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Summary

Components based on shape-memory alloys are often subjected to several loading cycles that result in substantial

alteration of material behavior. In such a framework, accurate models as well as robust and efficient numerical

approaches become essential to allow for the simulation of complex devices. The present paper focuses on the

numerical simulation of quasi-static problems involving shape memory alloy (SMA) structures or components

subjected to multiple loading-unloading cycles. A novel state-update procedure for a three-dimensional

phenomenological model able to describe the saturation of permanent inelasticity, including degradation effects, is

here proposed. The algorithm, being of the predictor-corrector type and relying on an incremental energy

minimization approach, is based on elastic checks, closed-form solutions of polynomial equations, and nonlinear

scalar equations solved through a combination of Newton-Raphson and bisection methods. This allows for an easy

implementation of model equations and to avoid the use of regularization parameters for the treatment of

non-smooth functions. Numerical results assess the good performances of the proposed approach in predicting both

pseudoelastic and shape-memory material behavior under cyclic loading as well as algorithm robustness.

Keywords: Shape-memory alloys, incremental energy minimization, permanent inelasticity.

1 Introduction

Shape-memory alloys (SMAs) are metallic alloys possessing the unique properties known as pseudoelasticity (PE) and

shape-memory effect (SME). The material is in fact able to recover the original shape through a phase transformation

caused by the imposition of a stress (i.e., PE) and/or temperature (i.e., SME) field. Such unique thermo-mechanical
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properties make SMAs an effective material for several innovative technological applications in the biomedical up to

the mechanical field (1).

Cyclic loading is one important feature of many of these applications, no matter whether they exploit mechanical

or thermal recovery (i.e., PE and one/two-way SME, respectively) (2). Typical examples of cyclic loading are the

pulsatile blood pressure, that is applied to cardiovascular devices as stents or aortic valves, temperature cycling in

actuation components as robotic grippers or thermal valves, or force cycles in damping applications.

A factor that limits the service life of SMA-based applications subjected to cyclic loading is fatigue, both in terms of

material integrity (i.e., structural fatigue) and of the change of functional properties and reversibility (i.e., functional

fatigue) (3). The thermo-mechanical response of SMA materials under cyclic loading is however more complex than

the response of classical metals, due to the occurrence of phase transformation and plastic deformation, which can

lead to different physical situations (4). Experimental evidences (5–11) have reported that thermal cycling in one-way

SME applications suffers a decrease in the exploitable displacement. On the other hand, mechanical cycling in PE

components determines an increasing level of permanent deformation, that saturates on a stable value after a certain

number of cycles, shifts the hysteresis loop downward, lowers its height and width, and decreases the level of dissipated

energy. Such physical evidences originate from the combination of residual martensitic phase and transformation-

induced plasticity, that is the formation of microscopic plastic deformation during the stress-induced transformation.

Moreover, such effects are present not only in the widely-used SMAs based on Nickel-Titanium, but also in other

types of SMAs, and recent studies have also investigated the behavior of additive-manufactured SMAs (12).

For these reasons, both understanding the underlying processes and incorporating them in constitutive modeling

are of utmost importance to effectively predict material response and to support the design of SMA components.

Several models taking into account the inelastic strain build-up due to not-completed reverse phase transformation

or/and plasticity, its accumulation during cyclic loads, and degradation effects, are available from the literature; see,

e.g., (13–26). Recently, such models have been used in connection with shakedown theorems (27, 28) and fatigue

approaches (29, 30).

We shall here focus on the three-dimensional model by Auricchio et al. (13), later generalized in (15), which is

capable of describing permanent inelastic effects in both pseudo-elastic and shape-memory behaviors with a low

number of physical parameters.

In the modeling framework, it is important to provide a robust and efficient numerical approach to treat model

equations and to allow for the simulation of complex devices. Model equations generally involve numerous tensorial

and scalar internal variables, subjected to constraints, and include evolution equations in order to describe several

physical effects and transformations. Therefore, the numerical implementation in this case is particularly challenging.



Peigney et al 3

In general, the state-update procedures adopted to treat SMA constitutive equations are mostly based on return-

map schemes, e.g., (31, 32), while only in the last years the attention towards incremental energy minimization

approaches (33–36) or algorithms for mathematical programming (37, 38) is being increased.

So far, the solution of the model (13, 15) has been performed by means of an elastic-predictor inelastic-corrector

return map procedure with a δ-regularized version to control the smoothness of the norm regularization. Since the

model includes two tensorial internal variables to describe material behavior, i.e., the transformation and permanent

inelastic strains, the return-mapping algorithm involves 10-12 scalar parameters. A standard Newton-Raphson scheme

has been adopted in (13, 15) to solve the nonlinear system of equations in both the unsaturated and saturated cases.

The model has been tested on uniaxial and biaxial tests in the Matlab environment, but its investigation in a three-

dimensional finite element (FE) framework is lacking. The large number of scalar parameters may in fact increase

computational costs and cause trouble of convergence when using Newton-Raphson procedures.

The aim of the present work is to propose a new time-integration algorithm for the numerical implementation of

the model described in (13, 15). As it will be demonstrated, the proposed algorithm can be readily integrated in a

finite-element code for solving boundary value problems.

Among the several numerical approaches cited above, the proposed algorithm belongs to the class of variational

methods relying on an incremental energy minimization approach. The idea of applying such an approach to SMAs

stems from previous works, e.g., (33–36), and it is here applied to the model described in (13, 15). The incremental

energy minimization approach has been successfully applied in (36) to the original model (39), in which the transfor-

mation strain is the only internal variable and permanent inelastic strains are not taken into account. The algorithm

developed in (36) is here extended to the model under consideration, taking into account both transformation-induced

strains and permanent inelasticity. In the present case, two tensorial internal variables (i.e., the transformation strain

and the permanent inelastic strain) are introduced and their evolution in a finite time step incrementally minimizes a

convex functional, given by the sum of the free-energy energy and the dissipation functional. The proposed algorithm

is based on elastic checks, closed-form solutions of polynomial equations, and nonlinear scalar equations solved

through a combination of Newton-Raphson and bisection methods. This allows to avoid the difficulties mentioned

above, when using Newton-Raphson procedures.

This suitable variational structure facilitates the treatment of internal constraints and allows for an efficient

numerical implementation. Other advantages of the proposed algorithm are its easy implementation and, overall, the

possibility of avoiding regularized terms in both energy/dissipation definition and norms, that may affect material

response as well as numerical convergence.

To test the performance and robustness of the proposed algorithm several FE analyses are presented. The simu-

lations range from classical uniaxial tests to more complex representative problems, involving both pseudoelasticity
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and shape-memory effect. The complex problems involve the three-dimensional analyses of a stent strut and of a

spring actuator, given the importance of such devices under cyclic loading conditions (40, 41). The results show that

the model implemented with the proposed algorithm is able to catch material response for several sets of materials

parameters and different time steps.

The paper is organized as follows. Section 2 briefly reviews the continuum equations of the model under investiga-

tion. Section 3 presents the equations in the time-discrete framework and describes the proposed algorithmic scheme.

Then, Section 4 presents the results of several numerical simulations. Finally, conclusions are given in Section 5.

2 Model equations

This section briefly recalls main model continuum equations in the small strain regime, as presented in (13, 15).

The model assumes the total strain ε and the absolute temperature T as control variables, while the transformation

strain etr and the permanent inelastic strain q as internal ones. Both etr and q are symmetric trace-free second order

tensors. Specifically, the transformation strain etr describes the strain associated to the austenite-martensite phase

transformation and the permanent inelastic strain q gives a measure of the part of etr that cannot be recovered when

unloading to a zero stress state, since etr has no fully reversible evolution. The transformation strain etr is required

to satisfy the constraint:

‖etr‖ ≤ εL (1)

εL being a material parameter corresponding to the maximum transformation strain reached at the end of the

transformation during a uniaxial test. The norm ‖·‖ in Eq. (1) is the Euclidean norm, as defined by ‖etr‖ =
√
etr : etr

where : denotes the contraction with respect to the last two indices (e.g., a : b =
∑
ij aijbji).

The Helmholtz free-energy density function is expressed as

Ψ = Ψ0 + IεL (2)

where

Ψ0(ε, etr, q) =
1

2
K θ2 +G ‖e− etr‖2 + τM‖etr − q‖+

1

2
H ‖etr‖2 +

1

2
h‖q‖2 −Aetr : q (3)

and

IεL(etr) =

 0 if ‖etr‖ ≤ εL

+∞ otherwise.
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In (3), θ and e are the volumetric and the deviatoric part of ε; K and G are, respectively, the bulk and the shear

modulus; τM = β〈T − T0〉, where β is a material parameter related to the dependence of the critical stress on the

temperature, T0 is the temperature below which only martensite phase is stable, and 〈·〉 is the positive part function;

H, h, and A define, respectively, the hardening of the phase transformation, the saturation of the permanent inelastic

strain evolution, and model degradation. The energy term IεL(etr) is the indicator function associated with the

constraint (2).

For later reference, we note that the energy in Eq. (2) is strictly convex provided that:

hH −A2 > 0. (4)

In the following, the condition (4) is assumed to be satisfied.

The dissipation function originally considered in ref. (13) is defined as:

Φ(ε̇tr, q̇) = RY max(‖ε̇tr‖, κ‖q̇‖) (5)

where RY and κ are non-negative material parameters1. We note that Eq. (5) can be written as follows:

Φ(ε̇tr, q̇) = RY ‖(ε̇tr, q̇)‖κ,∞

where:

‖(v1, v2)‖κ,∞ = max(‖v1‖, κ‖v2‖)

is a weighted supremum norm. As detailed by Barrera et al. (15), other choices of norms can be made, leading to

other expressions of (rate-independent) dissipation functions. In particular, the supremum norm ‖ · ‖κ,∞ in Eq. (5)

could be replaced by the weighted taxicab norm:

‖(v1, v2)‖κ,1 = ‖v1‖+ κ‖v2‖

or the weighted Euclidean norm:

‖(v1, v2)‖κ,2 =
√
‖v1‖2 + κ2‖v2‖2.

1Note that our notation κ corresponds to 1/κ in the paper by Auricchio et al. (13).
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As explained in ref. (15), the norms ‖ · ‖κ,1 and ‖ · ‖κ,2 lead to results that are more consistent with experiments

than the norm ‖ · ‖κ,∞. In the following, we choose the norm ‖ · ‖κ,2 which seems to be the simplest one to handle

for three-dimensional numerical implementation. To alleviate the notations, the norm ‖ · ‖κ,2 is denoted by ‖ · ‖κ

from now on. The dissipation function is thus assumed to be of the form:

Φ = RY ‖(ėtr, q̇)‖κ = RY

√
‖ėtr‖2 + κ2‖q̇‖2. (6)

Following standards arguments, the stress-strain relation is obtained by differentiating the free energy function Ψ

with respect to the strain ε, yielding:

p =
∂Ψ

∂θ
= Kθ, s =

∂Ψ

∂e
= 2G(e− etr) (7)

where p and s are the hydrostatic and deviatoric part of the stress σ, respectively. Similarly, the thermodynamic

forces (X,Q) associated to the internal variables (etr, q) are usually defined by the relations X = −∂Ψ/∂etr and

Q = −∂Ψ/∂q. In the present case, however, special care must be taken because Ψ is only subdifferentiable in (etr, q).

In such case, the usual definition needs to be amended as −(X,Q) ∈ ∂Ψ where ∂ denotes the subdifferential operator

with respect to (etr, q). It follows that

−(X,Q) ∈ (−s+Hetr −Aq, hq −Aetr) + τM∂‖etr − q‖+ ∂IεL(etr). (8)

The reader is referred to, e.g., (42, 43) for an in-depth introduction to subdifferentials and related tools in convex

analysis. We simply recall here that the subdifferential of a convex function F (etr, q) is the multi-valued operator

∂F defined by:

∂F (etr, q) = {(a, b) : F (ẽtr, q̃) ≥ F (etr, q) + a : (ẽtr − etr) + b : (q̃ − q) ∀(ẽtr, q̃)}.

In particular, we have:

∂‖etr − q‖ =


(etr − q, q − etr)
‖etr − q‖

if etr 6= q{
(τ ,−τ ) : tr τ = 0, ‖τ‖ ≤ 1

}
if etr = q

(9)
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and

∂IεL(etr) =


(0, 0) if ‖etr‖ < εL{

(γetr, 0) : γ ≥ 0
}

if ‖etr‖ = εL

∅ if ‖etr‖ > εL

(10)

Note that ∂‖etr − q‖ is multi-valued when etr = q. Similarly, ∂IεL(etr) is multi-valued when ‖etr‖ = εL.

The evolution equation for (etr, q) is determined by the dissipation function Φ as:

(X,Q) ∈ ∂Φ(ε̇tr, q̇). (11)

Following the framework of standard generalized materials (44), Eq. (11) respects the second law of thermodynam-

ics for any choice of positive, convex dissipation function that vanishes at the origin. Using expression (6) of the

dissipation function yields:

∂Φ(ε̇tr, q̇) =


RY

(
ε̇tr, κ2q̇

)
‖(ε̇tr, q̇)‖κ

if (ε̇tr, q̇) 6= (0, 0)

C if (ε̇tr, q̇) = (0, 0)

(12)

with:

C = {(τ 1, τ 2) : tr τ 1 = tr τ 2 = 0, ‖τ 1‖2 +
1

κ2
‖τ 2‖2 ≤ R2

Y }. (13)

Relation (11) can be rewritten in a more familiar form by noting that it is equivalent to:

(ε̇tr, q̇) ∈ ∂Φ∗(X,Q) (14)

where Φ∗ is the Legendre transform of the dissipation function Φ, as defined by Φ∗(X,Q) = sup
(ε̇tr,q̇)

X : ε̇tr +Q :

q̇ −Φ(ε̇tr, q̇). Using expression (6), it can be calculated that Φ∗ is the indicator function of the domain C in (13). It

follows that Eq. (14) becomes:

(ε̇tr, q̇) = λ

(
X

‖X‖
,

1

κ2
Q

‖Q‖

)
(15)

with conditions:

λ ≥ 0, ‖X‖2 +
1

κ2
‖Q‖2 −R2

Y ≤ 0, λ(‖X‖2 +
1

κ2
‖Q‖2 −R2

Y ) = 0. (16)
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Eqs. (15) and (16) correspond to a normality flow rule for the variables (etr, q). Correspondingly, the domain C

introduced in Eq. (13) can be interpreted as the elasticity domain of the material. In the space of (X,Q) variables,

the domain C has an ellipsoidal shape with axis RY and κRY .

For later reference, we note that Eqs. (8) and (11) can be combined as:

(0, 0) ∈ (−s+Hetr −Aq, hq −Aetr) + τM∂‖etr − q‖+ ∂IεL(etr) + ∂Φ(ε̇tr, q̇). (17)

3 Incremental algorithm

This section discusses the time-discretization of the constitutive laws (7) and (17). Time discretization consists in

introducing a finite number of time instants t0 < · · · < tN and estimating the state at each time instant tn in

a time-marching approach. Let pn, sn, etrn , qn be respectively the hydrostatic stress, deviatoric stress, transfor-

mation strain, and permanent inelastic strain at time tn. We focus on the central issue of estimating the state

(pn+1, sn+1, e
tr
n+1, qn+1) at current time tn+1, assuming that : (i) the control variables at current time tn+1 (i.e, the

total strain εn+1 and the temperature Tn+1) are prescribed, (ii) the state (etrn , qn) at previous time tn is known and

satisfies the constraint ‖etrn ‖ ≤ εL. A natural way of performing the state update is to discretize Eq. (17) using an

implicit Euler scheme as:

(0, 0) ∈ (−sn+1+Hetrn+1−Aqn+1, hqn+1−Aetrn+1)+τM,n+1∂‖etrn+1−qn+1‖+∂IεL(etrn+1)+∂Φ(
etrn+1 − etrn
tn+1 − tn

,
qn+1 − qn
tn+1 − tn

)

(18)

with

pn+1 = Kθn+1, sn+1 = 2G(en+1 − etrn+1), τM,n+1 = β〈Tn+1 − T0〉. (19)

In Eq. (19), θn+1 and en+1 are the volumetric and deviatoric part of εn+1, respectively. To alleviate the notations,

the scalar τM,n+1 will be denoted by τM in the following. Eliminating sn+1 between Eqs. (18) and (19) and noting

that ∂Φ is positively homogeneous of degree 0, we obtain the equation:

(0, 0) ∈ (2G′etrn+1−a, hqn+1) + τM∂‖etrn+1−qn+1‖−A(qn+1, e
tr
n+1) +∂IεL(etrn+1) +∂Φ(etrn+1−etrn , qn+1−qn) (20)

where G′ = G+H/2 and a = 2Gen+1. In Eq. (20), the unknowns are the two deviatoric tensors (etrn+1, qn+1).

In a finite-element framework, Eq. (20) typically needs to be solved at each Gauss point. A computationally efficient

algorithm for solving Eq. (20) is thus essential. Aside from nonlinearity, there are two main difficulties in solving Eq.
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(20). The first one is that several terms in Eq. (20) are not differentiable, meaning that those terms are multi-valued

for certain values of (etrn+1, qn+1). The second difficulty lies in the dimensionality of the problem: compared (for

instance) to the Souza-Auricchio model (39, 45), there are now two internal variables (etr, q) instead of one (namely,

etr), hence the dimensionality jumps from 5 to 10.

For our purpose, it is important to note that a variational formulation is attached to Eq. (20). Consider indeed

the convex function F(etr, q) defined by

F(etr, q) = Ψ(εn+1, e
tr, q) + Φ(etr − etrn , q − qn)

where Ψ is the Helmoltz energy function and Φ is the dissipation potential, as introduced in (2) and (6) respectively.

Since Ψ and Φ are proper, lower-semicontinuous and convex, the function F is also proper, lower-semicontinuous and

convex (42, 43). Hence the solutions to the minimization problem

inf
(etr, q)

F(etr, q) (21)

are characterized by the optimality condition

(0, 0) ∈ ∂F(etr, q). (22)

Moreover, we have ∂F(etr, q) = ∂Ψ(εn+1, e
tr, q) + ∂Φ(etr − etrn , q − qn) where ∂Ψ is the subdifferential of Ψ with

respect to the variables (etr, q). From expression (2) we find

∂F(etr, q) = (2G′etr − a, hq) + τM∂‖etr − q‖ −A(q, etr) + ∂IεL(etr) + ∂Φ(etr − etrn , q − qn) (23)

Any (etrn+1, qn+1) satisfying Eq. (20) clearly verifies Eqs (22) and (23), i.e. is a solution to the minimization problem

(21). Conversely, any solution to (21) verifies Eq. (20). The formulations (20) and (21) are thus equivalent.

Eq. (21) can be interpreted as an incremental energy minimization problem. The state update equation (20) of

the Euler implicit scheme can be interpreted as the optimality condition in the minimization problem (21).

The variational formulation (21) notably allows one to justify the existence and uniqueness of the updated state

(etrn+1, qn+1) introduced in Eq. (20). Under the requirement (4), the function F is indeed strictly convex, with infinite

growth at infinity, and therefore admits a unique minimizer. The solution (etrn+1, qn+1) to (20) is thus uniquely
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defined. In the following, we will take advantage of the variational formulation (21) for determining (etrn+1, qn+1) in a

robust and consistent manner. The overall strategy that we propose breaks down into three steps. The first step (see

Section 3.1) consists in checking whether (etrn+1, qn+1) = (etrn , qn). If not, the second step (see Section 3.2) consists

in solving the minimization problem obtained by ignoring the term IεL(etr) in Eq. (2). If the state (ẽtr, q̃) obtained

in such fashion satisfies the constraint ‖ẽtr‖ ≤ εL, then we have (etrn+1, qn+1) = (ẽtr, q̃). Otherwise, we move to

the third and final step (see Section 3.3) which consists in solving Eq. (22) with respect to pairs (etrn+1, qn+1) that

saturates the constraint, i.e., such that ‖etrn+1‖ = εL.

3.1 Elastic evolution

In this section we detail the procedure for checking whether (etrn+1, qn+1) = (etrn , qn) i.e., whether the incremental

evolution is elastic. From Eqs.(12) and (20), the condition for the evolution to be elastic is:

(b,−c) ∈ τM∂‖etrn − qn‖+ ∂IεL(etr) + C (24)

where:

b = a− 2G′etrn +Aqn, c = hqn −Aetrn .

Detailing condition (24) any further requires to distinguish between different cases, depending on the value of (etrn , qn).

3.1.1 Case etrn 6= qn with ‖etrn ‖ < εL

We first consider the situation where etrn 6= qn and ‖etrn ‖ < εL. Using Eqs. (9) and (10), condition (24) becomes:

(u,v) ∈ C (25)

where u and v are defined by

u = b− τM
etrn − qn
‖etrn − qn‖

, v = −c+ τM
etrn − qn
‖etrn − qn‖

.

From the expression of C in Eq. (13), condition (25) can be rewritten as:

κ2‖u‖2 + ‖v‖2 ≤ κ2R2
Y . (26)
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3.1.2 Case etrn 6= qn with ‖etrn ‖ = εL

We now consider the situation where etrn 6= qn and ‖etrn ‖ = εL. In such case, by Eqs. (9) and (10), condition (24) is

satisfied if and only if (u− γetrn ,v) ∈ C for some γ ≥ 0. This is equivalent to requiring that:

inf
γ≥0

κ2‖u− γetrn ‖2 + ‖v‖2 ≤ κ2R2
Y . (27)

Let u⊥ = u− (u : etrn )etrn /ε
2
L be the projection of u on the orthogonal of etrn , so that:

‖u− γetrn ‖2 = ‖(u : etrn )/εL − γεL‖2 + ‖u⊥‖2.

It follows that:

inf
γ≥0
‖u− γetrn ‖2 = ‖u− 〈u : etrn 〉

ε2L
etrn ‖2 =

 ‖u⊥‖
2 if u : etrn ≥ 0,

‖u‖2 if u : etrn ≤ 0.

Substituting in Eq. (27), we obtain that the condition for (etrn , qn) to be the solution to problem (21) reads as:

κ2‖u− 〈u : etrn 〉
ε2L

etrn ‖2 + ‖v‖2 ≤ κ2R2
Y . (28)

3.1.3 Case etrn = qn with ‖etrn ‖ < εL

In the case etrn = qn with ‖etrn ‖ < εL, condition (24) is satisfied if and only if:

(b− τ ,−c+ τ ) ∈ C (29)

for some deviatoric tensor τ such that ‖τ‖ ≤ τM . Condition (29) can be rewritten as :

inf
τ :‖τ ‖≤τM

κ2‖b− τ‖2 + ‖c− τ‖2 ≤ κ2R2
Y . (30)

Using expansion:

κ2‖b− τ‖2 + ‖c− τ‖2 = (κ2 + 1)‖τ‖2 − 2τ : (κ2b+ c) + κ2‖b‖2 + ‖c‖2
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as well as the Cauchy-Schwarz inequality, it can be easily seen that the tensor τ reaching the infimum in problem

(30) is positively collinear to κ2b+ c. Condition (30) can thus be simplified as:

F1 ≤ κ2R2
Y (31)

where

F1 = min
0≤t≤τM

(κ2 + 1)t2 − 2t‖κ2b+ c‖+ κ2‖b‖2 + ‖c‖2. (32)

Solving the quadratic minimization problem defining F1 leads to the following expressions:

F1 =


κ2

1 + κ2
‖b− c‖2 if ‖κ2b+ c‖ ≤ (κ2 + 1)τM ,

(κ2 + 1)τ2M − 2τM‖κ2b+ c‖+ κ2‖b‖2 + ‖c‖2 otherwise.

3.1.4 Case etrn = qn with ‖etrn ‖ = εL

We finally consider the situation where etrn = qnand ‖etrn ‖ = εL. In that case, condition (24) is satisfied if and only if

(b− τ − γetrn ,−c+ τ ) ∈ C (33)

for some γ ≥ 0 and some deviatoric tensor τ such that ‖τ‖ ≤ τM . Condition (33) can be rewritten as:

F2 ≤ κ2R2
Y (34)

where

F2 = inf

γ ≥ 0,

τ : ‖τ‖ ≤ τM

κ2‖b− τ − γetrn ‖2 + ‖c− τ‖2.

The quadratic minimization problem defining F2 can be solved in closed form, although the expressions are more

involved than those obtained for F1 in Eq. (32). We set:

b//= a :
etrn
εL

+ (A− 2G′)εL, c//= (h−A)εL, d//= τM
κ2b//+ c//

‖κ2b+ c‖
, B = ‖a‖2 −

(
a :

etrn
εL

)2
.
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Table 1: Conditions for elastic evolution.

‖etrn ‖ < εL ‖etrn ‖ = εL

etrn 6= qn κ2‖u‖2 + ‖v‖2 ≤ κ2R2
Y κ2‖u− 〈u : etrn 〉

ε2L
etrn ‖2 + ‖v‖2 ≤ κ2R2

Y

etrn = qn F1 ≤ κ2R2
Y F2 ≤ κ2R2

Y

Omitting the detail of the calculations, F2 is given by the following expressions:

- if ‖κ2b+ c‖ ≥ (κ2 + 1)τM :

F2 =


(κ2 + 1)τ2M − 2τM‖κ2b+ c‖+ κ2‖b‖2 + ‖c‖2 if b//≤ d//
κ2

1 + κ2
B if b//≥ d// and c2// +

( κ2

1 + κ2

)2
B ≤ τ2M(τ2M

x2
− 1
)( c2//

κ2
+ x2

)
+ (c//− x)2 if b//≥ d// and c2// +

( κ2

1 + κ2

)2
B ≥ τ2M

- if ‖κ2b+ c‖ ≤ (κ2 + 1)τM :

F2 =


− 1

1 + κ2
‖κ2b+ c‖2 + κ2‖b‖2 + ‖c‖2 if b//≤ c//

κ2

1 + κ2
B if b//≥ c// and c2// +

( κ2

1 + κ2

)2
B ≤ τ2M(τ2M

x2
− 1
)( c2//

κ2
+ x2

)
+ (c//− x)2 if b//≥ c// and c2// +

( κ2

1 + κ2

)2
B ≥ τ2M

The scalar x that appears in the above expressions is obtained by solving the polynomial equation

(x2 − τ2M )(c//+ κ2x)2 + κ4Bx2 = 0 (35)

on [−τM ,min(τM , b//)]. Since the polynomial in Eq. (35) is of degree 4, its roots can be obtained in closed form.

3.1.5 Summary

The conditions for the incremental evolution to be elastic are summarized in Table 1. If those conditions are satisfied,

then the solution (etrn+1, qn+1) to problem (20) is simply obtained as (etrn+1, qn+1) = (etrn , qn). We emphasize that

all the calculations needed for checking the conditions in Table 1 can be done in closed form, without resorting to a

nonlinear solver, as in the case of ref. (13). In the most complex case (‖etrn ‖ = εL with etrn = qn and c2//+
( κ2

1 + κ2

)2
B ≥

τ2M ), a polynomial equation of degree 4 needs to be solved.
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3.2 Unsaturated phase transformation

If the conditions reported in Table 1 are not satisfied, then (etrn+1, qn+1) 6= (etrn , qn), i.e., phase transformation occurs.

To carry out the state update in that case, we first consider the incremental energy minimization problem obtained

by dropping the term IεL(etr) in (2). The corresponding minimization problem can be written as

inf
(etr, q)

F0(etr, q) (36)

where

F0(etr, q) = Ψ0(εn+1, e
tr, q) + Φ(etr − etrn , q − qn) (37)

and Ψ0 is defined as in Eq. (3). For later reference, we note that problem (36) can be written in a more explicit form

as

inf
(etr, q)

G′‖etr‖2 − etr : a+ τM‖etr − q‖+
1

2
h‖q‖2 −Aetr : q + Φ(etr − etrn , q − qn). (38)

Since F0 is strictly convex and grows to infinity as (etr, q) tends to infinity, problem (36) admits a unique solution

that we denote by (ẽtr, q̃). The latter is characterized by the optimality condition (0, 0) ∈ F0(ẽtr, q̃), i.e.

(0, 0) ∈ (2G′ẽtr − a, hq̃) + τM∂‖ẽtr − q̃‖ −A(q̃, ẽtr) + ∂Φ(ẽtr − etrn , q̃ − qn). (39)

3.2.1 Case ẽtr = q̃

In order to find (ẽtr, q̃), the strategy that we propose consists in first carrying out the optimization with respect to

pairs (etr, q) such that etr = q. We thus consider the problem

inf
q
F0(q, q). (40)

The minimization problem (41) is easier to solve than problem (36), because it involves only one tensorial unknown,

instead of two. From expression (37) of F0, (40) can be rewritten as

inf
q

1

2
G′′‖q‖2 − q : a+ Φ(q − etrn , q − qn) (41)
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where G′′ = 2G′ + h− 2A.

Let q∗ be the (unique) solution to problem (41). If etrn 6= qn, then q∗ is characterized by the optimality condition:

0 = G′′q∗ − a+
RY
y

((1 + κ2)q∗ − etrn − κ2qn) (42)

with

y = ‖(q∗ − etrn , q∗ − qn)‖κ. (43)

From Eq. (42) we obtain :

q∗ =
ya+RY (etrn + κ2qn)

yG′′ +RY (1 + κ2)
. (44)

Substituting (44) in (43) gives an equation in which y is the only unknown. After some manipulation, that equation

is found to read as

a0 + a1y + a2y
2 + a3y

3 + a4y
4 = 0 (45)

with:
a0 = κ2R2

Y (1 + κ2)‖etrn − qn‖2,

a1 = 2RYG
′′κ2‖etrn − qn‖2,

a2 = ‖(G′′etrn − a, G′′qn − a)‖2κ −R2
Y (1 + κ2)2,

a3 = −2RY (1 + κ2)G′′,

a4 = −G′′2.

Since the polynomial equation (45) is of degree 4, the value of y can be obtained in closed form. Substituting the

result in Eq. (44) gives the value of q∗.

The solution q∗ to problem (41) being found, we proceed to check if (ẽtr, q̃) = (q∗, q∗), i.e., if (q∗, q∗) is the

solution to problem (36). Eq. (39) shows that it happens to be the case if:

‖(h−A)q∗ +
RY
y
κ2(q∗ − qn)‖ ≤ τM . (46)

Remark: in the case etrn = qn, one first needs to check whether:

‖G′′qn − a‖ ≤ RY
√

1 + κ2. (47)
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If condition (47) is satisfied, then q∗ = qn so that (q∗, q∗) = (etrn , qn). We already know from Section 3.1 that

(etrn , qn) is not the solution to problem (21). It follows that (q∗, q∗) = (etrn , qn) is not the solution to problem (36)

neither.

If condition (47) is not satisfied, q∗ is obtained by expressions (44)-(45), and condition (46) for checking if (ẽtr, q̃) =

(q∗, q∗) still applies.

3.2.2 Case ẽtr 6= q̃

If (q∗, q∗) does not provide the solution to problem (36), then we necessarily have ẽtr 6= q̃ and the optimality

conditions (39) become: 
0 = 2G′ẽtr − a +τM

ẽtr − q̃
x

−Aq̃ +RY
ẽtr − etrn

y

0 = hq̃ +τM
q̃ − ẽtr

x
−Aẽtr + κ2RY

q̃ − qn
y

(48)

where x = ‖ẽtr − q̃‖ and y = ‖(ẽtr − etrn , q̃ − qn)‖κ. For given x and y, Eq. (48) can be viewed as a linear system in

(ẽtr, q̃) and put in matrix form:

 2G′ + x′ + y′ −x′ −A

−x′ −A x′ + h+ κ2y′


 ẽtr
q̃

 =

 a+ y′etrn

κ2y′qn

 (49)

where x′ = τM/x and y′ = RY /y. Let M be the 2×2 matrix that appears in the left-hand side of system (49). We

have:

detM = 2G′h−A2 + x′G′′ + x′y′(1 + κ2) + y′(2κ2G′ + h) + κ2y′2. (50)

Using condition (4), it can easily be checked that 2G′h − A2 > 0 so that detM > 0 for any positive (x, y). System

(49) can be thus inverted to give:

 ẽtr
q̃

 =
1

detM

 x′ + h+ κ2y′ x′ +A

x′ +A 2G′ + x′ + y′


 a+ y′etrn

κ2y′qn

 . (51)

Through relations (51), (ẽtr, q̃) are expressed as explicit functions of the two unknown scalars (x, y). It remains to

find the value of (x, y). To do so, we note from system (51) that:

ẽtr − q̃ =
1

detM
d (52)
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with

d = (h+ κ2y′ −A)(a+ y′etrn ) + (A− 2G′ − y′)κ2y′qn.

A crucial observation is that tensor d is independent on x. We can thus use Eq. (52) to obtain x as a function of y.

More precisely, taking the norm of Eq. (52) gives:

xdetM = ‖d‖.

Using Eq. (50), we find:

x =
‖d‖ − τM (G′′ + y′(1 + κ2))

2G′h−A2 + y′(2κ2G′ + h) + κ2y′2
(53)

and substituting in system (51) yields:

 ẽtr
q̃

 =
1

Y

 (h+ κ2y′)− τM
‖d‖

(h−A+ κ2y′)2 A+
τM
‖d‖

(A− h− κ2y′)(A− 2G′ − y′)

A+
τM
‖d‖

(A− h− κ2y′)(A− 2G′ − y′) (2G′ + y′)− τM
‖d‖

(A− 2G′ − y′)2


 a+ y′etrn

κ2y′qn


(54)

where Y = 2G′h−A2 + y′(2κ2G′ + h) + κ2y′2.

We are now left with the issue of finding the scalar y. This is accomplished by solving the equation:

f(y) = 0 (55)

where:

f(y) = ‖(ẽtr − etrn , q̃ − qn)‖κ − y

in which (ẽtr, q̃) are expressed as functions of y via system (54). Since (ẽtr, q̃) is uniquely defined, the equation

f(y) = 0 has a unique solution in ]0,+∞[. In practice, the nonlinear equation (55) needs to be solved numerically.

It can be verified that f(y) → −∞ as y → +∞ and that f(y) converges towards a non negative value as y → 0. In

practical computations, those properties can be useful for initializing a bisection algorithm.
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3.3 Saturated phase transformation

If the values (ẽtr, q̃) found in Section 3.2 are such that ‖ẽtr‖ ≤ εL, then (ẽtr, q̃) satisfies the optimality condition

(20) so that (etrn+1, qn+1) = (ẽtr, q̃). Otherwise, the solution (etrn+1, qn+1) to problem (21) necessarily saturates the

constraint, i.e., verifies ‖etrn+1‖ = εL.

3.3.1 Case etrn+1 = qn+1

As in Section 3.2.1, we first carry out the optimization with respect to pairs (etr, q) such that etr = q. The strategy

consists in determining the (unique) solution q∗ to the minimization problem

inf
q
F(q, q) (56)

and check whether (etrn+1, qn+1) = (q∗, q∗). Problem (56) can equivalently be rewritten as

inf
q:‖q‖≤εL

1

2
G′′‖q‖2 − q : a+ Φ(q − etrn , q − qn). (57)

Observe that if the value q∗ introduced in Section 3.2.1 satisfies ‖q∗‖ ≤ εL, then q∗ = q∗. In that case, we already

know from Section 3.2 that (etrn+1, qn+1) 6= (q∗, q∗). In the following, we examine the situation where ‖q∗‖ > εL. In

that case, q∗ necessarily saturates the constraint in (57) , i.e.

‖q∗‖ = εL.

In the special case where etrn = qn with ‖etrn ‖ = εL, it is possible that q∗ = qn. This occurs if:

√
B ≤ RY

√
1 + κ2. (58)

In that case, as we know from Section 3.1 that (etrn , qn) is not the solution to problem (21), we have again

(etrn+1, qn+1) 6= (q∗, q∗).

Except in the very special case where etrn = qn, ‖etrn ‖ = εL, and inequality (58) are satisfied, the optimality

condition in (57) becomes

0 = −a+
RY
y

((1 + κ2)q∗ − etrn − κ2qn) + γ∗q∗ (59)
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with γ∗ ≥ 0 and

y = ‖(q∗ − etrn , q∗ − qn)‖κ. (60)

It follows that:

q∗ = εL
ya+RY (etrn + κ2qn)

‖ya+RY (etrn + κ2qn)‖
. (61)

Subsituting (61) in (60) leads to the equation

g(y) = 0 (62)

where

g(y) = y2 + 2εL
ya : u0 +RY ‖u0‖2

‖ya+RY u0‖
− ε2L(1 + κ2)− ‖etrn ‖2 − κ2‖qn‖2

and u0 = etrn + κ2qn.

In practice, Eq. (62) needs to be solved numerically. Substituting the obtained value for y in (61) gives q∗. Having

found the solution q∗ to problem (56), we check whether (q∗, q∗) happens to be the solution to problem (21). Using

Eqs. (10)-(20), we obtain that (q∗, q∗) is the solution to problem (21) if:

‖(h−A)q∗ +
RY
y
κ2(q∗ − qn)‖ ≤ τM ,

‖a+
RY
y
u0‖ ≥ (G′′ +

RY
y

(1 + κ2))εL.

(63)

If condition (63) is satisfied, then (etrn+1, qn+1) = (q∗, q∗).

3.3.2 Case etrn+1 6= qn+1

If the procedure described in Section 3.3.1 does not the provide the solution to problem (21), then etrn+1 6= qn+1 and

‖etrn+1‖ = εL. Hence the optimality condition (20) becomes:


0 = 2G′etrn+1 − a +τM

etrn+1 − qn+1

x
−Aqn+1 +RY

etrn+1 − etrn
y

+γetrn+1

0 = hqn+1 +τM
qn+1 − etrn+1

x
−Aetrn+1 + κ2RY

qn+1 − qn
y

(64)

with

x = ‖etrn+1 − qn+1‖, y = ‖(etrn+1 − etrn , qn+1 − qn)‖κ, γ ≥ 0.
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The solution to problem (21) can be obtained by solving the nonlinear problem:

h(γ) = 0 (65)

where:

h(γ) = ‖etr(γ)‖ − εL

and (etr(γ), q(γ)) denotes the solution to the unconstrained problem (parameterized by γ).

inf
(etr,q)

1

2
γ‖etr‖2 +G′‖etr‖2 − etr : a+ τM‖etr − q‖+

1

2
h‖q‖2 −Aetr : q + Φ(etr − etrn , q − qn). (66)

Problem (66) is formally identical to problem (38), the only difference being that the term G′‖etr‖2 in Eq. (38) is

replaced by ( 1
2γ + G′)‖etr‖2. Consequently, the method presented in Section 3.2 can be directly used for solving

problem (66). The updated state is obtained as (etrn+1, qn+1) = (etr(γ), q(γ)), where γ is the solution to problem (65).

3.4 Summary

The pseudocode of the proposed algorithm in summarized below in Algorithm 1. The input variables are the internal

variables (etrn , qn) at time tn and the control variables (en+1, Tn+1) at current time tn+1. The output is the state

variables (etrn+1, qn+1) at time tn+1, from which the stress can be deduced using Eq. (19). The proposed algorithm

results from a careful analysis of the incremental energy minimization problem (21) and delivers the solution of the

time-discretized problem (20) in all cases. The presented algorithm can be readily implemented in a FE code for

solving three-dimensional boundary value problems, as will be demonstrated in Section 4.

The overall structure of the algorithm is of the predictor-corrector type. One first checks (through the conditions

in Table 1) whether the elastic guess happens to give the solution. If not, the value of (etrn+1, qn+1) is updated so as

to satisfy the optimality condition (20). That updating procedure proceeds in a two-step fashion by distinguishing

between the cases of unsaturated phase transformation and saturated phase transformation. In general, iterative

solvers are needed for solving the nonlinear equations (55), (62), (65) that arise in the updating procedure. We

emphasize that all those nonlinear equations are scalar and can thus be solved in a very robust fashion by using (for

instance) a combination of bisection and Newton methods (see, e.g., ref. (46, 47)).

We recall that the idea, the structure, and the formalism of elastic/unsaturated/saturated evolution stem from

previous works, see, e.g., (33–36). The present algorithm can be in fact interpreted as an extension of a radial return

algorithm proposed in ref. (36) for the original Souza-Auricchio model in which etr is the only internal variable.
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The algorithm in ref. (36) involves a single scalar parameter, whereas more conventional return-mapping algorithms

(see, e.g., (45)) involve 5-7 parameters (namely, the components of etr, the plastic multiplier, and a Lagrange

multiplier associated with the constraint ‖etr‖ ≤ εL). For the model considered in this paper – which includes the

permanent inelastic strain q as an additional internal variable – it can be expected that conventional return-mapping

algorithms would involve 10-12 scalar parameters, as reported in ref. (13). This may increase computational costs and

cause trouble of convergence when using Newton-Raphson procedures. Such difficulties are avoided by the presented

algorithm, since it has the distinctive property of involving only scalar nonlinear equations.

Algorithm 1 Pseudocode of the proposed algorithm

1: a← 2Gen+1, u0 ← etrn + κ2qn
2: if the conditions in Table 1 are verified then
3: (etrn+1, qn+1)← (etrn , qn) . Elastic evolution
4: else
5: if etrn = qn and ‖G′′qn − a‖ ≤ RY

√
1 + κ2 then

6: q∗ ← etrn
7: go to line 16
8: else
9: Calculate y by solving the polynomial equation (45)

10: q∗ ← ya+RY u0

yG′′ +RY (1 + κ2)

11: if ‖(h−A)q∗ +
RY
y
κ2(q∗ − qn)‖ ≤ τM then

12: (ẽtr, q̃)← (q∗, q∗)

13: go to line 18
14: end if
15: end if
16: Calculate y by solving f(y) = 0 in Eq. (55)
17: Calculate (ẽtr, q̃) by Eq. (54)
18: if ‖ẽtr‖ ≤ εL then
19: (etrn+1, qn+1)← (ẽtr, q̃) . Unsaturated phase transformation
20: else
21: if (‖q∗‖ ≤ εL) or (etrn = qn and ‖etrn ‖ = εL and

√
B ≤ RY

√
1 + κ2) then

22: go to line 30
23: else
24: Calculate y by solving g(y) = 0 in Eq. (62)

25: q∗ ← εL
ya+RY u0

‖ya+RY u0‖
26: if ‖(h−A)q∗ +

RY
y
κ2(q∗ − qn)‖ ≤ τM and ‖a+

RY
y
u0‖ ≥ (G′′ +

RY
y

(1 + κ2))εL then

27: (etrn+1, qn+1)← (q∗, q∗)

28: go to line 35
29: end if
30: Calculate γ by solving h(γ) = 0 in Eq. (65)
31: (etrn+1, qn+1)← (etr(γ), q(γ)) . Saturated phase transformation
32: end if
33: end if
34: end if
35: return (etrn+1, qn+1)
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3.5 Tangent stiffness operator

The tangent stiffness operator dσ/dε can be obtained in a fully explicit form. Let 1 and I be the second-order and

fourth order identity tensors, respectively. Setting J = (1⊗ 1)/3 and K = I− J, we have from Eq. (7):

dσ

dε
= C− 4G2 de

tr
n+1

da
K (67)

where C = 3K I + 2GK is the elasticity tensor. In the case of an elastic evolution, we obviously have detrn+1/da = 0,

so that dσ/dε = C. In the following, we give the expression of detrn+1/da = 0 and dσ/dε in the case where phase

transformation occurs. In accordance with previous developments, different expressions are obtained depending on

the values of (etrn+1, qn+1). We refer to APPENDIX A for the derivation of the results presented next.

3.5.1 Unsaturated phase transformation (‖etrn+1‖ < εL)

Let us first consider the situation where etrn+1 = qn+1. As detailed in APPENDIX A, we have :

detrn+1

da
= X

(
K +

y′X

y2 − y′X‖U0‖2
U0 ⊗U0

)
(68)

where:

U0 = (1 + κ2)qn+1 − etrn − κ2qn, X = (G′′ + y′(1 + κ2))−1. (69)

We recall that y = ‖(qn+1 − etrn , qn+1 − qn)‖κ and y′ = RY /y. Substituting Eq. (68) into Eq. (67) gives:

dσ

dε
= C− 4G2X

(
K +

y′X

y2 − y′X‖U0‖2
U0 ⊗U0

)
. (70)

The expression of the operator detrn+1/da gets more involved in the situation where etrn+1 6= qn+1. Introducing the

tensors
U = (h+ κ2y′ −A)(etrn+1 − qn+1),

V = (x′ + h+ κ2y′)(etrn+1 − etrn ) + κ2(x′ +A)(qn+1 − qn),

V ′ = (x′ +A)(etrn+1 − etrn ) + κ2(2G′ + x′ + y′)(qn+1 − qn),

(71)
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and the scalar quantities

X11 =
y′

y2
(
V : (etrn+1 − etrn ) + κ2V ′ : (qn+1 − qn)

)
,

X22 = x′(G′′ + (1 + κ2)y′),

X12 =

√
x′y′

xy
(V − V ′) : (etrn+1 − qn+1),

(72)

it can be calculated (see APPENDIX A) that:

detrn+1

da
=
x′ + h+ κ2y′

D
K + Y11U ⊗U + Y22V ⊗ V + Y12(U ⊗ V + V ⊗U) (73)

where:

Y11 =
1

Z

x′

x2
(1− X11

D
) , Y22 =

1

Z

y′

y2
(1− X22

D
) , Y12 =

1

Z

√
x′y′

xy

X12

D

and

D = (2G′ + x′ + y′)(x′ + h+ κ2y′)− (x′ +A)2, Z = (D −X22)(D −X11)−X2
12. (74)

Expression (73) holds if ‖etrn+1‖ < εL and etrn+1 6= qn+1. In such case, we obtain from Eq. (67) that:

dσ

dε
= C− 4G2

(
x′ + h+ κ2y′

D
K + Y11U ⊗U + Y22V ⊗ V + Y12(U ⊗ V + V ⊗U)

)
. (75)

3.5.2 Saturated phase transformation (‖etrn+1‖ = εL)

In the case etrn+1 = qn+1 with ‖etrn+1‖ = εL, we obtain:

detrn+1

da
= X̃

(
P +

y′X̃

y2 − y′X̃‖U⊥0 ‖2
U⊥0 ⊗U

⊥
0

)
(76)

where X̃ = εL/(‖a‖+ y′(etrn + κ2qn)), P = K− (etrn+1 ⊗ etrn+1)/ε2L and U⊥0 = PU0. In Eq. (76), U0 is defined as in

Eq. (69). The operator P can be interpreted as the projector on the orthogonal to etrn+1 in the deviatoric space. It

follows from Eq. (76) that:

dσ

dε
= C− 4G2X

(
P +

y′X̃

y2 − y′X̃‖U⊥0 ‖2
U⊥0 ⊗U

⊥
0

)
. (77)
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In the case etrn+1 6= qn+1 with ‖etrn+1‖ = εL, the operator detrn+1/da takes the form:

detrn+1

da
=
x′ + h+ κ2y′

D̃
P + Ỹ11U

⊥ ⊗U⊥ + Ỹ22V
⊥ ⊗ V ⊥ + Ỹ12(U⊥ ⊗ V ⊥ + V ⊥ ⊗U⊥) (78)

where U⊥ = PU , V ⊥ = PV and (U ,V ) are defined as in Eq. (71). The scalar Ỹ11, Ỹ22, Ỹ12 in (78) are defined by:

Ỹ11 =
1

Z̃

x′

x2
(1− X̃11

D̃
) , Ỹ22 =

1

Z̃

y′

y2
(1− X̃22

D̃
) , Ỹ12 =

1

Z̃

√
x′y′

xy

X̃12

D̃

where

D̃ = (2G′ + γ + x′ + y′)(x′ + h+ κ2y′)− (x′ +A)2, Z̃ = (D̃ − X̃22)(D̃ − X̃11)− X̃2
12

and
X̃11 =

y′

y2

(
V ⊥ : (etrn+1 − etrn ) + κ2W : (qn+1 − qn)

)
,

X̃22 =
x′

x2

(
(G′′ + γ + (κ2 + 1)y′)‖Pqn+1‖2 +

D̃

x′ + k + κ2y′
(etrn+1 : (qn+1 − etrn+1))2

ε2L

)
,

X̃12 =

√
x′y′

xy
(V ⊥ −W ) : (etrn+1 − qn+1).

(79)

The tensor W that appears in Eq. (79) is given by:

W = PV ′ +
D̃

x′ + h+ κ2y′
κ2

ε2L
(etrn+1 : (qn+1 − qn))etrn+1.

From Eqs. (67) and (78) we finally obtain:

dσ

dε
= C− 4G2

(
x′ + h+ κ2y′

D̃
P + Ỹ11U

⊥ ⊗U⊥ + Ỹ22V
⊥ ⊗ V ⊥ + Ỹ12(U⊥ ⊗ V ⊥ + V ⊥ ⊗U⊥)

)
. (80)

To close this section, we emphasize that the various expressions obtained for the tangent stiffness operator are fully

explicit and do not involve any matrix inversion, thus making for an efficient and accurate numerical evaluation of

dσ/dε.

4 Numerical results

This section presents the results obtained by the numerical implementation of the proposed algorithm in a FE

framework.
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Table 2: Adopted model parameters taken from ref. (13).

Parameter Set 1 Set 2 Set 3 Unit

E 50000 50000 50000 MPa
ν 0.35 0.35 0.35 -
β 2 2 2 MPa/K
T0 223 223 223 K
H 1000 1000 1000 MPa
RY 50 50 50 MPa
εL 0.04 0.04 0.04 -
h 0 15000 15000 MPa
A 0 0 2000 MPa
κ 10 10 10 -

We implemented the algorithm within a user-defined material subroutine (UMAT) of the FE software ABAQUS/-

Standard (48). Following the methodology proposed in ref. (49), we exploited the capabilities of the package AceGen

(50) of the symbolic software Mathematica to generate the UMAT.

In the pseudocode of the algorithm as presented in Sect. 3.4, there appear several equality conditions of the form

u = v, where u and v are two scalar quantities. In the numerical implementation, such equality conditions have been

replaced by inequality conditions of the form |u− v| ≤ εtol where εtol is an absolute tolerance parameter set to 10−6.

Indeed, round-off errors in practical computations almost always prevent floating-point variables to be exactly equal.

Since the solution (etrn+1, qn+1) to the minimization problem (21) depends continuously on the data (en+1, e
tr
n , qn),

the exact value of the tolerance parameter εtol is expected not to impact the robustness of the algorithm.

Numerical experiments aim to verify model implementation as well as to evaluate algorithm performances and

robustness. We perform several tests involving both PE and SME, of increasing complexity, starting from simple

uniaxial tests to more complex three-dimensional boundary-value problems on real devices.

We consider the three sets of material properties proposed in ref. (13) and specified in Table 2, in order to verify the

main features of the model, compared to the results in ref. (13), as well as to show the role played by each parameter.

4.1 Uniaxial tests

We first simulate several pseudoelastic tests on a single 8-node hexahedral element, under force control and prescribed

homogeneous temperature. In particular, we apply a pressure varying cyclically between a maximum and a minimum

value at a fixed temperature.

The first pseudoelastic test involves 50 tension cycles with permanent inelasticity. The total analysis time is 10 s

and each cycle lasts 0.2 s. We adopt material parameters from Set 1 (see Table 2), where both parameters h and A

are equal to zero, while κ is different from zero. The applied pressure varies between 0 and 500 MPa and temperature

is set equal to 298 K. Figure 1(a) shows the stress-strain curve, where it can be observed that the non-zero parameter
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Figure 1: First uniaxial pseudoelastic test: 50 tension cycles with permanent inelasticity. (a) Axial stress-axial strain
curve obtained for ∆t = 0.001 s. (b) Axial strain-analysis time curve for different time steps ∆t. (c) Axial components
of etr and q versus analysis time plot for ∆t = 0.001 s. (d) Axial components of etr and q during the first loading
cycle.

κ gives rise to a permanent inelasticity phenomenon. This is also clear by observing Figures 1(c)-(d), representing

the evolution of the internal variables etr and q in time. Figure 1(b) reports the strain rate over time for different

adopted time steps, respectively, of 0.001 and 0.01 s, corresponding to 200 and 20 increments per tension cycle. The

curves demonstrate the robustness of the proposed solution algorithm.

The second pseudoelastic test involves 50 tension cycles with saturating permanent inelasticity. The total analysis

time is 10 s and each cycle lasts 0.2 s. We adopt material parameters from Set 2 (see Table 2), where A is equal to

zero, while h and κ are different from zero. The applied pressure varies between 0 and 500 MPa and temperature is

set equal to 298 K. Figure 2(a) shows the stress-strain curve; in such a case, the non-zero parameter h gives rise to
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Figure 2: Second uniaxial pseudoelastic test: 50 tension cycles with saturating permanent inelasticity. (a) Axial stress-
axial strain curve obtained for ∆t = 0.001 s. (b) Axial strain-analysis time curve for different time steps ∆t. (c) Axial
components of etr and q versus analysis time plot for ∆t = 0.001 s. (d) Axial components of etr and q during the
first loading cycle.

the saturation of permanent inelasticity, for which the permanent strain saturates and does not exceed the threshold.

The evolution of the internal variables etr and q in time reported in Figures 2(c)-(d) is similar to the previous test.

Figure 2(b) shows again the robustness of the algorithm, by reporting the strain rate over time for time steps of

0.001 and 0.01 s, corresponding to 200 and 20 increments per tension cycle.

The third pseudoelastic test involves 50 tension cycles with saturating permanent inelasticity, including degradation

effect. The total analysis time is 10 s and each cycle lasts 0.2 s. We adopt material parameters from Set 3 (see

Table 2), where all the parameters are different from zero. The applied pressure varies between 0 and 500 MPa and

temperature is set equal to 298 K. Figure 3(a) shows the stress-strain curve; in such a case, the non-zero parameter
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Figure 3: Third uniaxial pseudoelastic test: 50 tension cycles with saturating permanent inelasticity, including degra-
dation effect. (a) Axial stress-axial strain curve obtained for ∆t = 0.001 s. (b) Axial strain-analysis time curve for
different time steps ∆t. (c) Axial components of etr and q versus analysis time plot for ∆t = 0.001 s. (d) Axial
components of etr and q plot during the first loading cycle.

A couples the two internal variables and results in shifting down the loops. The evolution of the internal variables

etr and q in time, reported in Figures 3(c)-(d), is again similar to previous tests. Figure 3(b) reports the strain rate

over time for time steps of 0.001 and 0.01 s, corresponding to 200 and 20 increments per tension cycle.

Set 3 has been used also to perform the fourth pseudoelastic test, simulating 10 tension cycles followed by 10

compression cycles. Figure 4 shows the stress-strain curve, where the applied pressure varies between −500 and 500

MPa.

It is worth highlighting that all the reported results are in perfect agreement with the results reported in ref. (13).
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Figure 4: Fourth uniaxial pseudoelastic test: 10 tension cycles followed by 10 compression cycles with saturating
permanent inelasticity, including degradation effect. Axial stress-axial strain curve obtained for ∆t = 0.001 s.

We then simulate two shape-memory tests on a single 8-node hexahedral element. For all these tests we adopt

material parameters from Set 3 (see Table 2).

The first shape-memory test consists of 25 tension cycles at constant low temperature, each one followed by heating

strain recovery. The total analysis time is 10 s and each cycle lasts 0.4 s. Initially, a pressure of 500 MPa is applied

at a low temperature of 200 K. Then, the temperature is increased up to 400 K at zero applied pressure. Figure 5(a)

shows the stress-strain curve. An inelastic effect is activated, so that we observe only a partial shape recovery (see

Figure 5(c)). Also for this test, algorithm robustness is verified (see Figure 5(b)).

The second shape-memory test is performed under force control and constant low temperature, followed by cyclic

heating. Initially, a temperature of 200 K is prescribed and a pressure of 250 MPa is applied. Then, the temperature

is increased up to 500 K at constant applied pressure. The temperature is then varied cyclically between 200 and

500 K. The total analysis time is 186.6 s and each thermal cycle lasts 3.2 s. We adopt material parameters from Set

3 (see Table 2). Figure 6(a) shows the strain-temperature curve. It is observed that the saturation is reached at the

first thermal cycle; therefore, subsequent cycles determine only a shift of the curve due to the presence of permanent

deformation (see Figure 6(b)). The test has been repeated by adopting different time steps, respectively, of 0.001 and

0.01 s, corresponding to 320 and 32 increments per thermal cycle. Only the case with time steps of 0.001 s is shown;

however, also for this test robustness has been verified.

4.2 Pseudoelastic stent strut

The use of SMAs to manufacture cardiovascular stents is increasing, since pseudoelasticity enables the essential self-

deployment behavior. Once implanted in the patient, stents are subjected to million of pulsatile cycles and their

fatigue resistance is therefore a topic of wide interesting in the medical, industrial, and scientific communities. From
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Figure 5: First uniaxial shape-memory test: 25 tension cycles, each one followed by heating strain recovery, with
saturating permanent inelasticity, including degradation effect. (a) Axial stress-axial strain curve obtained for ∆t =

0.001 s. (b) Axial strain-analysis time curve for different time steps ∆t. (c) Axial components of etr and q during
the first loading cycle.

the experimental point of view, strain-based testing is generally performed on SMA stents or representative specimens

manufactured as stents, to provide fatigue performance information, constant life diagrams, and data for fatigue

criteria calibration.

We propose here to investigate the behavior of a representative stent strut subjected to cycling loading under two

strain-controlled conditions.

The strut is obtained from the planar CAD representation of a stent geometrically resembling a Bard ViVEXX

carotid stent (C.R. Bard Angiomed GmbH & Co., Germany). Figure 7 shows the Bard ViVEXX carotid stent
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Figure 6: Second uniaxial shape-memory test: multiple thermal cycles under constant applied pressure, with saturat-
ing permanent inelasticity, including degradation effect. (a) Axial strain-temperature curve obtained for ∆t = 0.001

s. (b) Axial component of etr and of q versus analysis time plot for ∆t = 0.001 s.

geometry and the adopted mesh of the stent strut, consisting of 7872 eight-node hexahedral finite elements and 11480

nodes. A mesh refinement has been performed to determine the appropriate model.

We adopt material parameters from Set 3 (see Table 2). We apply a tensile cyclic displacement u to one side of

the strut, while the other side is fully constrained (see Figure 7). All other surfaces are traction free. A temperature

of 310 K is prescribed. The first loading history consists in applying a displacement u of 1 mm and then in varying

it between 1 and 0.5 mm for 30 cycles. The second history consists in the application of a displacement of 1.5 mm

and then in varying it between 1.25 and 1 mm for 12 cycles. The total analysis time is 25 s. For both the analyses

we adopt an adaptive time step varying between 10−6 and 0.05 s. Figures 8(a)-(b) show the applied displacement

u versus the total reaction force of the fixed side plot for the two loading histories, respectively. As observed, the

non-zero parameter A couples the two internal variables and results in shifting down the loops, up to a saturation

curve. Figures 9(a) and (b) report, respectively, the loading time increments and the total global iterations during

the analysis for the second loading history. As it can be observed, small time increments and a high number of total

global iterations are required only during the loading phase, which ends at an analysis time of 1 s with a final applied

displacement of 1.5 mm. Then, the trend repeats during cycling between 1.25 and 1 mm from 2 s to 25 s.

4.3 Helical spring

We conclude this section with the simulation of a helical spring, which can be used as thermal actuator and as

element for passive vibration isolation. Therefore, spring components are generally tested in both pseudoelastic and

shape-memory regime.
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Figure 7: SMA cardiovascular stent strut: initial geometry, adopted mesh, and boundary conditions.
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Figure 8: SMA cardiovascular stent strut: applied displacement vs. reaction force of the fixed side for two different
loading histories: (a) first a 1 mm displacement is applied and then it varies between 1 and 0.5 mm; (b) first a 1.5 mm
displacement is applied and then it varies between 1.25 and 1 mm.
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Figure 9: SMA cardiovascular stent strut. Analysis of the case where a 1.5 mm displacement is applied and then
varied between 1.25 and 1 mm. Trends of (a) the loading time increments and (b) the total global iterations during
the analysis.

The spring under investigation has a wire diameter of 1.0 mm, an external coil diameter of 6.0 mm, a pitch of

2.5 mm, 2 active coils, and an initial length of 5.0 mm. The mesh is composed of 3712 eight-node hexahedral finite

elements and 4486 nodes, as shown in Figure 10; a mesh refinement has been performed to choose the appropriate

mesh.

Fixed

F

Figure 10: SMA spring: initial geometry, adopted mesh, and boundary conditions.

We adopt material parameters from Set 3 (see Table 2). One end of the spring is fixed (see Figure 10).

For the pseudoelastic tests, we perform multiple tension cycles by applying an axial tensile force F at one section

of the spring at a constant temperature of 298 K (see Figure 10). All the nodes of the section where the force is

applied are constrained against the two translations in the directions orthogonal to the axial one. The force F varies
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cyclically between zero and a maximum value. Three maximum values are considered of 20, 40, and 100 N and for

each of them we perform 10, 50, and 50 cycles, respectively. The total analysis time is 20 s. All the simulations are

performed using variable time step increments between 10−6 and 0.05 s. Figures 11(a)-(c) show the applied force-axial

displacement output for the three pseudoelastic loading histories.

For the shape-memory tests, we perform 19 thermal cycles at constant force F of 5 N. Temperature varies between

208.6 and 298 K. The total analysis time is 40 s. All the simulations are performed using variable time step increments

between 10−6 and 0.5 s. Figure 11(d) reports the axial displacement versus temperature plot.

In both pseudoelastic and shape-memory tests, the non-zero parameter A couples the two internal variables and

results in shifting down the loops, up to a saturation curve.
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Figure 11: Pseudoelastic tests on SMA spring: displacement of the free end vs. applied force of (a) 20 N, (b) 40 N,
and (c) 100 N. Shape-memory tests on SMA spring: (d) temperature vs. displacement of the free end.
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To conclude the discussion, Figures 12(a) and (b) report, respectively, the loading time increments and the total

global iterations during the analysis for the pseudoelastic test with applied force varying between 0 and 100 N, while

Figures 12(c) and (d) report the values for the shape-memory test. As it can be observed, for the pseudoelastic test,

small time increments and a high number of total global iterations are required only during the loading phase, which

ends at an analysis time of 1 s with a final applied force of 100 N. For the shape-memory tests larger time increments

are sufficient for global convergence. For both tests, the trend repeats during cycling.
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Figure 12: SMA spring. Trends of the loading time increments and the total global iterations during the analysis for
the (a)-(b) pseudoelastic test with applied force varying between 0 and 100 N and (c)-(d) the shape-memory test.
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5 Conclusions

This paper has presented a new algorithmic scheme for a three-dimensional model taking into account permanent

inelastic phenomena and degradation effects due to cyclic loading in SMAs. A variational structure of model equations,

based on an incremental energy minimization approach, has been presented. The resulting algorithm is free from

any kind of regularization, which may affect the structural response, and is simple to implement. The key feature

of the algorithm is that it relies only on scalar nonlinear equations, thus avoiding to solve simultaneously for 10-12

scalar unknowns as could be expected in a conventional return-mapping algorithm. Such simplifications are achieved

thanks to the incremental energy minimization structure and ultimately trace back to the isotropic nature of the

considered constitutive model. Several numerical FE simulations have demonstrated the correctness of the scheme

in predicting material response, its ability to solve complex boundary values problems, as well as its robustness.

Although our algorithm is specific to the choice (6) for the dissipation potential, there is no major difficulty in

adapting it to the dissipation potentials (ε̇tr, q̇) 7→ RY ‖(ε̇tr, q̇)‖κ,∞ and (ε̇tr, q̇) 7→ RY ‖(ε̇tr, q̇)‖κ,1 mentioned in

Sect. 2. In such cases, however, the elasticity domain would have corners so additional subcases are expected to

appear in the algorithm. Among other further possible developments, it would also be interesting to extend the

present approach to geometrically nonlinear problems.
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APPENDIX A Derivation of the tangent stiffness operator

This section reports the derivation of the tangent stiffness operator introduced in Section 3.5. Accordingly to previous

results and discussion, the derivation is performed by distinguishing between the cases of unsaturated and saturated

phase transformation.
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A.1 Unsaturated phase transformation

A.1.1 Case etrn+1 = qn+1

Let us assume that etrn 6= qn. Setting U0 = (1 + κ2)qn+1 − etrn − κ2qn, differentiating (42) gives:

da = (G′′ + y′(1 + κ2))detrn+1 −
y′

y
U0dy

where we recall that y′ = RY /y. The variation dy can be obtained by differentiation of the relation y = ‖(qn+1 −

etrn , qn+1 − qn)‖κ as:

dy =
1

y
((qn+1 − etrn ) : dqn+1 + κ2(qn+1 − qn) : dq) =

1

y
U0 : dqn+1 =

1

y
U0 : detrn+1. (A1)

Hence,

Xda =

(
I−X y′

y2
U0 ⊗U0

)
: detrn+1 =

(
K−X y′

y2
U0 ⊗U0

)
: detrn+1

with X = (G′′ + y′(1 + κ2))−1. It can be verified that

(
K− Xy′

y2
U0 ⊗U0

)−1
= K +

y′X

y2 − y′X‖U0‖2
U0 ⊗U0. (A2)

Therefore:
detrn+1

da
= X

(
K +

y′X

y2 − y′X‖U0‖2
U0 ⊗U0

)
(A3)

so that
dσ

dε
= C− 4G2X

(
K +

y′X

y2 − y′X‖U0‖2
U0 ⊗U0

)
. (A4)

The expressions (A3) and (A4) can be verified to remain valid when etrn = qn.
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A.1.2 Case etrn+1 6= qn+1

In the case of unsaturated phase transformation with etrn+1 6= qn+1, differentiating the optimality conditions (48)

yields:  da

0

 =M :

 detrn+1

dqn+1

− dxx′
x

 etrn+1 − qn+1

qn+1 − etrn+1

− dy y′
y

 etrn+1 − etrn

κ2(qn+1 − qn)

 (A5)

whereM is the linear operator defined by:

M :

 detrn+1

dqn+1

 =

 (2G′ + x′ + y′)detrn+1 −(x′ +A)dqn+1

−(x′ +A)detrn+1 (x′ + h+ κ2y′)dqn+1

 . (A6)

We recall that x = ‖etrn+1 − qn+1‖, y = ‖(etrn+1 − etrn , qn+1 − qn)‖κ, x′ = τM/x and y′ = RY /y. From the definition

of x, we have by differentiation:

dx =
(etrn+1 − qn+1)

x
: (detrn+1 − dqn+1) (A7)

which can be rewritten as:

dx =
1

x
U∗ :

 detrn+1

dqn+1

 with U∗ =

 etrn+1 − qn+1

qn+1 − etrn+1

 . (A8)

Similarly, from the definition of y we have by differentiation:

dy =
1

y
V ∗ :

 detrn+1

dqn+1

 with V ∗ =

 etrn+1 − etrn

κ2(qn+1 − qn)

 . (A9)

Relation (A5) thus becomes:

 da

0

 = (M− x′

x2
U∗ ⊗U∗ − y′

y2
V ∗ ⊗ V ∗) :

 detrn+1

dqn+1

 . (A10)
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The operatorM− x′

x2U
∗⊗U∗− y′

y2V
∗⊗V ∗ can be inverted in closed-form. Setting Ũ =M−1 : U∗ and Ṽ =M−1 : V ∗,

it can indeed be verified that:

(
M− x′

x2
U∗⊗U∗− y′

y2
V ∗⊗V ∗

)−1
=M−1 +

1

αβ − γ2
(
α
x′

x2
Ũ ⊗ Ũ +β

y′

y2
Ṽ ⊗ Ṽ +γ

√
x′y′

xy
(Ũ ⊗ Ṽ + Ṽ ⊗ Ũ)

)
(A11)

with

α = 1− y′

y2
Ṽ : V ∗, β = 1− x′

x2
Ũ : U∗, γ =

√
x′y′

xy
Ṽ : U∗.

It can calculated from Eq. (A6) that:

Ũ =
1

D

U
(A− 2G′ − y′)(etrn+1 − qn+1)

 , Ṽ =
1

D

V
(A+ x′)(etrn+1 − etrn ) + κ2(2G′ + x′ + y′)(qn+1 − qn)



where U and V are the tensors introduced in Eq. (71), and D is defined by Eq. (74). Substituting in Eq. (A11)

and using Eq. (A10) leads to the expression (73) of the detrn+1/da, from which the tangent stiffness operator directly

follows.

A.2 Saturated phase transformation

In the case of saturated phase transformation, we have ‖etrn+1‖2 = εL hence by differentiation:

detrn+1 : etrn+1 = 0. (A12)

Let P = K− (etrn+1⊗etrn+1)/ε2L be the projection on the orthogonal to etrn+1 in the deviatoric space. Eq. (A12) implies

that

Pdetrn+1 = etrn+1. (A13)

The property (A13) will proved to be useful in the following.

A.2.1 Case etrn+1 = qn+1

Assuming etrn 6= qn, differentiating (59) gives:

da = (γ + y′(1 + κ2))detrn+1 −
y′

y
U0dy + etrn+1dγ.
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Note that the value of the Lagrange multiplier γ can be obtained from (59) and (61), yielding γ + y′(1 + κ2) =

(‖a‖+ y′(etrn + κ2qn))/εL. Using the expression (A1) of dy, we obtain:

X̃da =

(
I− X̃ y′

y2
U0 ⊗U0

)
detrn+1 + X̃etrn+1dγ (A14)

with X̃ = εL/(‖a‖+ y′(etrn + κ2qn)). In view of (A13), Eq. (A14) can be rewritten as

X̃da =

(
I− X̃ y′

y2
U0 ⊗U⊥0

)
detrn+1 + X̃etrn+1dγ. (A15)

Applying P to both sides of Eq. (A15) gives

X̃Pda =

(
P− X̃ y′

y2
U⊥0 ⊗U

⊥
0

)
detrn+1. (A16)

Eq. (A16) can be inverted in a way similar to (A2), yielding:

detrn+1 = X̃

(
P +

y′X̃

y2 − y′X̃‖U⊥0 ‖2
U⊥0 ⊗U

⊥
0

)
da.

which correspond to Eq. (76).

A.2.2 Case etrn+1 6= qn+1

In the case of saturated phase transformation with etrn+1 6= qn+1, the optimality conditions read as


da = (2G′ + γ)etrn+1 +τM

etrn+1 − qn+1

x
−Aqn+1 +RY

etrn+1 − etrn
y

0 = hqn+1 +τM
qn+1 − etrn+1

x
−Aetrn+1 + κ2RY

qn+1 − qn
y

(A17)

Differentiating (A17) yields:

 da

0

 = M̃ :

 detrn+1

dqn+1

− dxx′
x

 etrn+1 − qn+1

qn+1 − etrn+1

− dy y′
y

 etrn+1 − etrn

κ2(qn+1 − qn)

+ dγ

 etrn+1

0

 (A18)
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where M̃ is the linear operator defined by:

M̃ :

 detrn+1

dqn+1

 =

 (2G′ + γ + x′ + y′)detrn+1 −(x′ +A)dqn+1

−(x′ +A)detrn+1 (x′ + h+ κ2y′)dqn+1

 (A19)

Performing similar manipulations to those used in Section A.1.2, Eq. (A18) can be rewritten as:

 da

0

 = N :

 detrn+1

dqn+1

+ dγ

 etrn+1

0

 (A20)

where N = M̃ − x′

x2U
∗ ⊗ U∗ − y′

y2V
∗ ⊗ V ∗ with (U∗,V ∗) are defined as in Eqs. (A8)-(A9). Let P be the linear

operator defined by:

P :

 detrn+1

dqn+1

 =

 Pdetrn+1

dqn+1



Using Eq. (A13), Eq. (A20) is equivalent to:

 da

0

 = NP :

 detrn+1

dqn+1

+ dγ

 etrn+1

0

 . (A21)

Applying P to Eq. (A21) gives:  P : da

0

 = PNP

 detrn+1

dqn+1

 . (A22)

Note that PNP = PM̃P − x′

x2PU∗ ⊗ PU∗ − y′

y2PV
∗ ⊗ PV ∗. Relation (A22) can be inverted by a relation similar

to (A11), leading to expression (78) for detrn+1/da.
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