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Abstract Localizing an object accurately with respect to a
robot is a key step for autonomous robotic manipulation. In
this work, we propose to tackle this task knowing only 3D
models of the robot and object in the particular case where
the scene is viewed from uncalibrated cameras — a situation
which would be typical in an uncontrolled environment, e.g.,
on a construction site. We demonstrate that this localization
can be performed very accurately, with millimetric errors,
without using a single real image for training, a strong ad-
vantage since acquiring representative training data is a long
and expensive process. Our approach relies on a classifi-
cation Convolutional Neural Network (CNN) trained using
hundreds of thousands of synthetically rendered scenes with
randomized parameters. To evaluate our approach quantita-
tively and make it comparable to alternative approaches, we
build a new rich dataset of real robot images with accurately
localized blocks.

Keywords relative localization · pose estimation · Convo-
lutional Neural Networks · synthetic data · virtual training ·
robotics

1 Introduction

Solving robot vision, to allow a robot to interact with the
world using simple 2D images, is one of the initial moti-
vations of computer vision (Roberts, 1963). We revisit this
problem using the modern tools of deep learning under as-
sumptions that are relevant for autonomous robots in the
construction industry. In factories equipped with robots, with
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(a) Relative localization as classification, here with 5 mm
square bins (red grid) for coarse estimation, with overlaid
5 cm squares (blue grid) to give a sense of dimension

(b) Training image (c) Test image

Fig. 1 We formulate relative block-robot positioning using
an uncalibrated camera as a classification problem where
we predict the position (x,y) of the center of a block with
respect to the robot base, and the angle θ between the block
and the robot main axes (a). We show we can train a CNN to
perform this task on synthetic images, using random poses,
appearances and camera parameters (b), and then use it to
perform very accurate relative positioning on real images (c)

.
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well-identified and repetitive tasks, cameras for robot con-
trol can be placed in both relevant and secure places, and
calibrated (internally and externally) once and for all.

Now imagine using robots on a work site. As the envi-
ronment is only very weakly controlled and as the tasks can
change frequently, there is no generic camera position that
can see well all robot actions. Even if several cameras are
used to provide enough relevant views, some of these cam-
eras would often have to be moved, either manually (e.g.,
hand-shifting tripods) or using cameras mounted on moving
devices such as mobile observation robots or cable drones.
In these settings, taking the time to recalibrate cameras with
respect to the robot after each camera movement is unreal-
istic, and inertial measurement units (IMUs) would not be
accurate enough to recompute new usable camera poses. On
a construction site, cameras could also be hit or moved ac-
cidentally, sometimes unknowingly. There is thus a high de-
mand on robustness while also requiring strong accuracy for
object manipulation.

An option is to directly mount cameras on the operating
robots, but the practical number of cameras and the range of
viewpoints is then severely reduced. Besides, such cameras
are more exposed to dirt and accidents as they are close to
robot actions. Last, contrary to the relatively clean and con-
trolled context of a factory, a construction site is a hostile
environment for robot vision. The objects suffer from sub-
stantial changes in appearance, including texture variations
due to dirt and bad weather, changes of illumination due to
an outdoor setting, and unruly occlusions. There might also
be shape differences between the expected 3D models and
the real scene. While this does not actually change the tasks,
it makes them substantially more difficult.

To address these issues, we consider an alternative setup
where the robot control does not require a formal calibration
step. We consider the case of several uncalibrated cameras,
e.g., attached to sticks that are moved as the construction
evolves, which observe a scene with no reliable landmark
that would allow absolute camera registration. The challenge
is then to recognize the different elements in the scene and
position them accurately with respect to each other.

More concretely, we focus here on the problem of finely
localizing and orienting a building block with respect to a
robotic arm, that are both seen from external cameras with
no extrinsic nor intrinsic calibration. As argued above, this
task is of major interest, but to the best of our knowledge,
there are no generic method to solve it, and no standard
datasets to train or test a method. In this paper, we present
such a dataset, with thousands of annotated real test images
covering several difficulty levels, as well as a strong baseline
method learned from synthetic images.

To accomplish this task, an approach would be possi-
ble where 3D models corresponding to the robot and the
building block would be first aligned on the image, then lo-

calized with respect to the camera, and finally positioned
with respect to one another. However, it would be sensitive
to changes in shape and appearances, which are pervasive
on a construction site. We rather present a more direct ap-
proach which leverages recent advances in the use of CNNs.
Such networks have the advantage to be generic, they can
easily be trained to be robust to many perturbations (includ-
ing occlusions), and they can be applied to images extremely
efficiently.

Yet, CNNs require a very large quantity of annotated
training images. While it is possible to animate a robot and
a building block in front of a camera to automatically cre-
ate such a dataset, it requires typically thousands of hours
to collect images concerning a hundred of thousands of sit-
uations (Pinto and Gupta, 2016; Levine et al, 2018). Given
that a new training is necessary when the robot or the build-
ing blocks change, this solution is not practical.

To make our framework generic and easily applicable
to new robots and new types of blocks, without requiring
the expensive and long construction of real-life datasets for
training, we demonstrate a light and flexible method that
simply takes as input the untextured 3D model of both a
building block (with possible parametric variations) and a
robot (with its possible joint positions), without any real im-
age. It is based on virtual training using synthetic images
only, and yet it performs well on real images.

We use a three-step approach. First, using a lower image
resolution of the whole scene, we make a coarse estimation
of the block pose relatively to the robot base. Second, after
moving the clamp above this estimated location, we locate
the clamp in the image and crop a higher-resolution image
around that clamp position. Third, using this high-resolution
crop, we refine the estimation of the block pose in the clamp
reference system, which we can translate into the robot base
reference frame as the 3D position of the clamp with respect
to the base is known.

This approach has two benefits. First, it allows to take
advantage of the resolution of the input image without in-
creasing the required memory (as a fully convolutional ap-
proach would). Second, it allows to perform a more accurate
relative localization with the robot clamp close to the block,
rather than with the robot base potentially far from the block.

To summarize, our main contributions are as follows:

– We argue for a new robotic task of relative localization
without camera calibration, formulate it in detail, and
provide a rich realistic evaluation dataset and procedure1.
The task involves a three-step procedure where a first
coarse position estimation is refined after the robot moves
towards the target.

1 The project page with this UnLoc dataset (Uncalibrated Relative
Localization) is imagine.enpc.fr/~loingvi/unloc.
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– We demonstrate that very accurate (millimetric) relative
localization can be reached with learning techniques only
despite the lack of calibration information.

– We show that training can be performed without a single
real image, paving the way for generic virtual training
with arbitrary shapes and objects.

2 Related Work

There are two critical challenges in our work: first, extend-
ing localization and pose estimation to perform relative pose
estimation; second performing such a task without using real
images as training data. We thus review the literature on both
challenges.

2.1 Object localization and pose estimation

Localizing an object and estimating its pose are classical
computer vision problems. Indeed, the 3D understanding of
the world that it provides seems to be a natural first step for
image understanding and for any robotic interaction (Roberts,
1963).

Model-based alignment methods. In early computer vision
works, it was often assumed that a 3D model of the object of
interest was available (Roberts, 1963; Lowe, 1987; Hutten-
locher and Ullman, 1990; Mundy, 2006). The most success-
ful approach was the use of local keypoints descriptors such
as SIFTs (Lowe, 1999), which lead in particular to many 3D
pose estimation pipelines for robotics applications, from a
single or multiple images (Collet and Srinivasa, 2010; Col-
let et al, 2011).

Learning-based methods. Learning-based approaches tend
to focus more on object categories than on specific object
instances. They can be roughly classified in two categories.

First, many works used manually-designed features as
input to learning algorithm, and apply them to detect ob-
jects in images (Dalal and Triggs, 2005; Felzenszwalb et al,
2010). Deformable Part Models (Felzenszwalb et al, 2010)
were particularly successful and extended to predict 3D ob-
ject poses (Glasner et al, 2011; Fidler et al, 2012; Hejrati and
Ramanan, 2012; Pepik et al, 2012).

More recently CNNs (LeCun et al, 1989) were shown to
boost performance for 2D object detection (Sermanet et al,
2014; Girshick et al, 2014; He et al, 2017) and object pose
estimation (Tulsiani and Malik, 2015; Su et al, 2015; Wu
et al, 2016; Massa et al, 2016a). Even more related to our
goal, such deep learning approaches were used by Pinto and
Gupta (2016) to learn where to grasp an object, and have
also recently attracted much attention in the robotics com-
munity, in particular for reinforcement learning (Schulman
et al, 2015; Levine et al, 2016).

Marker-based detection methods. Another approach is to
place one or several fiducial markers, such as ArUco (Garrido-
Jurado et al, 2014, 2016), on the objects of the scene to fa-
cilitate their detection and fine localization in images. This
method was successfully used in Feng et al (2014). It how-
ever is less flexible as it requires carefully positioning these
markers on visible flat surfaces of the objects at well defined
locations. Besides, it also requires intrinsically and extrinsi-
cally calibrated cameras to locate the robot in a global refer-
ence frame (possibly putting markers on the robot too) and
to relate objects in 3D.

Relative positioning. In contrast to these works, our focus
is not the localization of an object of interest in an image
or with respect to the camera, but the relative positioning of
one object with respect to another, the robot and the block.
Rather than targeting full 6DOF pose (Hodaň et al, 2016),
we restrict ourselves to two position and one angle param-
eters, since one can reasonably assume that both the robot
and the block are standing on a more or less flat surface. We
developed a direct prediction approach, building on the suc-
cess of the CNN based-approaches and following the logic
of end-to-end learning, to learn to directly predict the rel-
ative pose. Both the definition of the problem of relative
pose estimation and this direct approach are novelties of our
work.

2.2 Learning from synthetic data

The success of deep learning renewed the interest in the pos-
sibilities to learn from synthetic data. Moreover, synthetic
data permits to have a large amount of accurate annotations
for each image. Indeed, deep learning methods typically re-
quire very large annotated datasets to be trained, but such
annotations are most often expensive and difficult to obtain.
However, an algorithm trained on synthetic data may not ap-
ply well to real data, because of their various differences, a
problem often referred to as the domain gap between real
and synthetic images. We identified two main approaches to
address this issue.

Faking realism. The simplest way to avoid the issues related
to the differences between real and synthetic images is to try
and reduce the domain gap as much as possible by generat-
ing realistic images. Generating completely realistic images
requires using a high quality 3D model of a scene as well
as a good illumination model, and then applying a rendering
algorithm. Since high-quality 3D models are expensive and
high-quality rendering is computationally expensive (typi-
cally several hours per image), little work has been done
with this quality of data, and most works focus on faking
realism. This can be done for example by fusing a rendered
3D object model with a texture extracted from a real image
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(a) Synthetic training image and real testing image from Tobin
et al (2017).

(b) Our synthetic training image and real testing image.

Fig. 2 Qualitative comparison of the recent work of Tobin
et al (2017) with our approach. While Tobin et al (2017) fo-
cuses on the differentiation between objects on a fixed size
table, we locate a block with respect to a robot in an un-
known configuration and in an unknown environment, ob-
served by a camera in an unknown pose

and compositing it with the background of a real scene. In
particular, Peng et al (2015) and Pepik et al (2015) studied
how the realism of such composite images impacted perfor-
mance for object detection, Su et al (2015) applied such a
strategy to push the performance on object category pose
estimation, and Chen et al (2016) on human pose estima-
tion. More recently, several papers have used game engine
to generate training data, for example for semantic segmen-
tation (Richter et al, 2016; Ros et al, 2016; Shafaei et al,
2016).

Domain adaptation. The problem of training a model on
synthetic images and applying it to real images can be seen
as an instance of the generic domain adaptation problem,
for which many approaches have been developed. One ap-
proach is to explicitly design a loss or an architecture to
perform domain adaptation. Such methods have been used
with synthetic data to perform object classification (Peng
and Saenko, 2017), detection (Sun and Saenko, 2014; Vazquez
et al, 2014) and, closer to our task, 3D model alignment in
2D images (Massa et al, 2016b).

Another approach for learning robust models with syn-
thetic data is to generate training examples with a very high
variety to encourage the models to learn invariances. The

first application of such an approach with CNNs is probably
Dosovitskiy et al (2015), which leverages highly-modified
and unrealistic composite images between real images and
rendered 3D chairs (Aubry et al, 2014) to learn to predict op-
tical flow between real images. More recently Sadeghi and
Levine (2018) demonstrated how to use a high variety of
non-realistic rendered views of indoor scenes to learn how
to fly a quadcopter.

Independently of our work, Tobin et al (2017) recently
proposed a similar strategy, that they call domain random-
ization, for localizing a block and grasping it with a robot.
There are however several strong differences between this
work and ours. In particular, Tobin et al (2017) focus on the
differentiation between different shapes of objects (triangu-
lar, hexagonal, rectangular) and coarse localization on a ta-
ble with fixed characteristics, i.e., always seen from a sim-
ilar viewpoint, with the same orientation. Thus, Tobin et al
(2017) essentially requires localizing the table and objects
in 2D. On the contrary we do not impose the presence of
a table with fixed characteristics and seen from a given an-
gle; we localize the objects directly with respect to a robot
at unknown positions. These differences in our data are il-
lustrated on Figure 2. Furthermore, our approach allows to
localize a block with an average accuracy of 2.6 mm and
0.7°, while Tobin et al (2017) provide an average accuracy
around 15 mm, without orientation estimation.

3 Task Abstraction

The locating-for-grasping problem is a robotic task that is
difficult to assess. In this section, we first explain how we
express it as a three-step procedure corresponding to three
pure computer-vision subtasks, which enables reproducible
quantitative evaluation. We then formalize these subtasks.

3.1 Task overview

The task we consider is as follows. The goal is to be able
to grasp an unknown cuboid block with a robotic arm using
only images from intrinsically and extrinsically uncalibrated
cameras. The block lies on a mostly planar ground; its po-
sition, orientation and sizes are unknown. The robot and the
block are in the field of view of several cameras, whose ac-
tual position and orientation are also unknown; as a result,
the block can be fully or partially occluded by the robot on
some camera views.

For grasping to succeed, the position and orientation of
the cuboid with respect to the robot must be known accu-
rately. Please note however that only this relative position
and orientation between the robot and the block is required;
the actual camera poses are not needed.
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The only configuration information that is available for
this task is an untextured 3D model of the robot with its
joint axes, and a range of possible sizes for the cuboid. In
particular, the aspects of both the robot and the block are
totally unknown.

As it remains difficult to accurately locate an object with
respect to a robot, we actually define the following subtasks,
which correspond to a three-step locating procedure:

1. Coarse relative localization subtask. We first consider
the very general case where the robot and the block are
at random positions and orientations, and the robot joints
are also randomly set. The cameras, which are random
too, only provide overviews of the scene. The subtask
here is to (coarsely) estimate the pose of the block with
respect to the robot.

2. Tool localization subtask. After the block position is thus
estimated, although possibly with moderate accuracy and
confidence, we assume the robot clamp is moved on top
of that coarse predicted location. In this setting, the robot
and the block remain at random positions and orienta-
tions, but the clamp is located at a random position close
to the block, oriented towards the ground and ready to
grasp. Now the second subtask is to detect the clamp in
the picture, allowing camera close-ups to later perform a
finer pose estimation.

3. Fine relative localization subtask. Last, using camera
close-ups (actually crops of overviews centered on the
zone of interest), the third subtask is to finely estimate
the block location and orientation with respect to the
clamp, hence with respect to the robot, thus enabling the
actual grasp.

Note that in this paper, we focus on the position estima-
tion in the horizontal plane where the robot rests and assume
the block lies flat on this plane with little or no variation of
height or tilt. It corresponds to the realistic assumption that
we are working on an approximately planar surface. Adapt-
ing the framework to deal with significant block tilts and
height variations is future work.

We describe in Section 5.1 a dataset to assess methods
that try to address these three subtasks. It is made of real
images of a robot and a block, together with accurate anno-
tations of the relative position and orientation of the block
with respect to the robot. This allows to quantitatively eval-
uate the success of a method on the task.

This composite task actually abstracts a more general
task of image-based object-robot relative positioning, where
robot motions are arbitrary. However, as such a visual ser-
voing is a dynamic process that involves real devices, it is
practically impossible to reproduce and hence, it is not pos-
sible to compare two given methods. Our three-step locating
task for grasping is a discrete formulation of this dynamic
process, with a predefined plausible intermediate move. The

Fig. 3 Reference frame for fine location estimation. Note
the small asymmetry between the left and right sides of the
clamp (plate and cable connector). In our experiments, to
estimate block position, we use a 12 cm grid with 2 mm steps
(best seen with electronic version)

interest is that it is static and deterministic; competing meth-
ods can thus be assessed and compared quantitatively and
meaningfully.

Our experiments below also show that such a three-step
procedure makes sense for robot control as indeed more ac-
curate position and orientation information can be obtained
thanks to the refinement subtask. Additionally, we consider
two task variants: single-view and multi-view. In fact, as
the block can sometimes be occluded in a single view, us-
ing multiple views provides more robustness because then
a block has little or no chances to be hidden in all views.
The multi-view setting also offers a greater pose accuracy
by exploiting information from each views.

3.2 Robot and reference frames

We need to define a reference frame to formalize the posi-
tioning subtasks. As the blocks are symmetric (invariant to
a 180° rotation in the horizontal plane), and as the problem
is mostly robot-centric, we choose to associate the reference
frame to the robot.

For frame axes to be defined meaningfully, the robot has
to have asymmetries. Rather than imposing markers on the
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robot, which are not robust, especially in case of a construc-
tion site with dirt and possibly bad weather, we choose to
rely only on the asymmetries of the robot intrinsic shape.

Concretely, in the dataset we created for this task (see
Sect. 5.1), we used a robot (an IRB120 from ABB company)
with the following shape features:

– The base of the robot is mostly cylindrical. However, it
is fixed on the experiment table with nuts and bolts us-
ing a mostly-square plate whose orientation can be used
to define axes X and Y , up to swapping. More impor-
tantly, wires are connected to the robot via a square box
attached to the base cylinder, which we use to define the
direction of the X axis; the Y axis is then defined as or-
thogonal and oriented by convention. The block relative
orientation θ is the angle between the largest block di-
mension (on the ground plane) and the X axis. As our
cuboid blocks here are symmetric, this angle is defined
only between 0 and 180 degrees. This frame is illustrated
on Figure 1a. It is used for the coarse location subtask.

– Just above the clamp, a bolt and a small square cover
make the side of the grip support asymmetric, as shown
on Figure 3. As above, it allows us to define two axes X
and Y , and the angle θ of the main block axis with re-
spect to axis X . This frame is relative to the clamp rather
than to the robot base, but it can immediately be related
to the robot frame as the robot joints and clamp posi-
tion are known. Note that this second frame only makes
sense when the clamp is oriented vertically towards the
ground. It is used for the fine location subtask.

Similar shape asymmetries can easily be added to any exist-
ing robot if they do not already exist.

4 Solving the Task with CNNs and Synthetic Images

Recovering the exact position of an object (robot, things
to grasp, obstacles, etc.) from a single image given only a
3D model is a difficult problem, especially when the ob-
ject texture is unknown or unreliable, and when its deforma-
tions (robot articulations, variants of object size and shape)
make it vary drastically. Yet, given several views, the cam-
eras could be calibrated and 3D reconstruction could be per-
formed, enabling the problem to be solved after 3D model
alignment. However, multi-view calibration and reconstruc-
tion can be challenging problems, requiring a significant pro-
cessing time, and aligning 3D models to a point cloud is not
trivial either.

Instead, we propose to tackle the problem directly and
train a CNN to localize a block robustly with respect to
the robot, given a single image. In case images from sev-
eral cameras are available, location estimates can be aggre-
gated to improve the general accuracy. Moreover, we only

use synthetic training images, to avoid the costly collection
and annotation of real data.

More precisely, we train three CNNs, one for each sub-
task. The first network estimates a coarse location of the
block relatively to the robot base in a single image. After
the robot clamp has been moved above that rough location,
the second network locates the clamp in a view of the new
scene configuration. Last, using an image crop around the
estimated clamp position, the third network estimates a fine
block pose with respect to the clamp, hence to the robot
base.

While there are several steps in this approach, it differs
from a pipeline with camera calibration, 3D reconstruction
and model alignment in that the errors do not accumulate.
Indeed, assuming the first and second networks are robust
enough to picture a close-up of the clamp with the block, the
final third network can make a fine estimation that does not
depend on the accuracy of the previous subtasks, including
crop centering.

4.1 Relative pose estimation with a CNN

Classification approach. Since the (x,y) position as well as
the angle θ are continuous quantities, it would be natural
to formulate their estimation as a regression problem. How-
ever, such a formulation is not well suited to represent am-
biguities. For example, since the arm of the robot is almost
symmetric, it would be natural for our system to hesitate be-
tween two symmetric positions during the fine estimation
step. In a regression set up, there is no natural way to han-
dle such ambiguities. On the contrary, if we were to predict
probabilities for each position of the block, a multi-modal
distribution could be predicted in an ambiguous case. We
thus discretize the space of possible poses and predict prob-
abilities for each bin, formulating the problem as a classi-
fication problem. Such a formulation has been shown to be
more effective in similar problems, such as keypoint posi-
tion estimation and orientation estimation (Tulsiani and Ma-
lik, 2015; Su et al, 2015; Massa et al, 2016a). Concretely,
given the level of accuracy we target (see Section 5.2), our
coarse pose estimation considers square bins of size 5 mm,
and our fine pose estimation uses bins of size 2 mm.

Network architecture and joint prediction. We solve the clas-
sification problem we have just defined by training a CNN.
More precisely, we use a ResNet-18 network, trained from
scratch and with a standard cross-entropy loss, which has
shown good performance while remaining relatively light.
We used a batch size of 128, a weight decay of 10−4 and
a momentum of 0.9. We trained our model with an initial
learning rate of 10−2 until convergence (250 iterations for
the coarse estimation, 11 iterations for the tool detection,
and 186 iterations for the fine estimation), then a learning
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(a) Sample of training data for coarse pose estimation (of block relatively to robot base)

(b) Sample of training data for clamp 2D detection

(c) Sample of training data for fine pose estimation (of block relatively to clamp)

Fig. 4 Our synthetic training dataset covers a large variety of random viewpoints, joint positions, object poses and sizes, as
well as texture (for the robot, the block and the environment), making the trained model robust to all of these parameters

rate of 5.10−3 for 15 iterations (coarse and fine). We did not
explore in detail the influence of the size of the network,
but one can reasonably expect a small performance gain by
optimizing it, i.e., using a deeper or wider network while
keeping it small enough to avoid overfitting.

However, the definition of the form of the network out-
put is not trivial. Simply defining one class per bin would
lead to too many classes. For example, there are more than
17,500 attainable 2D positions bins for the coarse estima-
tion (3,600 for the fine estimation), each of which could
be broken into 36 orientation bins (90 for the fine estima-
tion). This would not only make the network memory usage
much larger, but also require much more training data. In-
deed, we show in our early experiments (see Section 5.3)
that, despite the intuitive information sharing that could be
used to predict the different classes, 80 images per localiza-
tion class (for a total of more than 280k training images) are
not enough to avoid overfitting.

The simplest alternative would be to simply train three
independent networks to predict x, y and the angle θ . How-
ever, we show that it is better to train a multi-task network
that predicts probabilities for different 1D bins for x, y and
θ independently, but computes a single representation in all
but the last layer. Interestingly and contrary to the network
prediction with one probability per 2D position, this network
does not overfit dramatically.

Multi-view prediction. Performing classification instead of
regression also has the advantage that it gives a natural way
to merge prediction from several views. Indeed, the output
of the network can be interpreted as log probabilities. If one
considers the information from the different views to be in-

dependent, the position probability knowing all the images
is simply the product of the individual probabilities. One can
thus simply predict the maximum of the sum of the outputs
of the network applied to the different images.

In fact, as estimation from a single view can be ambigu-
ous, for example because the exact size of the block is un-
known or because the block is occluded by the robot, merg-
ing the predictions from several views is crucial to the suc-
cess of our approach, as shown in Section 5.5. Note that this
approach not only scales well with the number of cameras
but also, conversely, allows a smooth degradation (up to a
single view) in case some cameras are moved or turned away
from the scene, or become inoperative.

More complicated strategies could of course be used,
such as training a network to directly take several views
as input, or training a recurrent neural network that would
”see” the different views one by one.

4.2 Synthetic training dataset

The creation of a large training dataset of annotated real pho-
tographs with variations representative of those encountered
in actual test scenarios is difficult and time consuming, es-
pecially when considering the variability of uncontrolled en-
vironments, e.g., related to dirt or outdoor illumination. In-
stead, we generated three synthetic sets of rendered images
together with ground-truth pose information, to use as train-
ing and validation sets for each subtask. Rather than spend
a lot of processing time to generate photorealistic images
or use some form of domain adaptation (see Section 2.2),
we chose to apply a strategy of massive image generation
(hundreds of thousands of non-photorealistic images) with
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massive randomization targeted at the specific properties we
want to enforce. In this synthetic dataset, as illustrated on
Figure 4, the robot is placed on a flat floor and a cuboid
block is laid flat nearby, in the following configurations:

1. robot and block in random poses, for coarse estimation,
2. robot with clamp in random vertical pose, for 2D tool

detection,
3. close-up on vertical clamp with random block nearby,

for fine estimation.

To encourage our model to generalize as much as possible,
we introduced the following randomization in the generation
of synthetic images:

– robot base orientation and position, and joint angles,
– (cuboid) block dimensions, orientation and position,
– textures for the floor, robot and block,
– camera center, target, rotation and focal length.

Details on this synthetic dataset are given in Appendix A.

5 Experimental Results and Analysis

In this section, we describe an evaluation dataset and use it
to analyze in detail the performance of our direct learning-
based approach, including the different design choices.

5.1 Evaluation dataset

As far as we know, there exists no dataset concerning the
task of high-precision object-robot relative localization. We
created such a dataset, with real images, for the composite
task described in Section 3. Note that it is only a test (evalu-
ation) dataset, not a training dataset.

The dataset is divided in three parts, according to each
subtask:

(1) given an image of the robot and a block, find their (coarse)
relative pose in the support plane,

(2) given an image of the robot with a vertical clamp point-
ing downwards, find the clamp location in the image,

(3) given a zoomed image of a vertical clamp pointing down-
wards and a block, find their (fine) relative pose in the
support plane.

The relative block poses are consistent across the three parts
of the dataset: for each random block pose, we picture:

(i) a long shot of the scene where the robot joints are set at
random angles,

(ii) a long shot of the scene where the clamp is moved near
the block and set vertical and pointing downwards,

(iii) a crop of that same image, more or less centered on the
clamp and large enough to show the block as well.

Fig. 5 Acquisition of real images to create our test dataset,
with 3 cameras at arbitrary and varying positions

Fig. 6 Example of the clamp roughly located above the
block, and the two clamp positions (P1 and P2) used to pos-
sibly improve the robustness of block pose estimation

To study the benefits of having multiple views of the
scene, each configuration is actually seen and recorded from
3 cameras. Moreover, as the clamp we used only has a small
asymmetry on one side (see Figure 3), leading to a possi-
ble direction ambiguity when estimating the clamp frame,
we recorded for each configuration of type (ii)-(iii) an addi-
tional position where the clamp is turned vertically 90°(see
Figure 6.

Additionally, we made three variants of each of these
(sub) datasets, corresponding to different environment diffi-
culties, as illustrated on Figure 7:

(a) a dataset in laboratory condition (’lab’), where the robot
and the block are on a flat table with no particular dis-
tractor or texture,

(b) a dataset in more realistic condition (’field’), where the
table is covered with dirt, sand and gravels, making the
flat surface uneven, with blocks thus lying not perfectly
flat, and making the appearance closer to what could be
expected on a real construction site,

(c) a dataset in adverse condition (’adv’), where the table
is covered with pieces of paper that act as distractors
because they can easily be confused with cuboid blocks.

All together, the whole dataset covers about 1,300 poses
(576 for ’lab’, 639 for ’adv’, and 114 for ’field’), seen from
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(a) ’lab’ dataset.

(b) ’field’ dataset.

(c) ’adv’ dataset.

Fig. 7 Example images from the three variants of our evalu-
ation dataset, for the coarse localization (left) and fine local-
ization tasks (right): clean laboratory conditions (a), more
field-like conditions with gravels (b), and adverse conditions
with distractors (c)

3 cameras, with 1 clamp position for configuration (i) and
2 clamp positions for configuration (ii)-(iii), yielding about
11,700 annotated images. More details on this evaluation
dataset are given in Appendix B.

In the following, to study different properties or design
choices of our approach, we report results on the ’lab’ dataset
only, except otherwise mentioned.

5.2 Evaluation metrics

To assess pose estimation results x, y, θ , several measures
can be considered. The most natural one is to measure the
accuracy, computing the average and standard deviation of
the estimation errors ex, ey, eθ . While this provides figures
that can be easily interpreted, it is not a useful measure of
the capacity of a method to provide an accurate-enough pre-
diction as it does not take into account a maximum possi-

Table 1: Success rate of coarse pose estimation for three dif-
ferent network architectures in a 1-camera setting for the
’lab’ dataset, measured as the percentage of estimation er-
rors for x below 60 mm.

Architecture 1D x bins 2D (x,y) bins 1D x, y and θ bins

% (ex ≤ 60 mm) 97.0 6.1 98.7

ble error. We thus also present success measures in terms of
the rate of estimation errors ex, ey, eθ that are below given
thresholds, i.e., that are accurate enough for block grasping
to be successful.

Concretely, for the fine estimation network, we consider
a square range of size 12 cm, as illustrated on Figure 3. Fine
estimation thus makes sense if the prediction error of the
coarse estimation is below 6 cm. Besides, for a grasp to be
successful given the opening of the clamp we used in the
dataset, the required accuracy is 5 mm for x, 5 mm for y and
2° for θ . Therefore, for the coarse estimation, we report the
percentage of prediction errors below 6 cm for the block lo-
cation x and y; we also consider an error bound of 10° for the
block orientation θ . For the fine estimation, the error bounds
are 5 mm for block location, and 2° for block orientation.

Regarding the clamp location estimation in images (sec-
ond, intermediate subtask), we did not create a ground truth.
(We would have had to run a full camera and robot cali-
bration.) Instead, for our experiments, we manually checked
all predictions for localizing the center of the clamp, and
counted cases where the prediction was outside the bound-
ing box of the clamp in the image.

5.3 Network architecture

As mentioned in Section 4.1, we chose to predict indepen-
dently x, y and θ using a single network which computes a
single representation in all but the last layer. To validate our
choice, we evaluated the accuracy in the prediction of the
x coordinate for our coarse estimation setup with three dif-
ferent networks. These networks predict the block pose with
three different approaches, either:

– along the x axis only, with bins of width 5 mm,
– with (x,y) square bins of size 5×5 mm,
– along both axes x and y separately, with bins of width

5 mm, and for orientation θ , with bins of size 5°.

The results are reported in Table 1. They clearly show that
the network predicting location for each 5×5 mm square is
failing, even if it could in theory represent more complex
ambiguities in the position estimation. Analyzing the per-
formance of training and validation on the synthetic dataset
shows that it actually overfits. On the contrary, the network
trained for estimating x only performs well, apparently be-
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Table 2: Success rate of fine pose estimation on the syn-
thetic validation dataset and on the real evaluation datasets,
for 1 camera and 1 clamp orientation.

Dataset synthetic ’lab’ ’field’ ’adv’

% (ex ≤ 5 mm) 85.3 62.8 61.1 47.5
% (ey ≤ 5 mm) 85.3 67.6 65.2 46.3
% (eθ ≤ 2°) 68.4 83.2 78.2 61.0

ing able to generalize across several y positions. The net-
work predicting separately x, y and the angle θ performs
even better, showing a clear benefit to the joint training. We
use the latter architecture for all the following experiments.
More technical details are given in Appendix C.

5.4 Learning on synthetic data, testing on real

Our networks are trained on synthetic data only. One of the
first question is how they behave on real images. In this
section, we compare the performance of our fine pose es-
timation network both on synthetic and real validation data.
Results for a single camera and one clamp orientation are
provided in Table 2.

The difference of success between the synthetic and the
’lab’ dataset is around 20% for the location estimation (pre-
diction of x and y). Surprisingly, the network is better on the
’lab’ and on the ’field’ datasets for the orientation estima-
tion (prediction of θ ), compared to the synthetic dataset. We
explain it by the variety of textures in the synthetic dataset
acting as distractors whereas, in the ’lab’ and ’field’ datasets,
the block edge are clearly visible and unambiguous. Also, as
all blocks have different sizes in the synthetic dataset, some-
times the short edge and the long edge of the block are of
nearly similar length, leading to an orientation ambiguity,
whereas the block dimensions in the real dataset are signif-
icantly different. As expected, the ’adv’ dataset has poorer
results.

5.5 View aggregation

As indicated in Section 4.1, the separate estimations of sev-
eral cameras can be aggregated into a single global estimate.
We evaluate in detail the interest of aggregating views from
several cameras, also possibly considering together two dif-
ferent clamp orientations, at 90°, as shown on Figure 6. We
report our results for the fine estimation dataset in Table 3.
This table allows two key observations.

First, by comparing the first three columns to the last
one, one can see that unsurprisingly using several viewpoints
improves performance. The boost in performance is actually
quite significant.

Table 3: Accuracy (mean and standard deviation of error) for
fine estimation when aggregating different viewpoints (cam-
eras 1, 2, 3) and different clamp orientations (P1 and P2) on
the ’lab’ dataset.

x error (mm)

Setting Camera 1 Camera 2 Camera 3 All cameras

Clamp P1 7.5±16.0 8.2±16.6 10.9±21.7 3.4±7.6
Clamp P2 7.2±15.1 6.7±11.0 10.7±22.7 2.9±4.6
Both 4.4±6.9 4.1±6.2 6.1±14.2 2.3±1.8

y error (mm)

Setting Camera 1 Camera 2 Camera 3 All cameras

Clamp P1 6.7±14.6 7.1±15.6 10.4±21.8 3.0±5.4
Clamp P2 6.4±14.5 5.5±11.3 9.8±20.8 2.8±4.3
Both 4.4±7.7 4.3±6.5 6.5±15.0 2.6±4.4

θ error (°)

Setting Camera 1 Camera 2 Camera 3 All cameras

Clamp P1 1.4±3.7 1.9±7.8 2.2±8.0 0.8±0.6
Clamp P2 1.3±3.6 1.4±3.9 2.2±8.5 0.8±0.6
Both 1.1±3.4 1.1±4.4 1.3±5.6 0.7±0.6

Second, by comparing the first two lines of each table
with the last one, one can notice that aggregating the pre-
dictions of two views from the same camera but with or-
thogonal clamp orientations boosts the results too. This is at
first sight surprising as the two images are extremely simi-
lar, but it can be explained by the fact that the end part of the
robot arm is almost symmetric and that estimating its orien-
tation may be difficult from some orientations, as illustrated
on Figure 6.

A little inconsistency may be observed in the estimation
of y (2.6± 4.4 mm), which is not as accurate and robust as
the estimation of x (2.3± 1.8 mm). Although differences in
general between x and y could be explained by the asym-
metry of the robot base (see Figure 1) and the non-uniform
range of positions of the cameras, located in the half space
of positive x’s (see Figure 5), the main reason here is ac-
tually that the network returns a totally wrong estimation
(97 mm error) for one of the 576 poses, whereas extreme
mistakes are otherwise rare and never greater than 15 mm.
This impacts ey for both the average (0.2 mm) and standard
deviation (more than 2 mm). Note that this single wrong es-
timation only affects the accuracy measures, not the success
rates as it represents only 0.17% of the poses.

Although not reported here, similar observations can be
made about using different viewpoints for the coarse esti-
mation, as well as when analyzing the percentage of images
below a given accuracy instead of the average errors. These
positive results validate our simple strategy to aggregate the
predictions from each camera and each clamp orientation.



Virtual Training for a Real Application: Accurate Object-Robot Relative Localization without Calibration 11

Table 4: Success rate of coarse pose estimation on the real
evaluation datasets, with 3 cameras and 1 clamp orientation.

Dataset ’lab’ ’field’ ’adv’

% (ex ≤ 60 mm) 99.8 100.0 84.7
% (ey ≤ 60 mm) 100.0 99.1 88.3
% (eθ ≤ 10°) 99.8 99.1 88.7
% (ex,ey ≤ 60 mm) 99.8 99.1 77.5

In the following, we only report aggregated results, unless
otherwise mentioned.

5.6 Three-step procedure and final grasping success rate

We presented a three-step approach for estimating accurately
the relative pose of a block with respect to the robot. We ex-
amine here whether it is realistic in terms of success rate for
the final grasping and if all steps are really necessary.

To check whether the approach makes sense, one can
simply look at the success rate for the first two steps of the
procedure. As can be seen from Table 4, the first step, i.e.,
coarse pose estimation, has a success rate of 99.8%. It is
thus extremely reliable and almost always accurate enough
to allow a subsequent fine pose estimation. The second step
of the procedure requires to locate the clamp in an image,
to later crop a region of interest for the fine localization.
As the evaluation dataset does not include a ground truth
of the exact position of the clamp in the images (see Sec-
tion 5.2), we manually checked all the predictions of our
trained network for localizing the center of the clamp and
counted cases where the prediction was outside the bound-
ing box of the clamp in the image. In that respect, our second
CNN correctly detects the clamp in 99.1% of the pictures,
which is also quite a high success rate. All in all, the success
rate of the two steps prior to fine pose estimation is thus
98.9%, which confirms that these preliminary steps do not
significantly degrade the final estimation.

Now to check whether the three-step procedure does im-
prove accuracy over a single-step procedure, we can com-
pare the percentage of images with errors below 5 mm and
2° in two setups: one in which only a single broad view
is considered, and one in which our three-step procedure
performs a virtual close-up. To obtain comparable results,
and for this experiment only, both approaches are evalu-
ated on the same input images, with the same resolution
(1920× 1080 center-cropped to a square 1080× 1080) and
with the same bin discretization (2 mm, rather than 5 mm
used otherwise for coarse estimation). Concretely, we test
performance with the images where the clamp is positioned
coarsely above the block, which is a necessary condition for
the fine estimation step, but only a particular case of scene
configuration for coarse estimation. The results are reported

Table 5: Success rate of pose estimation with a single-step
procedure vs our three-step procedure on the ’lab’ dataset.

Procedure Single-step Three-step

1 camera 1 camera 3 cameras
Setup 1 clamp 1 clamp 2 clamp

position position positions

% (ex ≤ 5 mm) 20.5 61.1 90.8
% (ey ≤ 5 mm) 23.1 65.7 87.6
% (eθ ≤ 2°) 37.6 80.9 96.9
% (ex,ey ≤ 5 mm, eθ ≤ 2°) 2.8 36.9 79.0

in Table 5. It can be seen that the three-step procedure dra-
matically improves performance.

What makes the difference is that coarse pose estimation
has to resize the image down to 256× 256 (a factor 4.2 on
the length) to feed it into the network procedure, while fine
pose estimation only resizes a 432× 432 crop centered on
the clamp (a factor 1.7). This resolution ratio of 2.5 between
the two procedures naturally translates into a similar ratio
for accuracy, and a considerable difference in the success
rate for errors below 5 mm.

5.7 Comparison with other methods

We found it difficult to compare our method to other ap-
proaches. We tried various existing methods to detect cuboids,
such as Xiao et al (2012), but their performance on images
of our evaluation dataset was too poor to be usable. Like-
wise, usual corner detection was not reliable enough to lo-
cate blocks in the pictures. Besides, block detection is only
part of the problem as, besides camera intrinsic and extrinsic
calibration, the robot also need to be registered in the camera
frame for relative block positioning.

To construct a simple baseline for comparison, we re-
sorted to markers. We built yet another dataset which is iden-
tical to our ’lab’ dataset except that a fiducial marker is
added on the top of the block, as illustrated in Figure 8. On
this dataset, we can detect the block position with the ArUco
marker system (Garrido-Jurado et al, 2014, 2016) as the 2D
detection of the four corners of the marker performs well:
the marker is correctly detected in 95.0% of the pictures.

As we use the same block, with a known height, for our
entire dataset, and as the block is always laid flat on the ta-
ble plane, we can use several known positions of the block,
accurately placed on the table by the robot, to calibrate each
fixed camera independently. More precisely, we use these
positions to determine the coefficients of the homography
matrix relating the support plane to the image plane. As the
robot itself is used to place the block on the table at various
locations, we also know the relative position of the robot
with respect to the block. After this calibration step, a 2D
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(a) (b)

Fig. 8 Variant of the ’lab’ dataset with identical poses but
with a block having a fiducial marker on top of it

Table 6: Success rate of pose estimation with the marker-
based method vs our three-step method on the ’lab’ dataset.

Method Marker-based Ours

1 camera 1 camera 3 cameras
Setup 1 clamp 1 clamp 2 clamp

position position positions

% (ex ≤ 5 mm) 88.4 61.1 90.8
% (ey ≤ 5 mm) 95.0 65.7 87.6

block detection in an image directly translates into a pose
on the table plane, hence on a relative pose with respect
to the robot base. Table 6 compares our method to the re-
sults of pose estimation with the marker-based approach.
(The figures regarding our method differ from Table 2 be-
cause they do not only take into account fine pose estima-
tion but the complete three-step procedure, with possible
failures at coarse pose estimation and clamp detection.) As
expected, the performance with markers is better than our
method, with a single view. However, our method reaches
a comparable performance when aggregating the views of 3
cameras and 2 clamps orientations, without all the practical
constraints of marker-based approaches.

This experiment emphasizes the fact that our approach
does not solve a completely new task, or a task that could not
be solved with existing tools. As the task is perfectly well
defined, the performance of a ”classical” approach mainly
depends on the quality of camera calibration, and 2D/3D
alignment algorithms for the robot and the block. Note how-
ever that camera calibration is time consuming, and we found
it very difficult to find a robust and accurate 2D-3D de-
tection and alignment algorithm. While using markers can
make 2D-3D alignment easy, they also have strong practical
constraints and could easily be stained, damaged or partially
occluded in real-life scenarios, which would make them in-
effective.

Table 7: Success rate of fine pose estimation with 3 cam-
eras and 2 clamp orientations on different (real) evaluation
datasets.

Dataset ’lab’ ’field’ ’adv’

% (ex ≤ 5 mm) 91.8 89.5 73.4
% (ey ≤ 5 mm) 88.5 86.8 71.0
% (eθ ≤ 2°) 97.9 93.0 86.5
% (ex,ey ≤ 5 mm, eθ ≤ 2°) 79.9 70.2 45.1

Table 8: Accuracy (mean and standard deviation of error) of
fine pose estimation with 3 cameras and 2 clamp orientations
on different (real) evaluation datasets.

Dataset ’lab’ ’field’ ’adv’

ex (mm) 2.3±1.8 2.3±1.8 4.0±4.4
ey (mm) 2.6±4.4 2.3±2.0 4.0±5.2
eθ (°) 0.7±0.6 0.9±0.7 1.1±0.9

5.8 Sensitivity to the environment

The results we report in a laboratory environment show the
potential of our method. To go beyond these results and eval-
uate how robust our approach is, we consider more difficult
settings, i.e., the more realistic ’field’ conditions and the ad-
verse ’adv’ dataset. Results for the coarse pose estimation
are reported in Table 4 and, for fine pose estimation, in Ta-
bles 7 and 8. As expected the results are better with the bare
’lab’ environment. Interestingly, the results in more realistic
’field’ environment are still satisfying, with a success rate
of 99.1% for coarse estimation, and 70.2% for fine estima-
tion. However, in adverse conditions with pieces of papers
that could easily be confused with the block (see Figure 7c),
the performance drop is more dramatic, especially for coarse
estimation where many distractors are visible, while the suc-
cess rate of fine estimation drops to 45.1%.

6 Conclusion

We have introduced a new task of uncalibrated relative pose
estimation of an object with respect to a robot. The task
can rely on a single view or on multiple views, possibly
with different arm positions, and with a possible interme-
diate step for a more accurate pose estimation. We have also
constructed a rich dataset for the evaluation of this task.
Last, we have proposed a general method to perform this
task, that provides a strong baseline. Indeed, our approach
estimates the block pose with respect to the robot with an
average location accuracy of 2.6 mm and an average orien-
tation accuracy of 0.7°, and these results in lab conditions
degrade well in more realistic or adverse settings. Given
the small opening range of our test clamp, which requires
a location error less than 5 mm and an orientation error less



Virtual Training for a Real Application: Accurate Object-Robot Relative Localization without Calibration 13

than 2°, this translates into an overall success rate of 80%
for block grasping. While these results are slightly lower
than with methods relying on calibrated cameras and robot,
they show that relative pose estimation can be practically ad-
dressed in unfavorable settings where camera calibration is
fragile or cannot be performed given the context.

One important strength of our method is that it can be
learned with synthetic images only, without using a single
real image for training, thus avoiding the expensive and time-
consuming collection of training data.

Natural extensions of our approach include supporting
different robots, different grasping tasks, and blocks of dif-
ferent shapes, at different heights on non-horizontal surfaces.

References

Aubry M, Maturana D, Efros AA, Russell BC, Sivic J (2014)
Seeing 3D chairs: exemplar part-based 2D-3D alignment
using a large dataset of CAD models. In: Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE,
pp 3762–3769

Chen W, Wang H, Li Y, Su H, Wang Z, Tu C, Lischinski D,
Cohen-Or D, Chen B (2016) Synthesizing training images
for boosting human 3D pose estimation. In: 4th Interna-
tional Conference on 3D Vision (3DV), IEEE, pp 479–
488

Collet A, Srinivasa SS (2010) Efficient multi-view object
recognition and full pose estimation. In: International
Conference on Robotics and Automation (ICRA), IEEE,
pp 2050–2055

Collet A, Martinez M, Srinivasa SS (2011) The MOPED
framework: Object recognition and pose estimation for
manipulation. The International Journal of Robotics Re-
search (IJRR) 30(10):1284–1306

Dalal N, Triggs B (2005) Histograms of oriented gradi-
ents for human detection. In: International Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE,
vol 1, pp 886–893

Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C,
Golkov V, van der Smagt P, Cremers D, Brox T (2015)
Flownet: Learning optical flow with convolutional net-
works. In: International Conference on Computer Vision
(ICCV), IEEE, pp 2758–2766

Felzenszwalb PF, Girshick RB, McAllester D, Ramanan
D (2010) Object detection with discriminatively trained
part-based models. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (PAMI) 32(9):1627–1645

Feng C, Xiao Y, Willette A, Mcgee W, Kamat VR (2014)
Towards autonomous robotic in-situ assembly on unstruc-
tured construction sites using monocular vision. In: In-
ternational Symposium on Automation and Robotics in
Construction and Mining (ISARC)

Fidler S, Dickinson S, Urtasun R (2012) 3d object detection
and viewpoint estimation with a deformable 3D cuboid
model. In: Advances in Neural Information Processing
Systems (NIPS), pp 611–619

Garrido-Jurado S, Muoz-Salinas R, Madrid-Cuevas F,
Marn-Jimnez M (2014) Automatic generation and detec-
tion of highly reliable fiducial markers under occlusion.
Pattern Recognition 47(6):2280 – 2292

Garrido-Jurado S, Muoz-Salinas R, Madrid-Cuevas F,
Medina-Carnicer R (2016) Generation of fiducial marker
dictionaries using mixed integer linear programming. Pat-
tern Recognition 51:481 – 491

Girshick R, Donahue J, Darrell T, Malik J (2014) Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In: International Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, pp 580–
587

Glasner D, Galun M, Alpert S, Basri R, Shakhnarovich G
(2011) Viewpoint-aware object detection and pose esti-
mation. In: International Conference on Computer Vision
(ICCV), IEEE, pp 1275–1282

He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-
CNN. arXiv preprint arXiv:170306870

Hejrati M, Ramanan D (2012) Analyzing 3D objects in clut-
tered images. In: Advances in Neural Information Pro-
cessing Systems (NIPS), pp 593–601
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A Training Dataset Based on Synthetic Images

As introduced in Section 2.2, we generated three synthetic datasets for
training a network for each subtask:
1. robot and block in random pose, for coarse estimation,
2. robot with clamp in random vertical pose pointing downwards, for

2D tool detection,
3. close-up of vertical clamp and random block nearby, for fine esti-

mation.

We created a simple room model where a robot is placed on the floor
and a cuboid block is laid nearby. The robot we experimented with is
an IRB120 from ABB company, for which we have a 3D model. We
also have a 3D model of the clamp. However, we did not model the
cables on the robot base nor on the clamp (compare, e.g., Figure 1a
to Figure 1c). We considered configurations that are similar to what
can be found in the evaluation dataset, although with slightly greater
variations for robustness. The actual randomization for the generation
of images is as follows:

– The size of the room is 20 m× 20 m so that the walls are visible
on some images.

– The robot base (20 cm× 30 cm) orientation and position are sam-
pled randomly. (The robot height is around 70 cm and the arm
length around 50 cm.)

– The orientations (angles) of the robot joints are sampled randomly
among all possible values, except for the clamp 2D detection task
and the fine estimation task, where the arm extremity is placed
vertically on top of the floor.

– Each dimension of the cuboid block is sampled randomly between
2.5 and 10 cm.

– The block is laid flat on the floor with an orientation and a position
sampled randomly in the attainable robot positions for the coarse
estimation task or in a 12 cm square below the clamp for the fine
estimation task.
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Fig. 9 Representation of some parameters defining a syn-
thetic configuration of the relative pose between the robot
and a camera

– All the textures, for the floor, robot and block are sampled among
69 widely different texture images.

– The camera center is sampled randomly at a height between 70
and 130 cm from the floor in a cylindrical sleeve of minimum ra-
dius 1 m and maximum radius 2.8 m, centered on the robot, as il-
lustrated in Figure 9.

– For the coarse estimation setting (wide views), the camera target
is sampled in a cylinder of 30 cm radius and 50 cm height around
the robot base.

– For the fine estimation setting (close-ups), the target is the center
of the clamp, with a small random shift.

– The camera is rotated around its main axis (line between cam-
era center and camera target) with an angle sampled randomly be-
tween -8 and +8 degrees.

– The camera focal length is randomly sampled between 45 mm and
75 mm for an equivalent sensor frame size of 24 mm× 24 mm.

– Synthetic images are 256× 256 pixels.

The pictures were generated with the Unreal Engine 4 game en-
gine. The dataset we created for coarse estimation consists of approxi-
mately 420k images (examples can be seen on Figure 4a), the one for
2D clamp detection consists approximately of 2800k images (examples
can be seen on Figure 4b) and the dataset for fine estimation consists
approximately of 600k images (examples can be seen on Figure 4c).
We used 90% of the images for training and the remaining 10% for
validation.

B Evaluation Dataset Based on Real Images

As explained in Section 5.1, our evaluation dataset actually divides in
three parts, corresponding to different settings, illustrated on Figure 7:

1. in the ’lab’ dataset, the robot and the block are on a table with no
particular distractor or texture,

2. in the ’field’ dataset, the table is covered with dirt, sand and grav-
els, making the flat surface uneven,

3. in the ’adv’ dataset, the table is covered with pieces of paper that
can be confused with cuboid blocks.

We use the robot itself to accurately move the block to random poses,
which provides an reliable measure of its relative position and orienta-
tion, for each configuration. In practice, the block can slowly drift from
its expect position as the robot repeatedly picks it, moves it and puts it
down. To ensure there is no drift, the block position is checked and re-
aligned every ten position. Because of the limited stroke of the clamp,
we considered only a single block sizes: 5 cm × 8 cm × 4 cm. Note

however that our method does not exploit this information; we believe
a robust method should be able to process a wide range of block shapes.
As we want to model situations where the robot can pick a block, we
have to restrict the reach of the arm to a range for which the tool can
be set vertically above the block, i.e., 0.505 m.

We collected images from 3 cameras at various viewpoints, look-
ing at the scene slightly from above. To make sure the block is visible
on most pictures, we actually considered successively different regions
of the experiment table for sampling block poses, moving the cameras
to ensure a good visibility for each region. The cameras are moved
manually without any particular care. The distance between a camera
and the block is typically between 1 and 2.5 m. The maximum angle
between the left-most and the right-most camera is typically on the
order of 120 degrees. This setting is illustrated on Figure 5.

For each block position with respect to the robot base, we consider
two main articulations of the robot arm: a random arm configuration
for the coarse location subtask, and an articulation where the clamp
is vertical, pointing downward and positioned next to the block for
the fine location subtask. In the latter case, we positioned the clamp
150 mm above the table surface, at a random horizontal position in a
120 mm square around the block.

We actually recorded two clamp orientations along the vertical
axis: a first random orientation, and then a second orientation where
the clamp is rotated by 90 degrees (see Figure 6). As the clamp ori-
entation, with respect to which the fine estimation is defined, can be
hard to estimate for some configurations, using two orientations allows
more accurate predictions.

In total, we considered approximately 1300 poses (positions and
orientations) of the robot and the block together. This lead to a total
of approximately 12,000 images, of size 1080× 1080 for wide views
and 432× 432 for close-ups with corresponding ground-truth relative
position and orientation. The cameras used are eLight full HD 1080p
webcams from Trust. Camera intrinsics were not available nor esti-
mated. Nevertheless, the focal length was roughly determined to be
about 50 mm and, in the synthetic images, the camera focal length was
randomly set between 45 mm and 75 mm (see Appendix A).

Datasets and 3D models are available from imagine.enpc.fr/

~loingvi/unloc.

C Network Architecture Details

We define here what are the bins for the three different networks, ad-
dressing the three different subtasks.

The number of bins for the last layer of the coarse estimation net-
work depends on the bin size and on the maximum range of the robotic
arm with the tool maintained vertically, i.e., 0.505 m (see Appendix B).
In practice, we defined bins of 5 mm for the coarse estimation and
2 mm for the fine estimation, both visualized by the fine red grid in
Figure 1a and 3. These pictures also give a sense of how accurate the
localization is compared to the sizes of the block and of the robot. For
the angular estimation, we used bins of 5 and 2 degrees respectively.
For the clamp detection network, we defined bins whose size is 2%
of the picture width. Since as stated above, we predict each dimension
separately, this leads to 202 bins for x and y and 36 bins for θ for the
coarse localization network, 60 bins for x and y and 90 bins for θ for
the fine localization network and 50 bins for x and y for the clamp
localization network.


