region O. The additional
variable ϕ : Õ → Õc determines for each unknown target patch the
location of a source patch from which the information will be copied.

Fig. 4. Schematic representation of the sets O, Oc, Õ and Õc.

This energy compares patches defined on elliptical regions centered at
x and ϕ(x). In the known part of the image, these regions are defined
by the affine covariant structure tensors Tû. Since the image is unknown
inside the inpainting domain we have to estimate the structure tensors
together with the image. The relationship between u and Tu introduces
a complex dependency in the energy (13), which complicates its min-
imization. Therefore, we propose to relax it and consider instead the
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minimization of the energy

Ẽ(u, ϕ,G) =

∫
Õ

∫
∆t

gt(h)(
u(x+G(x)−

1
2 h)− û(ϕ(x) + Tû(ϕ(x))−

1
2Rû(ϕ(x))h)

)2

dhdx

(14)

where G(x) is an invertible 2 × 2 matrix, ∀x ∈ Õ. For now, we will not
restrict the tensor field G to be given by the structure tensors Tu. Instead,
we consider it as an additional variable, in principle independent of u. In
this way, we do not have to deal with the complex dependency between Tu
and u. In practice, due to the properties of the affine covariant structure
tensors, it turns out that the G(x) can be estimated from Tu(x) and the
additional rotation Ru(x) , as will be explained later in this section.
We compute a local minimum of the energy with an alternating opti-
mization scheme on the variables u, G and ϕ which is summarized in
Algorithm 1.

4.1 Image Update Step

In the image update step, ϕ and G are fixed, and the energy is minimized

with respect to u. With the change of variables z = x + G(x)−
1
2 h, the

Euler-Lagrange equation leads to the following expression:

u(z) =
1

%(z)

∫
Õ

gt
(
G(x)

1
2 (z − x)

)
û
(
ϕ(x) + Tû(ϕ(x))−

1
2Rû(ϕ(x))G(x)

1
2 (z − x)

) ∣∣∣G(x)
1
2

∣∣∣ dx, (15)

where %(z) is normalization factor such that the sum is an average. The

field G determines elliptical patches centered at each x ∈ Õ. For each
one of these patches a matching patch centered at ϕ(x) is known, as
well as its shape which is given by the structure tensor Tû(ϕ(x)). The
corresponding patch is then warped via the affinity

P̃ (ϕ(x), x) = G(x)−
1
2R−1

û (ϕ(x))Tû(ϕ(x))
1
2

and aggregated in the inpainting domain. Note that if G(x) is given by

Tu(x), then P̃ (ϕ(x), x) coincides with Equation (10).

4.2 Affine Correspondence Update Step

Given a fixed u, the minimization of the energy with respect to (ϕ,G)
can be performed as independent minimization of the patch distance
function Da for each x ∈ Õ. This problem is very complex to solve
since it is a nearest neighbor search where we also optimize for the affine
transformation of the patch at x, given by G.
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We will exploit the properties of the affine covariant structure tensors to
obtain an approximate solution. For that, let us consider a completion
candidate u and assume that a local vicinity of x on u is an affinely
transformed version of a local vicinity of ϕ(x) on û. That is, u(x+ h) =
û(ϕ(x)+Ah), which is the case when x and ϕ(x) do actually correspond.

Setting G(x) such that G−
1
2 (x)R−1

û (ϕ(x))Tû(ϕ(x))
1
2 = A will lead to a

correct mapping and thus to the zero patch distance. On the other hand,

using (10) we can find this affinity as A = Tu(x)−
1
2RTû(ϕ(x))

1
2 where R

is some orthogonal 2×2 matrix and Tu is calculated on u. Then G(x) such

that G
1
2 (x) = R(x)T

1
2
u (x), together with ϕ(x), will be global minimizers

of the patch distance function Da at x. Therefore, we need to search
only for ϕ(x) and R(x). An approximate ϕ(x) can be found efficiently
using our modified version of the PatchMatch algorithm [6], detailed in
Section 5. The additional rotation R(x) is determined as described in
Section 3.1, in the same way as for the known part of an image. Notice
that for notation consistency we should write R(x) := Ru(x)−1.

Of course, if the neighborhood of x does not match any affinely trans-
formed patch, then the estimated G might not minimize the patch dis-
tance Da.

Algorithm 1: Approximate minimization of Ẽ(u, ϕ,G).

Input: Initial condition u0 at O, tolerance τ > 0
Output: Image completion u

repeat
Compute affine covariant structure tensors Tuk−1(x) and rotations Ruk−1(x)

for all x ∈ Õ;

Estimate optimal correspondences ϕk using the modified PatchMatch (see
Section 5.2);

Update image uk = arg minu Ẽ(u, ϕk, Gk), subject to uk = û in Oc;

until ‖uk − uk−1‖ < τ ;

Another interpretation of the approximate minimization can be given by

adding to the minimization of Ẽ(u, ϕ,G) the constraint that G
1
2 (x) =

Ru(x)−1T
1
2
u (x) for all x ∈ Õ and for some rotation matrix Ru(x), namely,

min Ẽ(u, ϕ,G) subject to G
1
2 = R−1

u T
1
2
u .

The correspondence update step corresponds to the constrained mini-
mization of the energy with respect to ϕ,G for a fixed image u. In the
image update step the energy is minimized with respect to u, but without
enforcing the constraint. Therefore, our approximate minimization can
be seen as an alternating minimization applied to a constrained prob-
lem. The constraint is enforced only when minimizing with one of the
variables (the pair ϕ,G). There are no theoretical guarantees for the
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convergence of such a scheme, although we have not yet encountered a
practical case where the algorithm failed to converge.

5 Numerical Implementation

5.1 Image Update Step

The actual implementation of (15), that we use in our method, is

u(z) =
1

C(z)

∑
x∈Õ

gt(T
1
2
u (x)(z − x))mc(x)w(x, z)

û
(
ϕ(x) + P (x, ϕ(x))(z − x)

)
|T

1
2
u (x)|, (16)

where P (x, ϕ(x)) = T
− 1

2
û (ϕ(x))Rû(ϕ(x))R−1

u (x)T
1
2
u (x) is the estimated

affinity mapping the target patch at x onto the source patch at ϕ(x).
The structure tensor field Tu is computed using the inpainted image u
from the previous iteration.
Of course, in the discrete setting some kind of interpolation needs to be
done after transforming one elliptical patch into another by P (x, ϕ(x)).
For that we use the Nadaraya-Watson estimator [32, 37] with Gaussian
kernel.
The extra term mc in (16) is a so-called confidence mask that takes
values from 1 to 0, exponentially decreasing with the distance to the set
of known pixels Oc. This mask is usual in exemplar-based inpainting, for
instance, it is used in [12, 1]. It helps to guide the flow of information from
the boundary towards the interior of the inpainting domain, eliminating
some local minima and reducing the effect of the initial condition. More
precisely, we compute the confidence mask as

mc(x) = (1− c0)exp

(
−d(x,Oc)

ct

)
+ c0,

where d(x,Oc) is the distance from a point x to the boundary of the Oc

set, such that d(x,Oc) = 0 when x ∈ Oc. Parameter c0 > 0 defines the
smallest (asymptotic) value that mc can take and ct > 0 controls the
rate of decay. This confidence mask never changes during the inpainting
process and can be precomputed for a given inpainting domain.
There is also another additional weighting term w(x, z) in (16). In prin-
ciple, all patches containing a pixel z contribute to its color value. To
control the amount of contributors, we introduce the auxiliary Gaussian
weight, that depends on the patch distance between a contributing patch
and its corresponding known patch

w(x, z) = exp

(
−
(
Da(t, x, ϕ(x))−min(D(z))

)2
2σ2

cut-off(z)

)
, (17)

where D(z) = {Da(t, y, ϕ(y)) : z ∈ BTu(y)} is a set of patch distances
to known patches, computed among all patches contributing to z, and
σcut-off(z) defines a soft threshold for the patch distance values. This
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Fig. 5. Schematic depiction of two different cases of patch distance distribution. Gray
filled-in curves represent histograms of distance values computed between patches over-
lapping z ∈ O and their most similar known counterparts from Õc. Weighting functions
are shown in red. In both cases γcut-off ≈ 0.45.

weight allows us to cut off contributors with low similarity (high distance)
values, which in turn results in sharper reconstructions.
To compute σcut-off(z) we begin by computing the first estimate for the
cut-off distance

Da
1 (z) = γcut-off

(
max(D(z))−min(D(z))

)
,

where γcut-off ∈ (0, 1) is a parameter of the method. Since distance values
are usually distributed unevenly, the initial distance threshold Da

1 might
discard too few or too many contributors. Therefore, we very roughly
estimate the density of values that fall below Da

1 and refine the initial
cut-off distance by

Da
2 (z) = γcut-off

Da
1 |D(z)|
N1

,

where |D(z)| stands for the total number of elements in the set D(z)
and N1 = |{Da ∈ D(z) : Da − min(D(z)) < Da

1 (z)}| is the number of
distance values retained by Da

1 . Then the final cut-off threshold is given
by

σcut-off(z) =
1

6

(
Da

1 (z) +Da
2 (z)

)
.

The factor 1
6

in the formula above implies that the Gaussian (17) ap-
proaches zero at the average cut-off distance between the first and second
estimates. Fig. 5 illustrates the cut-off distances for two different cases
of distance values distribution.
The energy (13) is non-convex and might have several local minima. As
a consequence, there is a dependency on the initialization. To alleviate
this dependency, we try to promote the propagation of information from
the boundary towards the interior of the inpainting domain during the
very first iterations of inpainting. Recall that the extended domain Õ
contains the centers of all elliptical patches overlapping the inpainting
domain. We enlarge Õ by a few pixels to capture a narrow stripe Õ+ =
(Õ ⊕ B) \ Õ around the inpainting domain, that contains centers of
completely known elliptical patches. Obviously, these elliptical patches
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in Õ+ do not intersect the inpainting domain. To make them contribute
to the inpainting we should enlarge them first. For that we recompute
them doubling the value of r. Notice that we use r′ = 2r only for the
points within the stripe Õ+ and only in the image update step. We do
not recompute the corresponding structure tensors, thus we only increase
the sizes of these elliptical patches and do not modify their shapes. This
additional contribution from elliptical patches, that do not depend by any
means on the inpainting domain, boosts the information propagation at
the boundaries of the inpainting domain. The width of the stripe Õ+ is
set to 6 pixels in all our experiments.

5.2 Affine Correspondence Update Step

During the update of the correspondence map we compute an approxi-
mation of the nearest neighbor field using PatchMatch [6, 7]. The Patch-

(a) (b)

Fig. 6. Propagation directions in PatchMatch: (a) original scheme, (b) modified
scheme.

Match algorithm speeds up the computation of optimal correspondences
by exploiting the correlation between patches so that they can be found
collectively. Since we are working with elliptical patches which might
be arbitrarily rotated, we adapt the PatchMatch propagation scheme
to take this into account. Let x be the current pixel and d1 = (±1, 0),
d2 = (0,±1) be the directions of propagation. Then, the adjacent pixels
yi = x−di (i = 1, 2) are tested during the propagation. Assume i = 1 (see
Fig. 6). Pixel ŷ = ϕ(y) is the current nearest neighbor candidate for y.
The standard PatchMatch would try to propagate position ŷ+d to pixel
x (Fig. 6a). In contrast, we calculate the direction d̂ = P (y, ŷ)d, where P
is the a priori connection, and we try a few positions along that direction
(Fig. 6b). This generalization gives a more meaningful propagation along
edges.
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Recall that to compare two elliptical patches we first transform them into
discs of the same radius (see Section 3.3). As a result of this normalization
we obtain two sets of scattered point, each of which is described by real-
valued coordinates and a color value. To be able to compare these sets,
we use the Nadaraya-Watson estimator [32, 37] with Gaussian kernel to
interpolate them to a regular grid.
At early iterations of our algorithm, the inpainted image may be blurry.
This is typical for iterative patch-based inpainting methods and is caused
by aggregating patches that do not coincide in their overlap area at the
initial iterations. As discussed in [16], the structure tensors are sensitive
to blur, tending to larger elliptical patches in blurry regions. Essentially,
smoothing of an image suppresses small details and produces the same
effect as scaling the image down. The elliptical patches in turn capture
larger areas. To compensate for this, we allow the parameter r to vary
during the correspondence map estimation. That is, while Tû(ϕ(x)) is
always computed with the fixed r, say r0 (a given parameter of the
method), in the computation of Tu(x) we consider a few (around five)
values of r smaller than r0 and select the one giving the smallest patch
distance Da between points x and ϕ(x). Let us note, that to be able
to compare patches, computed with different values of r, we scale the
normalized patches to discs of radius one.

6 Experimental results

In this section we present results obtained by the proposed method. For
all the experiments in this section, we compare our results with the ones
obtained by the multiscale NL-Means method [38, 25] which we find to
be a representative exemplar-based image inpainting method operating
only with translations of patches. Whenever possible, we also compare
against the method of [27] with a single scale and considering rotations,
and the method of [24]. In both cases we use implementations provided
by the authors.
As a sanity check we first test the proposed method on a synthetic exam-
ple, displayed in Fig. 7. We take a textured image and create an affinely
transformed version of it. We select a part of the transformed image as
the inpainting domain. Instead of using the rest of the transformed im-
age to copy information from, we make the original (not transformed)
image to be the source. Let us remark that the ground truth affinity is
not provided to the algorithm, hence, we test the ability of the proposed
method to identify and copy affinely transformed patches. We do not
show any results for [27] and [24] for this experiment, since the available
implementations do not support the use of a separate image as a source.
A more realistic case would be associated with a more general trans-
formation. Since for planar objects a projective transformation can be
locally approximated by an affinity, in the second example (shown in
Fig. 8) we test the robustness of our method in the reconstruction of
an image distorted by perspective. As usual in inpainting applications,
in this experiment we use the known part of the image as source. We
compare our method with the NL-Means method, that works only with
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Fig. 7. First row: source image, target image with the inpainting domain shown in red,
and close-ups around the inpainting area of the NL-Means result and the result of our
method. Second row: evolution of the inpainting domain over iterations of our method
(every second iteration).

Fig. 8. First row: image with the inpainting domain shown in red. Second row: close-
ups around the inpainting area of the NL-Means result, the result of [27] (considering
rotations), the result of [24], and the result of our method. Third row: evolution of the
inpainting domain over iterations of our method (every third iteration).

translations, and additionally with the method of [27] in the mode when
the rotations are also considered, and the method of [24]. Note that the
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Fig. 9. First row: image with the inpainting domain shown in red. Second row: close-
ups around the inpainting area of the NL-Means result, the result of [27] (considering
rotations), the result of [24], and the result of our method. Third row: evolution of the
inpainting domain over iterations of our method (every third iteration).

Fig. 10. First row: source image, target image with the inpainting domain shown in
red, and close-ups around the inpainting area of the NL-Means result and the result
of our method. Second row: evolution of the inpainting domain over iterations of our
method (every second iteration).

latter method successfully determines a single plane in the image and,
as expected, achieves a good reconstruction.
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The third example (Fig. 9) demonstrates the reconstruction of a texture
with some lens distortion applied to it. The known part of the image
is used as a source and, like in all other experiments, just a rotation
of source patches is not sufficient to obtain a good result. As in the
previous case, here we compare our method with the NL-Means method
(translations), the method of [27] (translations and rotations), and the
method of [24] (projective transformation).
A final experiment, which is also potentially interesting for real applica-
tions, consists in inpainting one view of a scene using information from
another view of the same scene. Fig. 10 shows the results of this experi-
ment where we have applied the proposed method to two views related
by an unknown homography. As before, we compare our result with the
result of the NL-Means method.
Let us note that the method of [27] also supports rotations plus scalings.
However, we could not obtain meaningful results on these examples for
this mode. It seems that the additional variability added by the scalings
makes it easier for the algorithm to be trapped in a bad local minimum.
For example, a constant region can be produced by scaling a small uni-
form patch.
Finally, we briefly discuss the limitations of the proposed method. Since
the transformation between two patches is estimated from the surround-
ing texture, the method fails when there is not enough textural informa-
tion (Fig. 11, first row). Severe transformations between pairs of patches
may be recovered incorrectly. This can be illustrated by replacing the
source image in the last experiment with a much more slanted view
(Fig. 11, second row). The proposed method does not exploit the com-
mon multiscale scheme which limits the maximum possible size of the
inpainting domain (Fig. 11, third row).

7 Conclusions

In this work we propose a new variational formulation for exemplar-
based image inpainting that, for the first time, considers local full affine
transformations with a tractable approximate optimization scheme. This
is possible thanks to the use of an affine invariant patch similarity mea-
sure constructed from affine covariant structure tensors, both introduced
in [16]. These structure tensors provide an efficient way to determine
a unique affinity putting in correspondence any pair of patches. If the
patches being compared are related by an affinity, then this affinity is
recovered. We show that our method can be applied to complete a per-
spectively distorted color texture as well as to automatically inpaint one
view of a scene using other view of the same scene as a source.
The problem of exemplar-based inpainting is a complex non-convex prob-
lem with many local minima. As pointed out in [10], adding transforma-
tions of patches makes it even more complex. Intuitively, the added vari-
ability makes it harder to distinguish “good” minima from other minima
(a single pixel can be scaled to match a constant patch). The structure
tensors are beneficial in this respect, because they constrain the number
of ways in which a source patch can be transformed to match a target
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Fig. 11. Failure cases. From top to bottom: insufficient textural information, severe
distortion, too big inpainting domain. More details are given in the text.

patch, thus eliminating some of the variability. This also allows us to de-
sign faster and more accurate minimization algorithms without the need
to search the parameter space of the transformation family.

The proposed method works at a single scale. To better handle larger
inpainting domains it would be desirable to develop a multiscale scheme,
as is customary in the literature [38, 25, 1]. However, extending the mul-
tiscale approach to the problem of inpainting using affinely transformed
patches is not trivial, since the filtering with an isotropic Gaussian breaks
the affine invariance. Adapting multiscale inpainting approaches to this
context is an interesting direction for future research.
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