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ABSTRACT
We propose a new strategy for improving classical Blind Source
Separation (BSS) methods. This strategy consists in denois-
ing both the observed signal and the estimated source sig-
nal, and is based on the minimization of regularized criterion
which takes into account the Total Variation of the signal. We
prove by the way that the method leads to a projection prob-
lem which is solved by means of projected gradient algorithm.
The effectiveness and the robustness of the proposed separat-
ing process are shown on numerical examples.

1. INTRODUCTION

Blind Source Separation (BSS) is one of the most attractive
research topics nowadays in the field of signal processing and
its applications, as e.g in wireless communication. The goal
of BSS is to recover independent sources given only sensor
observations that are unknown linear mixtures of the unob-
served independent source signals. The principle of BSS is
to transform a multivariate random signal into an ideal signal
which has mutual independent components in the statistical
sense (see [1]), this transformation is achieved up to a permu-
tation (and/or) a filtering operator.
The case of noisy observations has not received much atten-
tion in the BSS litterature. Actually, most of existing methods
are based on noise-free models and could be highly sensitive
to observation noises. Inlcuding noise in the model changes
seriously the structure of the estimation problem and makes
it more difficult to tackle. In this paper, we consider the con-
volutive BSS separation in a noisy context. Here, the obser-
vations vector x0 ∈ RN , N the number of observations, is
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obtained from the sources s ∈ RN trough the mixing system
up to an (unknown) additive noise n ∈ RN :

x0(t) = A ? s(t) + n(t)
= x(t) + n(t), (1)

where ? denotes the convolutive product, x = A ? s(t) is the
noise-free mixed vector, A is the mixing operator and s(t) is
the independent component source vector. The BSS consists
in finding a demixing system defined by :

s0(t) = B ? x0(t), (2)

where the vector s0 ∈ RN is the output signal vector (esti-
mated source vector) and B the separating operator. Thus,
the estimated source signal obtained by a direct BSS can be
written into the form

s0(t) = B ? x0(t)
= B ? (A ? s(t)) +B ? n(t)
= ŝ(t) + n1(t),

(3)

where ŝ(t) = B ? (A ∗ s (t)) and n1 = B ? n. That is, the
”noisy” estimated source s0 is the sum of ŝ, the ”ideal” es-
timated source, and the noise n1. Ideally, we would like to
retrieve ŝ by denoising s0, from given observations.
Several authors treat the BSS in the noisy case. In [2], they
proposed a two-step approach by combining the fractional
lower order statistic for the mixing estimation and minimum
entropy criterion for noise-free source components estima-
tion, the performance of their method depends on a non linear
function properly chosen with relation to the source distribu-
tion and the characteristic of the noise. In [3], they proposed
a whitening procedure to reduce the noise effect. Both meth-
ods are proposed for the linear instantaneous case. In [4], in
the linear convolutive case, the authors proposed an algorithm



robust against noise. They assume that noise could be de-
composed in coherent and incoherent contributions. In their
method to increase robustness of their BSS algorithms against
uncorrelated noise, bias removal techniques must be consid-
ered.

In general, the BSS framework for convolutive mixture
was presented for the noiseless case. The robustness of these
methods against the noise is often checked afterward. Our
objective here is to propose a new strategy which takes into
account the presence of the noise in order to remove it. Our
method is mainly based on a double action; (a) a denoising
of the observed signal x before demixing, and a simultane-
ous BSS-denoising procedure the aim of which is to get a
noiseless estimation of source. Both of the actions lead to
a regularized optimization problem. Notice that Total varia-
tions methods are also used in image processing [5, 6, 7] with
some relative success.

The paper is organized as follows. Section 2 motivates
our choice and define the denoising and the regularized sep-
arating criterion. Section 3 proposes a discretization of the
problem and a pre-processing process, shows how to estimate
the noise-free observation and presents the regularized sep-
arating algorithm. Finally, a discrete form of the criterion,
then a stochastic form are given with some numerical results
illustrating this work in Section 4.

2. THE METHOD

Our aim here is to get a good approximation of ŝ from (3).
The method we propose is decomposed into two steps: (a)
step 1: denoising the observed signal (b) step 2: a blind source
separation combined with a denoising of the estimated source.
Let us sketch the main features of each step.

2.1. Denoising the observed signal

Let x0
i , 1 ≤ i ≤ N , be the noisy observed stochastic signals

which write into the form x0 = x + n. We would recon-
struct the ideal observed signal x from x0 by means of the
following variational problem

xi = arg min
wi∈X

1
2
E
(
|wi − x0

i

∣∣2) + λE (θ (|w′i|)) . (4)

where λ > 0 is a penalization parameter, θ is a well chosen
function, w′(t) the first derivative of w and X is an appropri-
ate space. The Euler-Lagrange equation corresponding to this
optimization problem writes

wi − λ
(
θ′(|wi′|)
|wi′|

w′i

)′
= x0

i . (5)

Thus, in practice, the function θ is chosen to encourage smooth-
ing in regions where the variation of the signal are weak,
that is |w′| ≈ 0, and to preserve discontinuities where |w′|

is strong. The Total variation case correponds to the choice
θ(t) = t which will be adopted here. One can make other
choices like θ(t) =

√
1 + t2.

The natural space for treating the continuous variational prob-
lem (4) when θ(t) = t is BV ([0, T ])N , the space of bounded
variation functions (see [8], [9]). The treatment of the contin-
uous problem is mathematical question which is beyond the
scope of this paper. Here, we consider only the corresponding
discrete problem which will be detailed and solved in section
3.1 hereafter.

2.2. The simultaneous BSS-denoising procedure

The purpose of this second step is to reconstruct an estimated
source signal s from the partially denoised observed signal
x. Following the arguments of the last section, our model
consists in minimizing the criterion

J (ŝ) = Jsep (ŝ(B; x)) + Jreg (ŝ(B; x)) , (6)

with respect to B. Here ŝ(B; x) = B ?x, Jsep is the separat-
ing criterion and Jreg is a regularization term of the form

Jreg (ŝ) =
N∑
i=1

(γ
2
E
(
|ŝi − s0

i |2
)

+ µE
(
θ
(
|ŝ′i|
)))

(7)

where E is the mathematical expectation, θ is defined as in
section 2.1, ŝi and s0

i are respectively the ith component of
ŝ, s0 for i ∈ {1, ..., N}). ŝ′ is the first detivative of ŝ. Notice
that the first term controls the variation of v while the second
is the fidelity term. The reals µ > 0 and γ > 0 are small
regularization parameters.
Here, because we deal with convolutive mixtures, it is easy
to show that the independence between two scalar sources
y1(n) and y2(n) (for all n) is not sufficient to separate the
system. That is why additional constraints must be stated
to ensure the mutual independence of the output signal com-
ponents yi(n), i ∈ {1, ..., N}. To make it easier to under-
stand, let us consider now a bidimensional random vector
y = (y1(n), y2(n))T . The independence of the components
y1(n) and y2(n′) is needed for all n and n′ to ensure the
separation, in a different way the independence of y1(n) and
y2(n − m), for all n and at all lags m. As in [10, 11], we
define the separating criterion Jsep by:

Jsep (ŝ) =
∑

q

I (ŝq) , (8)

where q = (q1 = 0, q2, ..., qN ) is an integer vector and ŝq(n) =
(ŝ1(n− q1), ..., ŝN (n− qN )).

I is the mutual information which could be written as fol-
lows:

I (ŝ) =
∫

RN

pŝ(t) ln

(
pŝ(t)∏N
1 pŝi

(t)

)
dt, (9)



where pŝ define the joint probability density function (joint
pdf) and pŝi

, i ∈ {1, ..., N}, the marginal probability density
function of the ith component of ŝ (marginal pdf). Actually,
the separation is obtained when the components of ŝq become
independent.

3. DISCRETIZATION

In the sequel, continuous signals are sampled at a period Te;
to each continuous signal u, we associate a vector

(
u0, ..., um

)
∈

X = Rm+1 defined by uk = u(kTe), 0 ≤ k ≤ m. This vec-
tor is still denoted by u. The space X = Rm+1 is equipped
with the euclidian inner product 〈u, v〉 =

∑m
k=0 u

kvk, for all
x = (u0, ..., um) ∈ X and ŝk = (v0, ..., vm) ∈ X . The first
derivative of u ∈ X , written u′, belongs to X and is defined
by

(u′)k =
uk+1 − uk

Te
if k < m, (u′)m = 0. (10)

We define also the backward derivative of u ∈ X , written u∗,
by :

(u∗)0 =
uki
Te
, (u∗)m = −u

k−1
i

Te

and

(u∗)k =
uk − uk−1

Te
if 0 < k < m.

The backward derivatives (.)∗ is the adjoint operator of−(.)′.
That is, for all u ∈ X , we have

∀v ∈ X, 〈u∗, v〉 = −〈u, v′〉.

All these definitions are extended in a natural way to elements
of XN .

3.1. The denoising of the discrete observed signal

In this section, we show how to estimate in practice x from
the observation x0. Recall that this estimation is obtained
by solving the optimization problem (4). We start with the
following proposition which gives a simple characterization
of the solution

Proposition 1 The problem (4) has a unique solution given
by

x = x0 −ΠλGx0, (11)

where ΠλG is the orthogonal projection operator on the con-
vex set λG with G = {v∗| v ∈ XN , |vki | ≤ 1,∀(i, k)}.

Thus, we are lead to compute the projection operator ΠλG

on the convexe λG. In other words, we solve the following
problem:

x = arg min
v ∈DN

‖λv∗ − x0‖2 (12)

where D is the convex given by D = {v ∈ X|, ∀k ≤
m, | vk| ≤ 1}. In order to solve the problem (12), one can
use a projected gradient method, that is

Data: x0 the observation vector
Result: x the denoised observation vector
initialization : Given ε > 0, x0 = x0 and ρ > 0
do
• update x:

for i=1,...,N
xp+1
i = ΠD

(
xpi − 2λρ(λ(xpi )

∗ − x0
i )
′)

until ‖xp+1 − xp‖ < ε
x = xp+1.

where ΠD is the orthogonal projection on D, given by:

∀v ∈ X, (ΠDv)k =

{
vk

|vk| , if |vk| ≥ 1, k = 0, ...,m.
vk, else

(13)
Afterwards, the filtered observation vector x will be consid-
ered as the denoised version of the observation vector x0.
Now, we investigate the BSS step.

3.2. An algorithm for the simultanous BSS-denoising al-
gorithm

In this section, we apply the gradient approach to separate
convolutive mixtures based on the minimization of the crite-
rion (6). Let us assume that the discrete separating system
form of (2) is defined by:

ŝ(n) =
L∑
k=0

Bkx(n− k), (14)

where Bk are FIR filters with maximum degree L. To es-
timate the matrices Bk leading to estimate sources outputs,
we calculate the gradients of (6) according to each Bk. So,
the derivation of the separating term of (6) leads to multivari-
ate score functions, namely the joint score function (JSF), the
marginal score function (MSF) and the score function differ-
ence (SFD) defined respectively by:

ϕŝ (ŝ) =

(
−

∂pŝ

∂ŝ1

pŝ (ŝ)
, ...,−

∂pv

∂ŝN

pŝ (ŝ)

)
,

ψŝ (ŝ) =
(
−pŝ1 (ŝ1)
pŝ1 (ŝ1)

, ...,−pŝN
(ŝN )

pŝN
(ŝN )

)
,

βŝ (ŝ) = ψŝ (ŝ)− ϕŝ (ŝ) .

We state the following proposition



Proposition 2 Let us consider J defined by (6). Then,

∂J(ŝ(n))
∂Bk

=

E

((
β−q

ŝq (n)− µ

(
θ′
(
ŝ′(n)

)
ŝ′(n)

|ŝ′(n)|

)∗)
x(n− k)T

+γ
L∑
l=1

Bl(x− x0)(n− l)(x− x0)(n− k)T
)
.

Then, we can derive the following algorithm:

Data: x0 the observation vector
Result: ŝ the estimated source vector
initialization : Compute x = x0 − ΠDx0. Given
ε > 0, B0

k, k ∈ {1, ..., L}, ŝ0 = x and τ > 0
do
• update Bk

for k=1,...,L,

Bp+1
k = Bpk − τ

∂J (ŝp (n))
∂Bpk

;

• update ŝ

ŝp+1(n) =
L∑
k=0

Bp+1
k x(n− k),

until ‖Bp+1
k −Bpk‖ < ε

4. NUMERICAL RESULTS

In this section, we dealt with two sorts of sample, namely
observations obtained by a convolutive mixture of two real,
non-Gaussian and independent sources with zero means and
BPSK signals which are used, for example, in trellis coding
for wireless communications.

The performance comparison is given using the output
signal-to-noise ratio (SNR) defined by:

SNR = 10 log10

(
y2
i

r2i

)
,

where ri =

(
L∑
k=1

Bk

(
n−k∑
l=1

Als(n− k − l)

))
|si=0.

The mixtures were separated using mutual information
(MI) method shown in ([10, 11]), MI method where the data
are pre-whitening (MI BL) and our proposed algorithm (MI TV).

We use the separation criterion (6) in its discrete form,
i.e. the finite summation over qi ∈ {−M, ...,M} takes the
place of the infinite one over qi ∈ Z, where M = 2L. Since
the three criteria are computationally expensive, we imple-
mented here their stochastic version i.e. at each iteration, m
was randomly chosen from the set {−M, ...,M}. The SFD
are estimated using the Pham’s method described in [12].

4.1. Example 1

Here, the source signals were linearly mixed through a ran-
domly generated RIF filters of length 6. The number of ob-
servations taken equals 1000. The experiment is repeated 100
times with different realizations of the random sources. For
each experiment, we add a gaussian noise to the mixing sys-
tem (RSB = −30). Figure 1 shows the averaged SNRs ver-
sus iterations for the three algorithms, the adapting step-size
is equal to τ = 0.2 for all algorithm and concerning our algo-
rithm parameters: µ = 0.001 and γ = 0.00001

We notice that the convergence of the algorithms is quite
comparable. But in terms of SNRs performances, our algo-
rithm gives better separation.
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Fig. 1. Average output SNRs versus iterations.

4.2. Example 2

Now, the mixing A is a FIR with maximum degree equal to 2,
randomly choosen. The number of observations taken equals
2000. The experiment is repeated 25 times with different re-
alizations of the random sources. For each experiment, we



add a gaussian noise at different RSB level, where the RSB
is defined such that:

RSB = 10 log10

(
Pn
Ps

)
,

where Pn and Ps are respectively the noise and signal power.
Figure 2 shows the averaged SNRs versus the RSB for the

three algorithms, the adapting step-size is equal to τ = 0.1
for all algorithm and concerning our algorithm parameters:
µ = 0.001 and γ = 0.00001.

In this example, we can show that our algorithm outper-
formed MI and MI BL algorithms in terms of SNRs.
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Fig. 2. Average output SNRs versus RSB.

5. CONCLUSION

A robust algorithm for convolutive BSS in presence of noise
is presented. This algorithm uses variational frameworks to
control the noise. It is based on two steps: a pre-processing,
reducing the noise on the data and the minimization of a regu-
larized mutual information criterion. This regularization pre-
vents from the error model and allows to denoise the estimate

output. So, the simulation results have shown that this imple-
mentation is proving to be very efficient in terms of stability,
robustness against noise and SNR’s performance.
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