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Abstract—This paper deals with a joint nonuniform illumina-
tion estimation and blind deconvolution for barcode signals by us-
ing evolutionary algorithms. Indeed, such optimization problems
are highly non convex and a robust method is needed in case of
noisy and/or blurred signals and nonuniform illumination. Here,
we present the construction of a genetic algorithm combining
discrete and continuous optimization which is successfully applied
to decode real images with very strong noise and blur.

I. INTRODUCTION

This paper is devoted to the problem of blind deconvolution
of linear barcode signals. Linear barcodes are one of the
oldest technology related to automatic identification and data
capture. Typical barcodes symbologies are UPC/EAN/JAN and
are one variation of over 250. Linear barcodes are graphical
representations of a finite sequences of digits. Information is
encoded in the widths (lines) and the spacings of parallel lines.
Up to a choosen symbology, each sequence of digits admits
a unique graphical representation. So, retrieving digits from
an acquired barcode require accurate estimation of the true
lenght bars and spaces pattern. In order to help decoding, some
symbology may include special start/stop group of bars and a
validation checksum digit.

Ideally, the barcode is given as a binary one-dimensional
signal when scanned by a laser or a binary image when
scanned by a camera (1 represents white space and 0 indicates
a black bar).

Linear barcodes are optimized to be read by a laser scanner.
Typically UPC, EAN, JAN symbologies have been widely
adopted in industrial applications (supermarket checkout sys-
tem, labelling railroad cars, ...). Nowadays, every article has its
own printed barcode. One may imagine using barcodes for its
own purpose, for example price comparison, allergen database
(gluten, peanut ...). Unfortunately, it is not usual to have its
own personal barcode readers.

So, computer vision based barcode recognition could be an
interesting alternative. Here, the problem could be separated
in two steps: localization and decoding. Computer approach
increases the performance of both steps, barcode localization
and decoding (see [1], [2]). In the computer vision approaches,
low cost cameras (webcam, cameraphone, ...), without auto-
focusing or macro mode, could introduce some distortions
and noise artifacts. As a consequence, decoding performances

depend on the distance from the camera to the surface where
the barcode appears ([3]).

Anyway, acquired images are often blurred and distorted by
various factors, including speckle noise, ambient light. Then,
a way, to decode barcodes included in an image, is first to
restore it. We would like to retrieve a barcode image with
blur, noise and also distorted by nonuniform illumination, that
has been acquired by a low cost camera (see an example on
Figure 1).

Fig. 1. A real barcode image with blur, noise and non uniform illumination

To reduce this problem, in [4], the author proposes some
additional hardware device to overcome this drawback, but
not convenient in the context of a mobile phone with a digital
camera [5]. To consider the effect of nonuniform illumination,
several methods have been proposed, among them the illumi-
nation cone method, a spherical harmonic based representation
[6], quotient image based approaches [7] and correlation based
method [8]. The performance of these methods are poor and
many of them require either knowledge of light source or a
large number of training data which is not tractable in real
world applications.

Generally speaking, an image u could be seen as the product
of a reflectance R and the illumination effect I (see [9]). This
model has been used in [10] to deblur barcode signals under
nonuniform illumination. The blurring operator is a Gaussian
function with unknown standard deviation. The solution is
estimated by a penalized non linear least square objective
function, based on a proper parametrization of a linear barcode
and nonuniform illumination. The solution is then estimated
by the well-known gradient based method.

In this paper, we propose a novel method for blind deconvo-
lution of barcode signals in the out-of-focus case, based on a



genetic algorithm taking into account the highly non convexity
of the problem and the fact that the target solution is a binary
image.

The paper is organized as follows : section II gives a math-
ematical definition of the barcode and presents the problem.
Section III proposes a solution to the problem by means of
a genetic algorithm, describes the method and shows how to
implement it. Finally, some numerical results illustrate this
work in Section IV.

II. THE MATHEMATICAL MODEL

A. A mathematical definition for a barcode

Here, we give a general definition of a barcode in the bidi-
mensional case. We suppose that f(x, y) is a 2D continuous
function representing the intensity value of the barcode at
location (x, y) :

f (x, y) =

{
1, if (x, y) ∈ Bk

0, else (1)

where Bk represents the region bounded by the kth bar.
Assume that fd(i, j) is a discrete function acquired from
f(x, y) such that :

fd (i, j) =

∫ j+1

j

∫ i+1

i

f(x, y) dxdy (2)

where (i, j) = (0, 0) , (0, 1) , ..., (1, 0) , ..., (N,M). fd (i, j) is
the area of the region in pixel (i, j) bounded by the bar passing
through that pixel, each pixel is considered as a square region.

B. The blurring model

Let u ∈ IRNM be an original N ×M gray-scale image,
and K ∈ IRNM×NM represents a blurring (or convolution)
operator, I ∈ IRNM the non uniform illumination, n ∈ IRNM

the additive noise, and u0 ∈ IRNM an observation which
satisfies the relationship:

u0 = IKu+ n,

In general, the blurring operator K is supposed shift-invariant,
and takes the following form:

K = k ? u, (3)

where k is the point spreading function (PSF). In many real
cases, the blurring operator K is unknown. Usually, we assume
that K could be represented by few parameters p , these
parameters are a priori unknown. For example, in the out-
of-focus case, the PSF could be approximated as :

k(x,y) =
1

πr2
11Br

(x,y), (4)

where Br is the ball with the center 0 and radius r > 0 and
11Br

(x,y) defines its indicator function.
The non uniform illumination, I , is also unknown. Gener-

ally, it is assumed smooth and could be modelled by using
B-spline functions that are uniformly located in the spatial
domain ([10]):

I(x,y) =

Lx∑
i=1

Ly∑
j=1

Iijβ
n (x− li)β

n (y − lj) , (5)

where βn (t) is a n-order B-spline function centered at zero,
Lx (resp. Ly) is the number of the B-spline functions, Iij
the B-spline coefficients and li, i ∈ {1, ..., Lx} (resp. lj , j ∈
{1, ..., Ly}) denote uniformly distributed center locations of
the B-spline functions.

C. The inverse problem

If we suppose that n is a gaussian noise, the joint estimation
of the blur kernel K, the illumination I and the restored
image u is an ill-posed problem. An approximation of K (or
r equivalently), I and u could be obtained by solving the
following non convex optimization problem:

min
r,I,u

E(r, I, u) =

∫
Ω

|IK(r)u− u0|2dxdy (6)

In order to control the noise, a regularization term of the
type λ

∫
Ω
ϕ(|∇u|)dxdy must be added to the cost function

E. Yet, the choice of the function ϕ must be relevant and
is often a difficult task. Moreover, the use of a deterministic
descent method, such as steepest descent, is only able to seek
for a local minima of the cost function, which is unfortunately
highly non linear.

III. SOLVING THE INVERSE PROBLEM

As seen above, the solution of the inverse problem depends
on the regularization term. The method of genetic algorithms is
used here to overcome this drawback and to solve the inverse
problem on a robust way with respect to noise and blur.

A. The evolutionary algorithm

Genetic algorithms are global optimization methods directly
inspired from the Darwinian theory of evolution of species
([11]). They consist in following the evolution of a certain
number Np of possible solutions, also called population. To
each element (or individual) xi ∈ O of the population is
affected a fitness value inversely proportional to J(xi), in
case of a minimization problem for the cost function J . The
population is regenerated Ng times by using three stochastic
principles called selection, crossover and mutation, that mim-
ics the biological law of the ’survival of the fittest’.

They have show their efficiency in many applicative fields,
in engineering science or in medicine, cite for instance,
car shape optimization [12], turbine shape optimization [13],
pacemaker optimization [14], to mention some results obtained
by one of the author.

The genetic algorithm that is used here acts in the following
way: at each generation, Np

2 couples are selected by using
a roulette wheel process with respective parts based on the
fitness rank of each individual in the population. To each
selected couple, the Darwinian principles, namely crossover
and mutation, are then successively applied with a respective
probability pc and pm. A one-elitism principle is added in



order to be sure to keep in the population the best element of
the previous generation.

B. The cost function

The cost function that has been used is different from the
one written in (6) because the regularization term has been
removed and the L2 norm is replaced by the L4 norm:

min
r,I,u

J(r, I, u) =

∫
Ω

|IK(r)u− u0|4dxdy. (7)

Here, The choice of the L4 norm is not crucial but it has
shown better convergence properties.

C. The search space

One key feature of genetic algorithms is their ability to deal,
either with discrete or continuous search spaces, or even with
both of them. It is precisely the case here as the search space
for u is of finite type whereas the search space for I and r is
of continuous type:

(i) The search space for u
In this work, a particular symbology of barcode has been
studied, namely the EAN13 type, which is currently the most
used one. It encodes 13 characters by using the width of 30
vertical bars. It is worth noticing that the chosen approach can
easily adapt to any other type of barcode. As shown in Figure
2, the signal u to be found is discretized in 61 integer values,
gathered in a vector U :

U = (U1, ..., U61) ∈ IN61

which corresponds to the interval lengths (in terms of pixels)
of each successive sequence of white and black colors (where
u is respectively chosen equal to 0 and 1).

Fig. 2. The discrete search space for u: example of a barcode representation

Note in particular that U1 and U61 play a particular role be-
cause they correspond to the left, respectively right, unknown
margin at each side of the barcode in the image. Note also
that the constraint

61∑
i=1

Ui =M (8)

where M is the width of the image has to be fulfilled.

(ii) The search space for r and I
It is a given interval of IR+ for r whereas it is an hypercube
included in [0, 1]Lx , for I . The latter corresponds to the
ordinates of Lx points used for the reconstruction of I by
cubic splines interpolation (see Figure 3 for an example of a
nonuniform illumination obtained from an interpolation with
5 points).

Fig. 3. The continous search space for I: example of a nonuniform
illumination

D. The darwinian principles

The darwinian principles, namely crossover and mutation,
play a crucial role in the convergence properties of genetic
algorithms and have to be chosen with care.
(i) The darwinian principles for the discrete variable U
The crossover principle between two vectors U and V in
∈ IN61 is inspired from the original crossover in the case
of chromosomes: it consists in creating two offsprings by
exchanging a given number, m, of randomly chosen consec-
utive sequences of each vector (m-point crossover). As the
obtained offsprings do not generally satisfy the constraint (8), a
renormalization principle is added which consists in increasing
(or reducing) the value of randomly chosen components from
them. Actually, this last process acts as the mutation operator.

Assume for instance that m = 1 and denoting by U and V
the two parents:

U = (U1, ..., U61)
V = (V1, ..., V61)

then the two offsprings are respectively:

U ′ = (U1, ..., Uk, Vk+1..., V61)
V ′′ = (V1, ..., Vk, Uk+1..., U61)

for a random k ∈ {1, ..., 61}. Then two offsprings are mutated
with the iterated process

U ′i = U ′i ± 1 for a random i ∈ {1, ..., 61}

until
61∑
i=1

U ′i =M



(ii) The darwinian principles for the continuous variables
For the continuous variables I and r, it consists in a barycen-
tric combination for crossover and a non uniform mutation.
For instance for the blur radius, considering two parents r1

and r2, the crossover and the mutation respectively write as:

(r′1, r
′
2) = (αr1 + (1− α)r2, αr2 + (1− α)r1)

and

r′′i = r′i + β(rmax − ri)b
(or r′′i = r′i − β(ri − rmin)

b with probability 0.5)

where α and β are random numbers between 0 and 1 and
b ∈ [1, 5].

IV. RESULTS

Four examples of results are presented here. The first two
examples are validation test cases: they consist in determining
in the absence of noise, the continuous (respectively discrete
variables) knowing the other ones. The third example is a
complete deconvolution case of an image without knowing
any information (illumination, blur, position of the barcode in
the image, etc...) and with a strong noise. Finally the fourth
example is an example of a barcode decoding from a real
image, namely the one depicted in Figure 1.

Example 1: determination of blur radius and nonuniform
illumination of an image with a known barcode, no noise

In this first example, the only unknowns are the blur radius and
the nonuniform illumination function of an image of a known
barcode. An evolutionary algorithm with 200 individuals and
150 generations is always able to approximate very accurately
these two quantities. Actually, a quasi perfect agreement is
achieved for the illumination function, as well as for the blur
radius, in any configuration showing the robustness of the
approach. For example, a comparison is made on Figure 4
between the original illumination (full line), the initial best
illumination (dotted line) and the final best one after the
optimization process (mixed dotted line, almost superimposed
to the original illumination).

0 100 200 300 400 500

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 4. The exact illumination, the final best illumination (almost superim-
posed) and the initial best illumination (dotted line)

Example 2: determination of a barcode characteristics with a
known blur, no illumination, no noise

The objective is here to show that the evolutionary algo-
rithm acting only on the discrete variables, that is the vector
U ∈ IN61, is able to find an exact barcode corresponding
to a given vector U0 ∈ IN61. In this case, the blur radius
r = 3 is fixed and the unknowns are the 61 coordinates of U .
With a population number of 200 individuals and a generation
number around 300, the algorithm always achieves a perfect
convergence, even starting with a very bad initial guess (see
Figure 5 for an example).
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Fig. 5. The exact signal, the final best signal (almost superimposed) and the
initial best signal (dotted line)

Example 3: determination of a barcode characteristics without
any information on blur, illumination and noise on the image

An example of blind deconvolution of a barcode signal is
presented here. It corresponds to the deblurring of the signal
u0 defined on 494 pixels and depicted in Figure 6.
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Fig. 6. The observed signal u0

As it can be observed, it is an example of a signal, with a
strong noise and blur and with a nonuniform illumination. It is
representative of the robustness and accuracy of our algorithm



for deblurring and denoising. Obviously, the same kind of
results can be reproduced with very similar signal.

The evolutionary algorithm presented in the previous section
is applied with the following parameters:

(Np, Ng, pc, pm) = (5000, 350, 0.8, 0.5)

Concerning the search domain, no hypothesis is made on the
localization of the barcode in the image. Value of the out of
focus radius is supposed to lie between values 2 and 7.

(a) The observed barcode

(b) The initial best barcode (not decodable)

(c) The final best barcode, decodable: 4747379384732

Fig. 7. Comparison of the observed barcode, the initial and final best barcode.

After the optimization process, the obtained barcode, shown
at the bottom of Figure 7, is very different from the initial
best one, visible on the same figure. It has been successfully
decoded and is associated to the code 4747379384732.
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Fig. 8. The convergence history

The convergence history of the optimization process is also
depicted in Figure 8 . It shows that the evolutionary algorithm

almost performs to achieve a ’perfect’ solution, without any a
priori information, such as the position of the barcode in the
image and starting with a very far initial guess.

A statistical study on a large number of barcodes has also
been done, showing that this approach can give positive results,
that is a decodable barcode, on a large range of similar
signals, even with a very strong noise, a strong blur and with
nonuniform illumination.

Example 4: decoding of a real barcode image with blur, noise
and nonuniform illumination:
The last example presents the decoding of a real barcode
image of poor quality, namely the one depicted in Figure 1
(also visible in Figure 10) and taken with a Nokia N70. The
code on the image is undistinguishable because of strong blur.
Moreover, the image is also distorted by a strong nonuniform
illumination.
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Fig. 9. The observed signal (full line) and the final best signal (dotted line)

By using the same parameters for the genetic algorithm
than for the previous example, the obtained best signal is
depicted in Figure 9 (red, dotted line) and compared with
the observed signal (blue, full line). The matching is almost
excellent between both signals. Moreover, the obtained signal,
also depicted in Figure 10, has been successfully decoded and
is associated with the EAN13 code 4025515825135.

V. CONCLUSION

A robust method for blind deconvolution of barcode signals
in the presence of blur, noise and with nonuniform illumination
is presented here. Based on the resolution of the associated
inverse problem with an evolutionary algorithm on a mixed
search space, it allows to decode, without any information
and in a robust and reproducible way, a very noisy and
blurred barcode image. In particular, this approach has been
successfully applied to decode barcodes images taken from a
camera of very poor quality.



(a) The observed barcode

(b) The final best barcode, decodable: 4025515825135

Fig. 10. Comparison of the observed barcode image and the final best barcode
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