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Abstract
The deconvolution problem in image processing consists of
reconstructing an original image from an observed and thus a
degraded one. This degradation is often modelized as a linear
operator plus an additive noise. The linear operator is called
the blurring operator and the goal consists of deblurring the
image. Very often, the blurring operator is modelized as a
convolution whose kernel (the Point Spread Function) is not
directly known in practice. In this paper, we first propose a
new model for convolution and we validate it through com-
puter simulations. Basically, we expend the kernel leading
to a sequence of real coefficients in link with the moment
problem. We particularly emphasize the radial isotropic case.

Index Terms— Image restoration, Image deblurring, Blind

deblurring, Blind deconvolution, The moment problem.

1. INTRODUCTION

Image deblurring is one of the most discussed problems in
image processing since it plays a prominent role in several
applied sciences. This problem consists in recovering an orig-
inal u from a degraded one u0, by dropping the effects of blur
and noise. The connection between u and u0 is often mod-
elled by the equation

u0 = Ku+ n.

in whichK represents a blur operator, n an additive noise and
u0 is the observed image. In the most common model, K is
considered of the form

Ku = k ? u, (1)

where the function k is called the Point Spread Function
(PSF). There exists an abundant literature about the subject,
especially concerning non blind deconvolution, that is retriev-
ing the original image u from u0 when the blur K is known
(as for example in denoising problems for which K = I). A

usual approach in non blind deconvolution consists in solving
the minimization problem

min
u

∫
Ω

|Ku− u0|2dx+

∫
Ω

θ(|∇u|)dx, (2)

where θ denotes a suitable function chosen such that interior
edges are preserved (see, e. g., [1, 2]). In blind deconvolution
problems, both the original image and the blur are unknown
and must be recovered from u0. This is a difficult problem
which is often encountered in practical applications such as
artistic restoration, medical imaging, astronomical imagery,
seismology and some current-life applications decoding bar
codes, reading texts using a camera phone (see, e. g., [3, 4,
5]). Supposing that the blur K is described by a parameter
p, the following variational model is often used for getting a
conjoint estimation of the blur kernel and the shape image

min
p,u

E(p, u) =

∫
Ω

|K(p)u−u0|2dx+λJ1(u)+µJ2(k), (3)

where J1 and J2 are two penalization terms (see [6]). For
example, in the case of a radial symmetric out-of-focus blur,
the operator K is of the form Ku = k ? u with k given by

k(x) =
1

VdRd
11Br

(x), (4)

where Br = {x ∈ Rd||x| < r} and Vd is the volume of the
unit ball given by

Vd =
2πd/2

dΓ(d/2)
,

where Γ is the well-known gamma function. In this case, r
plays the role of the parameter p. One can observe in this ex-
ample that it is so easy to handle with this parameter p (= r)
in solving the minimization problem (3). This problem be-
comes much more difficult when no information on the nature
of the PSF k is available. In [7], we propose the first idea, the
mathematical framework and some theoretical aspects for a
new manner to write the blur operator K which replaces the



convolution (1). This form consists to writeKu as sum which
approximates the convolution k ? u

R(σ)u := Ku =
∑
α∈Nd

(−1)|α|

α!
σα∂

αu. (5)

Our propose here is to present some practical issues and our
numerical results. Of course in practice, this sum is truncated
and the parameter p describing K can be considered as the
sequence of the coefficients (σα)α appearing in the sum (5).
These coefficients are linked to the moments of k and could
be explicitly computed when k is known. When the blur is
supposed centro-symmetric, the expansion (5) writes

Ku =
∑
k≥0

Γ(d/2)

22kΓ(k + d/2)k!
σk∆ku, (6)

where ∆ is the Laplace operator. Notice that in practice, the
Laplacian ∆ is considered in its discrete form. As we shall
show in section 3, from the discrete viewpoint approxima-
tions, (5) and (6) converge for any image u = (ui,j), pro-
vided that some soft conditions are satisfied by the coeffi-
cients (σα)α. In blind deconvolution problems, the param-
eter p is often unknown and must be computed by solving an
inverse problem such as (3). Thus, setting the correct con-
straints on this parameter is of crucial importance. We shall
see that this question is intimately linked to the moment prob-
lem (see [8, 9, 10] for more details on such problem). The
truncature of the sums (5) and (6) and the recovering of the
PSF k from the coefficients (σα)α are also important ques-
tions which will be treated in this paper. The paper is or-
ganized as follows : section 2 defines the proposed model
and how it approaches the blind deblurring problem. After
an introduction of the moment problem, we show how to de-
terminate the PSF from the moments. In section 3, we give
a practical way to use the sum (6). Finally, some numerical
results illustrate this work in Section 4.

2. THE MODEL

We start this section by giving a summarized presentation of
the model. In its general version, the model we propose here
for the blur can be expressed as follows

• The blur operator K is parametrized by a sequence
of positive real numbers (σα)α∈Nd and writes into the
form

Ku =
∑
α∈Nd

(−1)|α|

α!
σα∂

αu, (7)

• The sequence (σα)α∈Nd is subject to the following ab-
stract constraint

there exists a positive function k on Rd such that

∀α ∈ Nd,
∫
Rd

xαk(x)dx = σα.

(8)

Condition (8) means that the coefficients (σα)α are the mo-
ments of a non negative function k on Rd. From a practical
viewpoint this condition is not tractable in this form and must
be made more explicit. We shall see that this question is inti-
mately linked to the well known moment problem.
If in addition, we suppose that the blur is radial symmetric (i.
e. k(x) = k(|x|)), then the approximation (7) becomes

Ku =
∑
k≥0

Γ(d/2)

22kΓ(k + d/2)k!
σk∆ku, (9)

with the following condition on the coefficients σk, k ≥ 0;
there exists a bounded function ρ, non negative on R+, such
that

σ0 = 1, σk =

∫ +∞

0

tkρ(t)dt, for k ≥ 0. (10)

This condition can be seen as a one dimensional moment
problem on the half-line; it is called the Stieljes problem. No-
tice that the functions ρ and k are linked by the identity

k(x) =
2

Ad
|x|2−dρ(|x|2), (11)

where Ad is the surface area of the unit sphere given by

Ad =
2πd/2

Γ(d/2)

More, we can suppose that the function k has a compact sup-
port, that is

k(x) = 0 for all |x| > R,

where the parameter R is the radius of the support of k. Set-
ting δ =

√
R, we can write

σk = δkσ?k, (12)

where (σ?k)k≥0 is a sequence of real numbers satisfying the
constraint:
there exists a function ρ?, nonnegative on [0, 1], such that

σ?0 = 1, σ?k =

∫ 1

0

tkρ?(t)dt, for k ≥ 0. (13)

Now, we can see that the connection between the model (7)
and the convolutive model (9) is evident. The sum (7) approx-
imates formally the convolution k ? u, with k solution of (8),
that is

k ? u ≈
∑
α∈Nd

(−1)|α|

α!
σα∂

αu.

For example, in the case of a radial out-of-focus blur, the PSF
k is given by (4) and one has

ρ(t) =
d

2Rd
td/2−111[0,r2](t), σk =

d

d+ 2k
r2k for k ≥ 0.

(14)



In the case of a gaussian blur, one has

k(x) =
1

(2π)d/2σd
exp(

−|x|2

2σ2
) (15)

ρ(t) =
1

2Γ(d/2)σd

(
t

2

)d/2−1

exp(− t

2σ2
), (16)

and

σk =
(2σ2)kΓ(k + d/2)

Γ(d/2)
for k ≥ 0.

In practical problems, we can use expressions (7) or (9) in
non blind deconvolution problem, after computing the coeffi-
cients (σα)α∈Nm or (σk)k∈N. Indeed, in blind deconvolution
problems, the sequence (σα) is unknown or partially known
(as for the out-of-focus blur) and must be estimated simulta-
neously with the original image. In other terms, the parameter
p can be considered as the sequence (σα). In the case of a
centro-symmetric and compactly supported PSF, p can be
considered as the pair (δ, (σ?k)k∈N). In the simplest case of
a radial symmetric out-of-focus blur of the form (4) (resp. a
gaussian blur of the form (15)) p is nothing but the unknown
radius r (resp. the standard deviation of the gaussian blur σ).

3. CONVERGENCE OF THE EXPANSION AND
TRUNCATURE

In this section, we focus our attention on the truncature of
expansion (9). By sake of simplicity, we treat only the case
of a radial symmetric blur given by the sum (9). Notice that
in practice this sum is truncated. Hence, the operator K is
replaced by a finite sum

RN (σ)u := KN (σ?)u =

N∑
k=0

Γ(d2 )

22kΓ(k + d
2 )k!

σk∆ku, (17)

for some integer N ≥ 1. Two questions pop up in this case;
at what order truncate this sum? (b) what are the constraints
on the truncated sequence (σk)k≥0?.
The purpose of the following section is to give an answer to
these questions.
In the discrete form, an image is composed of a set of pix-
els indexed by (i, j), 1 ≤ i ≤ N , 1 ≤ j ≤ M . u =
(ui,j)1≤i≤N,1≤j≤M belongs in X , where X = RN×M . The
space X is equipped with the euclidian inner scalar product:

∀u, v ∈ X, 〈u, v〉X =

N∑
i=1

M∑
j=1

ui,jvi,j .

By a minor abuse of the notation, we state for Xm, where
m ≥ 1, the space (Rm)N×M . The gradient of u ∈ X , written
∇u belongs to X2 and could be defined by several manners.
One of them consists to set∇u = (g(1), g(2)) with:

g
(1)
i,j =

{
ui+1,j − ui,j if i < N,
0 if i = N.

g
(2)
i,j =

{
ui,j+1 − ui,j if j < M,
0 if j = M.

(18)

The div operator is defined inX2 toX as the adjoint operator
of −∇. So, for all p = (p(1), p(2)) ∈ X2, we have:

∀z ∈ X, 〈divp, z〉 = −〈p,∇z〉.

We state for all u ∈ X ,

∆u = div(∇u). (19)

Then, from the definition of the divergence, we have:

∀u, v ∈ X, 〈∆u, v〉 = −〈∇u,∇v〉 = 〈u,∆v〉. (20)

We set

‖∆‖ = max
v 6=0

‖∆v‖
‖v‖

.

We start with the following lemma

Lemma 1 Suppose that ρ satisfies the following assumption:
there exist four constants α ≥ 0, β > 1/2, λ > 0 and C ≥ 0
such that

∀t ∈ R+, ρ(t) ≤ ctα exp(−λtβ), (21)

Then, the sequence (17) converges normally. Moreover, this
normal convergence holds also when β = 1/2 and λ2 >
‖∆‖.

Condition (21) is satisfied by a Gaussian blur or an out-of-
focus blur of the form (4 or 15). It is also satisfied by any
compatctly supported kernel.

Remark 1 With definition (18) of the gradient and diver-
gence operator, one can prove that

8− 4(
1

N
+

1

M
) ≤ ‖∆‖2 ≤ 8.

Lemma 2 Suppose that n = 2. Let (σk)k≥0 be a real se-
quence satisfying the condition

0 < σk ≤Mτk, (22)

where τ > 0 and M > 0 are two real constants. Then, the fi-
nite sum (17) converges normally for each u ∈ X . Moreover,

‖Ku−KNu‖ ≤
Γ(d2 )MN

2π(N + 1)
e2(N + 1)(ln θN + θN + 1)‖u‖,

where θN =
τ

2(N + 1)
and MN = sup

k≥N+1
σkτ

−k ≤M .

Proposition 1 If we suppose (22) and N + 1 ≥ τ

2λ
, where λ

is the unique real satisfying log λ+ λ+ 1 = 0 (λ ≈ 0.2785)
, then

‖K(σ)u−KN (σ)u‖ ≤
Γ(d2 )

2π

MN

N + 1
‖u‖.



4. NUMERICAL RESULTS

To fix the ideas, on the following tests, we blur an “ideal”
image u with an out-of-focus blurring operator k and with the
new operator R(.) defined in (17). Thus, the data (namely the
blurry images that we would like to restore) are:

• u0 = k ∗ u,

• u0 = R(σ)u.

The figure 1 compares the criterion evolution with respect to
the radiusR, between the convolutive model and the proposed
one with respect to the criterion (2) with u known. This test
shows that the graphs globally coincide and in a neighborhood
of the optimum, they are overlaid.

(a) Test with u0 = k ∗ u and R = 7

(b) Test with u0 = R(σ)u (see 17) and R = 7

Fig. 1. Comparison of both criteria with respect to the radius R
where u the ideal image is known. 1(a) represents the comparison of
the criteria for the data defined by an out-of-focus degraded (blurred)
image, the blur radius is equal to R = 7 and 1(b) is the comparison
of the criteria where the data is defined by the new operator given by
(17) for R = 7. For both examples, the order of the truncature N =
30.

Now, we suppose that the radius R is known and we
would like to find u, an approximation of the ideal image.

The figure 2 presents the criterion (2) in the convolutive
case (where k is an out-of-focus kernel (4)) and with proposed

Fig. 2. The criteria decay with respect to the iterations

(a) Original (real) blurry image

(b) restored image by the convolutive model

(c) restored image by the new model

Fig. 3. Restoration of an out-of-focus blurred image when R is
unknown. 3(a) represents the original image, 3(b) the restored image
with the convolutive model and 3(c) the restoration by the proposed
model (R ' 10 with N = 50).

model (17) with respect to the iterations. The convergence
toward the optimum is quite similar. This shows that, from a
numerical viewpoint, the new approach is in accordance with
the older approach (convolutive model).

The figure 3 compares the results given by both models.
The chosen test (real-life) image has been acquired by a cam-
era phone without autofocus (the mobile : Nokia N70). This
image (494× 125) is a part of a visit card (V-Card). An inter-
esting application of the proposed method is a preprocessing
step in order to scan and recognize text or barcode in docu-
ment acquired by a camera phone or a digicam (see [4, 5]).
Here, of course the blur is unknown, we are in the blind de-
blurring case. We suppose that the main distortion of this
image is an out-of-focus blur plus a gaussian noise. So, we
must give an approximation of the blur radius R . Many ap-



(a) original image

(b) binarization of the restored image (convolutive
model)

(c) binarization of the restored image (new model)

Fig. 4. Restoration of an out-of-focus blurred image when R is
unknown. 4(a) represents the original image, 4(b) a binarization of
the restored image with the convolutive model and 4(c) a binarization
of the restoration with the proposed one.

proaches may be used, for example we can estimate simul-
taneously R with the original image or, when we deal with
an out-of-focus blur, we can firstly estimate an approxima-
tion of R in the cepstral domain (see [11]) then we use our
method when R is estimated. An estimation of the radial blur
is R ' 10 and N = 50. The figure 4 is a classical binariza-
tion of the restored images, it is interesting to notice that the
texts (in the restored images) have been read (recognized) by
different text recognition software, namely the software “AB-
BYY” (see [12]) and the software “Cardiris” (see [13]). Of
course, they don’t recognize the blurred image.

5. CONCLUSION

A novel model for blind deblurring is presented in this pa-
per. Based on the moment problem for the PSF estimation,
we avoid the convolution which is very expensive. So, we
can restore a blurred image in reasonable computation time.
In other words, we could expect to obtain a good restoration
in fast way (it depends only on a recursive laplacian). More-
over, we propose a robust algorithm allowing a simultaneous
computing of the blur kernel and the estimated deblured im-
age. In particular, this approach has been successfully applied
to restore blurred images taken from a camera of very poor
quality.
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